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PURE QUINTIC FIELDS
DEFINED BY TRINOMIALS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. Pure quintic fields which can be defined by
a trinomial X5 + aX + b or X5 + aX2 + b, where a and b
are nonzero rational numbers, are characterized. Using this
characterization it is shown that the only pure quintic field
Q(p1/5) (p a prime) which can be defined by a trinomial is

Q(21/5) = Q(θ), where θ is the unique real root of x5+100x2+
1000 = 0.

1. Introduction. LetQ denote the field of rational numbers, and let
K be a quintic extension of Q, that is, [K : Q] = 5. The quintic field K
is said to be defined by a trinomial if there exist a, b ∈ Q\{0} such that
there is a root θ of x5+ax+b = 0 or x5+ax2+b = 0 such thatK = Q(θ).
Clearly if K is defined by a trinomial, then the corresponding trinomial
X5 + aX + b or X5 + aX2 + b is irreducible in Q[X]. The quintic field
K is called a pure field if K = Q(z1/5) for some rational number z
which is not a fifth power in Q and z1/5 denotes the real fifth root of
z. In this paper we are interested in quintic fields defined by trinomials
which are pure fields, see Theorems 3.1 and 4.1. Our approach is based
upon the characterization of solvable quintic trinomials given in [6].
General solvable quintics are treated by Dummit [2]. We show that
the only pure quintic field Q(p1/5), p a prime, which can be defined
by a trinomial is Q(21/5) = Q(θ), where θ is the unique real root of
x5 + 100x2 + 1000 = 0, see Theorem 5.2.

2. Solvable quintic fields defined by X5 + aX + b. Throughout
this section we assume that a and b are nonzero rationals such that the
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372 B.K. SPEARMAN AND K.S. WILLIAMS

quintic trinomial X5 + aX + b is both irreducible and solvable. It is
shown in [6] that there exist rationals ε(= ±1), c(≥ 0) and e( �= 0) such
that

(2.1) a =
5e4(3− 4εc)
c2 + 1

, b = −4e5(11ε+ 2c)
c2 + 1

.

Moreover, x5 + ax+ b = 0 has exactly one real root [6, p. 989], which
we denote by x0. We set, see [6, equations (14), (15), (16)],

D = c2 + 1,(2.2){
v1 =

√
D +

√
D − ε√D, v2 = −√

D −
√
D + ε

√
D,

v3 = −√
D +

√
D + ε

√
D, v4 =

√
D −

√
D − ε√D,

(2.3)

u1 =
(
v21v3
D2

)1/5

, u2 =
(
v23v4
D2

)1/5

,(2.4)

u3 =
(
v22v1
D2

)1/5

, u4 =
(
v24v2
D2

)1/5

,

ω = e2πi/5.(2.5)

Then the roots of x5 + ax+ b = 0 are x0, x1, x2, x3, x4, where

(2.6) xj = e(ωju1 + ω2ju2 + ω3ju3 + ω4ju4), j = 0, 1, 2, 3, 4,

see [6, equation (13)].

Lemma 2.1. For j = 0, 1, 2, 3, 4,

xj = e
(
ωju1 + ω2j

(
εD1/2

v1

)
u2

1 + ω3j

(
D

v1v3

)
u3

1

+ ω4j

(−εD3/2

v21v3

)
u4

1

)
.

Proof. The lemma follows immediately from (2.6) on noting the
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following relations

(
u2

u2
1

)5

=
v23v4
D2

D4

v41v
2
3

=
v1v4D

2

v51
=
εD5/2

v51
,

(
u3

u3
1

)5

=
v22v1
D2

D6

v61v
3
3

=
v22D

4

v51v
3
3

=
D5

v51v
5
3

,

(
u4

u4
1

)5

=
v24v2
D2

D8

v81v
4
3

=
v24v

2
1v2v3D

6

v101 v
5
3

=
−εD15/2

v101 v
5
3

,

where we have made use of the relations v1v4 = ε
√
D, v2v3 = −ε√D.

We leave it to the reader to give the xj , j = 0, 1, 2, 3, 4, as polynomials
in each of u2, u3, u4 analogously to Lemma 2.1.

Lemma 2.2. If u5
j ∈ Q for some j = 1, 2, 3 or 4, then D = m2 for

some positive rational m.

Proof. We assume that u5
1 ∈ Q. The argument is similar if u5

2, u
5
3

or u5
4 ∈ Q. If D = m2 for some positive rational m, we are finished.

Thus, we may suppose that D �= m2 for any nonzero rational m and so
Q(

√
D +

√
D) is a cyclic quartic field with unique quadratic subfield

Q(
√
D). Hence, 1,

√
D,α, β are linearly independent over Q, where

α =
√
D + ε

√
D, β =

√
D − ε

√
D.

Now, by (2.3) and (2.4),

D2u5
1 = v21v3 = (

√
D + β)2(−

√
D + α)

= −2D
√
D + ε

√
D + 2cD + 2Dα− 2Dβ − ε

√
Dα ∈ Q.

But √
Dα = εα + cβ

so
(εD + 2cD) − 2D

√
D + (2D − 1)α− (2D + εc)β ∈ Q.
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This contradicts that 1,
√
D,α, β are linearly independent over Q as

the coefficient of
√
D is nonzero.

Lemma 2.3. If u5
j ∈ Q for some j = 1, 2, 3 or 4, then D = m2 and

m2 +m = n2 for some positive rationals m and n.

Proof. We assume that u5
1 ∈ Q. The proof is similar if u5

2, u
5
3 or

u5
4 ∈ Q. By Lemma 2.2 we have D = m2 for some positive rational m.

Suppose m2 +m �= n2 for any rational n. By (2.3) and (2.4), we have

D2u5
1 = v21v3 = (m+

√
m2 − εm)2(−m+

√
m2 + εm)

= m
(
(−2m2 + εm+ 2cm) + (2m− ε)

√
m2 + εm

− 2m
√
m2 − εm

)
∈ Q,

so that

(2.7) (2m− ε)
√
m2 + εm− 2m

√
m2 − εm ∈ Q.

If c = 0, then D = 1 = m2 so m = 1 and (2.7) becomes

(2− ε)√1 + ε− 2
√

1 − ε ∈ Q,
which is impossible for ε = ±1. If c �= 0, then D = m2 �= 1 so m �= ±ε
and √

m2 − εm =
c

m+ ε

√
m2 + εm

so that (2.7) yields

2m2 − 2cm+ εm− 1
m+ ε

√
m2 + εm ∈ Q.

As
(m2 −m)(m2 +m) = m2c2 �= 0

and
m2 +m �= n2 for any rational n,

we deduce that

m2 −m �= l2 for any rational l.
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Hence
√
m2 + εm is irrational and thus

2m2 − 2cm+ εm− 1 = 0.

We have

c =
2m2 + εm− 1

2m
so (

2m2 + εm− 1
2m

)2

+ 1 = m2,

that is,

4εm3 +m2 − 2εm+ 1 = (m+ ε)(4εm2 − 3m+ ε) = 0.

As

4εm2 − 3m+ ε = ε
{(

2m− 3ε
4

)2

+
7
16

}
�= 0

we must havem = −ε. This gives c2 = m2−1 = 1−1 = 0, contradicting
c �= 0. Hence m2 +m = n2 for some rational n. As m is positive, we
can take n to be positive.

We remark that, if D = m2 and m2 + m = n2 for some positive
rationals m and n, then m �= ±1, D �= 1 and c �= 0.

Lemma 2.4. If u5
j ∈ Q for some j = 1, 2, 3 or 4, then

v1, v2, v3, v4, u
5
1, u5

2, u
5
3, u

5
4 ∈ Q.

Proof. By Lemma 2.3 there exist positive rationals m and n such that

D = m2, m2 +m = n2.

Then

(m2 −m)(m2 +m) = m2(m2 − 1) = m2(D − 1) = m2c2

so that
m2 −m = (mc/n)2.
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Hence there exist nonnegative rationals r and s such that

m2 + εm = r2, m2 − εm = s2.

Thus, by (2.3), we have

v1 = m+ s ∈ Q, v2 = −m− r ∈ Q,
v3 = −m+ r ∈ Q, v4 = −m− s ∈ Q.

Finally, from (2.4), we deduce that

u5
1, u

5
2, u

5
3, u

5
4 ∈ Q.

3. Pure quintic fields defined by X5 + aX + b. We begin by
proving the following result.

Lemma 3.1. Let a, b ∈ Q\{0}, and suppose that X5 + aX + b
is irreducible and solvable in Q[X]. Let x0 be the unique real root of
x5 + ax+ b = 0. Then the following hold.

(i) Q(x0) is pure if and only if u5
1, u

5
2, u

5
3, u

5
4 ∈ Q.

(ii) If Q(x0) is pure, then Q(x0) = Q(uj), j = 1, 2, 3, 4.

Proof. Suppose first that u5
1, u

5
2, u

5
3, u

5
4 ∈ Q. Then, by Lemma 2.3,

there exist positive rationals m and n such that

D = m2, m2 +m = n2.

Thus, by Lemma 2.1, we have

x0 = e
(
u1 +

(
εm

v1

)
u2

1 +
(
m2

v1v3

)
u3

1 −
(
εm3

v21v3

)
u4

1

)
,

and, by Lemma 2.4, v1 ∈ Q and v3 ∈ Q. Hence,

x0 ∈ Q(u1).

As u5
1 ∈ Q, [Q(u1) : Q] = 1 or 5. Now x0 is a root of the irreducible

quintic X5 +aX+ b so [Q(x0) : Q] = 5. Since Q(x0) ⊆ Q(u1), we must
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have [Q(u1) : Q] = 5 and Q(x0) = Q(u1). By a similar argument we
have Q(x0) = Q(u2) = Q(u3) = Q(u4). Thus Q(x0) is a pure field.
This completes the proof of (i) in one direction. We now prove (i) in
the other direction. Assertion (ii) then follows from the above proof.

Now we suppose that Q(x0) is a pure field, and we show that
u5

1, u
5
2, u

5
3, u

5
4 ∈ Q. We set

M = Q(x0, x1, x2, x3, x4)

the splitting field of X5 + aX + b. As x4 = −x0 − x1 − x2 − x3, we see
that

M = Q(x0, x1, x2, x3).

Further, as Q(x0) is a pure field, we have ω ∈M , where ω is defined in
(2.5). Also as Q(x0) is a pure field its Galois group is solvable and so
must be isomorphic to the Frobenius group F20 or the dihedral group
D5 of order 10 [6, p. 990]. In the latter case, M does not contain a
quartic subfield, contradicting that Q(ω) ⊆M . Hence the Galois group
must be F20 and the subfield structure of M given in [8, p. 16] shows
thatM contains a unique quartic subfield which must be Q(ω). Indeed,
Q(ω) contains all the elements of M of degree 1, 2 or 4 over Q.

Taking j = 0, 1, 2, 3 in (2.6), we obtain

u1 + u2 + u3 + u4 = x0/e,

ωu1 + ω2u2 + ω3u3 + ω4u4 = x1/e,

ω2u1 + ω4u2 + ωu3 + ω3u4 = x2/e,

ω3u1 + ωu2 + ω4u3 + ω2u4 = x3/e.

The determinant of the coefficient matrix of this system of four linear
equations in u1, u2, u3, u4 is∣∣∣∣∣∣∣

1 1 1 1
ω ω2 ω3 ω4

ω2 ω4 ω ω3

ω3 ω ω4 ω2

∣∣∣∣∣∣∣ = −5
√

5 �= 0.

Hence, by Cramer’s rule, we see that

u1 =

∣∣∣∣∣∣∣
x0/e 1 1 1
x1/e ω2 ω3 ω4

x2/e ω4 ω ω3

x3/e ω ω4 ω2

∣∣∣∣∣∣∣
−5

√
5

∈ Q(ω, x0, x1, x2, x3) =M(ω) =M,
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and similarly u2, u3, u4 ∈M . Thus, Q(u5
1) ⊆M and so as [M : Q] = 20

we have
[Q(u5

1) : Q] = 1, 2, 4, 5, 10 or 20.

Now, by (2.3) and (2.4), we see that

u5
1 ∈ Q

(√
D −

√
D,

√
D +

√
D

)
so that

[Q(u5
1) : Q] = 1, 2, 4 or 8.

Hence,
[Q(u5

1) : Q] = 1, 2 or 4.

But, as we have already noted, all the elements of M of degree 1, 2 or
4 over Q belong to Q(ω). Thus,

u5
1 ∈ Q(ω).

If u1 ∈ Q(ω), each summand in the expression for x0 given in
Lemma 2.1 has degree a power of two so that x0 could not be a quintic
irrationality. Hence, u1 /∈ Q(ω). Thus, by [3], Theorem 10(b), p. 214],
Q(ω, u1) is cyclic over Q(ω) of degree five. Now

[Q(ω, u1) : Q] = [Q(ω, u1) : Q(ω)][Q(ω) : Q] = 5 × 4 = 20 = [M : Q]

and
Q(ω, u1) ⊆M,

so that M = Q(ω, u1). Thus the Galois group of M/Q(ω) is cyclic of
order five and the conjugates of u1 over Q(ω) are ωju1, j = 0, 1, 2, 3, 4.
Let φ be the automorphism of M/Q(ω) such that

φ(u1) = ωu1.

Now by [6, p. 989], we have
√
D = − ε

u1u4
∈M.

But all the elements of M of degree 1, 2 or 4 over Q are contained in
Q(ω), so √

D ∈ Q(ω).
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Thus
u1u4 = − ε√

D
∈ Q(ω),

and so
φ(u1u4) = u1u4.

Hence,
φ(u4) =

u1u4

φ(u1)
=
u1u4

ωu1
= ω4u4.

Further, by [6, equation (24), p. 989], we have

v1 = Du2
1u3 ∈M

and, by (2.3), we see that v1 is of degree 1, 2 or 4 over Q. hence,

v1 ∈ Q(ω).

Thus,
φ(v1) = v1,

and so

φ(u2
1u3) = φ

(
v1
D

)
=
v1
D

= u2
1u3.

Hence,

φ(u3) =
u2

1u3

φ(u1)2
=
u2

1u3

ω2u2
1

= ω3u3.

Now, by [6, equation (23), p. 989], we have u1u2u3u4 = −1/D, so that
φ(u1u2u3u4) = u1u2u3u4, and thus

φ(u2) =
u1u2u3u4

φ(u1)φ(u3)φ(u4)
=

u1u2u3u4

(ωu1)(ω3u3)(ω4u4)
= ω2u2.

Hence we have shown that

φ(uj) = ωjuj , j = 1, 2, 3, 4.

Next, since Q(x0) is pure, there exists z ∈ Q, z is not equal to
the fifth power in Q, such that Q(x0) = Q(z1/5). A simple degree
argument shows that M = Q(ω, z1/5). Clearly, φ(z1/5) = ωjz1/5

for some j = 0, 1, 2, 3, 4. Certainly j �= 0 as φ is not the identity
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isomorphism. Let k be the unique integer such that 0 < k < 5 and
jk ≡ 1 (mod 5). We have

φ(zk/5) = (ωjz1/5)k = ωzk/5.

Hence, replacing the generator z of Q(z1/5) by zk, if necessary, we can
suppose that

φ(z1/5) = ωz1/5, Q(x0) = Q(z1/5).

Thus,
φ(zj/5) = ωjzj/5, j = 1, 2, 3, 4.

As x0 ∈ Q(z1/5), there exist rationals A,B,C,D,E such that

x0 = A+Bz1/5 + Cz2/5 +Dz3/5 + Ez4/5.

Hence, by (2.6), we have

e(u1 + u2 + u3 + u4) = A+Bz1/5 + Cz2/5 +Dz3/5 + Ez4/5.

Applying the automorphism φ j times to both sides of this equation,
we obtain

e(ωju1 + ω2ju2 + ω3ju3 + ω4ju4)

= A+Bωjz1/5 + Cω2jz2/5

+Dω3jz3/5 + Eω4jz4/5, j = 0, 1, 2, 3, 4.

Summing these equations for j = 0, 1, 2, 3, 4, we see that A = 0. Then
the equations with j = 0, 1, 2, 3 can be written as

(eu1 −Bz1/5) + (eu2 − Cz2/5) + (eu3 −Dz3/5) + (eu4 − Ez4/5) = 0,

ω(eu1 −Bz1/5) + ω2(eu2 − Cz2/5)

+ ω3(eu3 −Dz3/5) + ω4(eu4 − Ez4/5) = 0,

ω2(eu1 −Bz1/5) + ω4(eu2 − Cz2/5)

+ ω(eu3 −Dz3/5) + ω3(eu4 − Ez4/5) = 0,



PURE QUINTIC FIELDS 381

ω3(eu1 −Bz1/5) + ω(eu2 − Cz2/5)

+ ω4(eu3 −Dz3/5) + ω2(eu4 − Ez4/5) = 0.

The determinant of the coefficient matrix of this system of four lin-
ear equations in the four quantities eu1 − Bz1/5, eu2 − Cz2/5, eu3 −
Dz3/5, eu4 − Ez4/5 is, as already noted earlier, nonzero. Hence,

eu1 −Bz1/5 = eu2 − Cz2/5 = eu3 −Dz3/5 = eu4 − Ez4/5 = 0.

Thus
u5

1, u
5
2, u

5
3, u

5
4 ∈ Q.

We are now ready to prove our main result.

Theorem 3.1. (i) If r is a rational �= 0,±1, then

Q((r3(r + 1)(r − 1)4)1/5)

is a pure quintic field, which is defined by the trinomial X5 + aX + b,
where

a = −80r(r2 − 1)(r2 + r − 1)(r2 − 4r − 1)
(r2 + 1)4

,(3.1)

b = −32r(r2 − 1)(r4 + 22r3 − 6r2 − 22r + 1)
(r2 + 1)4

.(3.2)

(ii) Let a, b ∈ Q\{0}, and suppose that X5 + aX + b is irreducible
in Q[x]. Let x0 be a real root of the equation x5 + ax + b = 0, so that
Q(x0) is a quintic field. If Q(x0) is a pure field, then

Q(x0) = Q((r3(r + 1)(r − 1)4)1/5)

for some rational r �= 0,±1.

Proof. (i) Let r be a rational �= 0,±1. Define a, b ∈ Q\{0} by
(3.1) and (3.2). Since a and b are invariant under the transformations
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r → −1/r, r → ((r − 1)/(r + 1)) and r → ((1 + r)/(1 − r)), we may
suppose that r > 1. Set

(3.3) c =
∣∣∣∣ (r2 + 2r − 1)(r2 − 2r − 1)

4r(r2 − 1)

∣∣∣∣,
and

(3.4) ε = e = sgn
(

(r2 + 2r − 1)(r2 − 2r − 1)
4r(r2 − 1)

)
.

We note that ε = ±1, c ≥ 0 and e �= 0. Then a simple calculation
shows that

a =
5e4(3 − 4εc)
c2 + 1

and

b = −4e5(11ε+ 2c)
c2 + 1

.

Next we observe that

D = c2 + 1 =
(r2 + 1)4

24r2(r2 − 1)2
�= 125

4

so that c �= 11/2. Now suppose that c = 3/4 so that c2 + 1 = 25/16.
Thus (r2+1)2/(r(r2−1)) = ±5 and so r4∓5r3+2r2±5r+1 = 0, which
is impossible with r rational. Hence c �= 3/4. Thus, by [9, Proposition
4], X5+aX+b is irreducible in Q[x]. Moreover, X5+aX+b is solvable
by [6, p. 987]. Let x0 be the unique real root of x5 + ax+ b = 0.

Next we note that

(3.5) D = m2, m =
∣∣∣∣ (r2 + 1)2

4r(r2 − 1)

∣∣∣∣
and that

m2 ±m =
(

(r2 + 1)(r2 + 2r − 1)
4r(r2 − 1)

)2

or
(

(r2 + 1)(r2 − 2r − 1)
4r(r2 − 1)

)2

.

Then, by the proof of Lemma 2.4, we see that u5
j ∈ Q, j = 1, 2, 3, 4.

Hence, by Lemma 3.1, Q(x0) is a pure quintic field and Q(x0) = Q(uj),
j = 1, 2, 3, 4.

Appealing to (2.3), (3.4) and (3.5), we obtain Table 1.
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TABLE 1.

Case A Case B

r > 1 +
√

2 1 +
√

2 > r > 1√
D +(r2+1)2/(4r(r2−1)) +(r2+1)2/(4r(r2−1))

ε +1 −1√
D−ε

√
D +(r2+1)(r2−2r−1)/(4r(r2−1)) +(r2+1)(r2+2r−1)/(4r(r2−1))√

D+ε
√

D +(r2+1)(r2+2r−1)/(4r(r2−1)) −(r2+1)(r2−2r−1)/(4r(r2−1))

v1 +(r2+1)/(2(r+1)) +(r2+1)/(2(r−1))

v2 −(r2+1)/(2(r−1)) −(r2+1)/(2r(r−1))

v3 +(r2+1)/(2r(r+1)) −(r2+1)/(2(r+1))

v4 +(r2+1)/(2r(r−1)) −(r2+1)/(2r(r+1))

From Table 1 and (2.4), we see that

u5
1 =

v21v3
D2

=
(

2
r2 + 1

)5

r3(r + 1)(r − 1)4, in Case A.

u5
2 =

v23v4
D2

=
(
− 2
r2 + 1

)5

r3(r + 1)(r − 1)4, in Case B.

Hence Q(x0) = Q((r3(r+1)(r−1)4)1/5). Thus Q((r3(r+1)(r−1)4)1/5)
is a pure quintic field defined by X5+aX+b, where a and b are defined
in (3.1) and (3.2).

(ii) Let a, b ∈ Q\{0}, and suppose that X5 + aX + b is irreducible
in Q[x]. Let x0 be a real root of the equation x5 + ax + b = 0, so
that Q(x0) is a quintic field. Suppose that Q(x0) is a pure field. Then
X5 + aX + b is both irreducible and solvable in Q[x], and there exist
rationals ε(= ±1), c(≥ 0) and e( �= 0) such that (2.1) and (2.2) hold. By
Lemma 3.1 we have u5

j ∈ Q and Q(x0) = Q(uj), j = 1, 2, 3, 4, where the
uj are defined in (2.4). Then, by Lemma 2.3, D = m2 andm2+m = n2

for some positive rationalsm and n. Hence c2+1 = m2. By the remark
just before Lemma 2.4 we have c �= 0. Clearly (m− c)(m+ c) = 1, so
there exists t ∈ Q\{0} such that

m− c = t, m+ c = 1/t.

Hence,

(3.6) m =
t2 + 1

2t
, c =

1 − t2
2t

.
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As m > 0 and c > 0, we see that 0 < t < 1. Next m2 +m = n2 gives(
t2 + 1

2t

)2

+
(
t2 + 1

2t

)
= n2

so that

t2 + 1 =
(

2tn
t+ 1

)2

,

that is,
t2 + 1 = s2,

where s = 2tn/(t + 1). As above, from the equation t2 + 1 = s2, we
obtain

(3.7) s =
r2 + 1

2r
, t =

1 − r2
2r

,

for some r ∈ Q\{0}. As r → −1/r and s→ −s in (3.7) preserves (3.7),
we may suppose that r > 0. As 0 < t < 1 and r > 0, we see that

(3.8) 1 > r >
√

2 − 1.

From (3.6) and (3.7), we deduce that

(3.9) c =
1
4
(r2 + 2r − 1)(r2 − 2r − 1)

r(r2 − 1)

and

(3.10)
√
D = m = −1

4
(r2 + 1)2

r(r2 − 1)
.

We now consider two cases depending upon the value of ε (= 1 or −1).
We make use of (3.10) to calculate v1, v2, v3, v4 from (2.3) and then
u1, u2, u3, u4 from (2.4), see Table 2.

TABLE 2.

ε 1 −1√
D−ε

√
D −(r2+1)(r2+2r−1)/(4r(r2−1)) (r2+1)(r2−2r−1)/(4r(r2−1))√

D+ε
√

D (r2+1)(r2−2r−1)/(4r(r2−1)) −(r2+1)(r2+2r−1)/(4r(r2−1))

v3 (r2+1)/(2(r+1)) −(r2+1)/(2r(r+1))

v4 (r2+1)/(2r(r+1)) −(r2+1)/(2(r+1))

u5
2 (2/(r2+1))5r3(r+1)(r−1)4 (−(2r2/(r2+1)))5(1/r)3((1/r)+1)((1/r)−1)4
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Finally, from Table 2, we see that

Q(x0) = Q((r′3(r′ + 1)(r′ − 1)4)1/5)

for r′ = r( �= 0,±1) or r′ = 1/r( �= 0,±1).

Remark. The rational number r in part (ii) of Theorem 3.1 can be
chosen to satisfy r > 1 since Q((r3(r + 1)(r − 1)4)1/5) = Q((s3(s +
1)(s− 1)4)1/5) for s = −(1/r), ((r − 1)/(r + 1)) and ((1 + r)/(1− r)).

Example 3.1. Taking r = 2 in Theorem 3.1, we see that the pure
quintic field Q(241/5) is defined by the trinomial

X5 +
96
5
X − 192

5
,

or equivalently (X → 2X/5) by

X5 + 750X − 3750.

Example 3.2. Taking r = 3 in Theorem 3.1, we see that the pure
quintic field Q(17281/5) = Q(121/5) is defined by the trinomial

X5 +
1056
125

X − 26688
625

,

or equivalently (X → 2X/5) by

X5 + 330X − 4170.

4. Pure quintic fields defined by X5+aX2+b. Let a, b ∈ Q\{0},
and suppose that X5 + aX2 + b is irreducible in Q[X]. Let x0 be a
real root of the equation x5 + ax2 + b = 0, so that Q(x0) is a quintic
field. Suppose that Q(x0) is a pure field. Then X5 + aX2 + b is both
irreducible and solvable in Q[X]. It was shown in [7] that there are
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essentially only five solvable irreducible quintic trinomials of the form
X5 + aX2 + b. They can be taken to be

X5 + 5X2 + 3,(4.1)
X5 + 5X2 − 15,(4.2)
X5 + 25X2 + 300,(4.3)
X5 + 100X2 + 1000,(4.4)
X5 + 250X2 + 625.(4.5)

Each of these polynomials has one real root which we denote by x0. As
X5 +aX2 + b defines a pure quintic field, its Galois group must be F20.
This eliminates the polynomials (4.1) (4.3) as their Galois group is D5.
For polynomial (4.4) we have x0 = 23/5 − 24/5 − 26/5 − 27/5 [7, p. 756]
so that Q(x0) ⊆ Q(21/5). However, [Q(x0) : Q] = [Q(21/5) : Q] = 5
so that Q(x0) = Q(21/5). Hence X5 + 100X2 + 1000 defines the pure
quintic field Q(21/5). We now show that the polynomial (4.5) does not
define a pure quintic field. We make use of the following three results.

Proposition 4.1 [11]. If K is a pure quintic field, then K = Q(z1/5),
where z is a rational integer not divisible by the fifth power of any prime
and z �= 0,±1, and the discriminant d(K) of K is given by

d(K) = 53n4 or 55n4,

where n =
∏

p|z p �= 1.

Proposition 4.2 [4, pp. 60 61]. Let θ be an algebraic integer, and let
K = Q(θ). If the minimal polynomial over Q of θ is Eisensteinian with
respect to the prime p, then the index ind θ of θ in K is not divisible
by p and the powers of p dividing the discriminant d(θ) of θ and the
discriminant d(K) of K are the same.

Proposition 4.3 [10, Theorem 2]. Let θ be a root of the irreducible
polynomial Xn + AXs + B ∈ Z[X], where 1 ≤ s < n. Then the
discriminant of θ is given by

d(θ) = (−1)n(n−1)/2mnBs−1

· ((n′)n′
Bn′−s′

+ (−1)n′−1(n′ − s′)n′−s′
(s′)s′

An′
)m,
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where
m = gcd (n, s), n = mn′, s = ms′.

We are now ready to prove that (4.5) does not define a pure field.

Proposition 4.4. The polynomial f(X) = X5 + 250X2 + 625 does
not define a pure quintic field.

Proof. Let x0 denote the unique real root of f(X), and setK = Q(x0)
so that K is a quintic field. We suppose that K is a pure field. Now
set

g(X) =
X5

54
f

(
5
X

)
= X5 + 10X3 + 5.

Let θ be the unique real root of g(X) so that Q(θ) = K. By
Proposition 4.3 we have

d(θ) = 57 · 592.

Now (ind θ)2d(Q(θ)) = d(θ) so we have

d(K) =
57 · 592

(ind θ)2
.

Since g(X) is five-Eisenstein, by Proposition 4.2, we have 5 � ind θ.
Hence,

(4.6) d(K) =
{

57 if ind θ = 59,
57 · 592 if ind θ = 1.

As K is a pure quintic field, we deduce from (4.6) and Proposition 4.1
that

(4.7) d(K) = 57, n = 5, ind θ = 59,

and
z = 5t, t = 1, 2, 3 or 4.

Thus K = Q(z1/5) = Q(51/5). Therefore, K is also defined by X5 − 5.
Since X5 − 5 is also five-Eisenstein, by Proposition 4.2, the power of
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5 dividing d(K) is the same as the power of 5 in the discriminant of
X5−5. However, this latter discriminant is 59, which contradicts (4.7).
Hence, X5 + 250X2 + 625 does not define a pure quintic field.

From the remarks at the beginning of this section and Proposition 4.4,
we obtain the following result:

Theorem 4.1. The only pure quintic field defined by a trinomial
X5 + aX2 + b, a, b ∈ Q\{0}, is Q(21/5), which is defined by X5 +
100X2 + 1000.

5. Q(p1/5) defined by a trinomial. In this section we show that
the pure quintic field Q(p1/5), where p is a prime, cannot be defined
by a trinomial X5 + aX + b, where a, b ∈ Q\{0}. We make use of the
following result.

Proposition 5.1 [1, 5]. The only integral solutions of x5 + y5 = 2z5

with xyz �= 0 are (x, y, z) = (λ, λ, λ), λ ∈ Z\{0}.

We are now ready to prove the following result.

Theorem 5.1. Let θ be the unique real root of the solvable irreducible
trinomial X5 + aX + b, a, b ∈ Q\{0}. Then Q(θ) �= Q(p1/5) for any
prime p.

Proof. Suppose that Q(θ) is a pure field. Then, by Theorem 3.1 (ii),
we have

Q(θ) = Q((r3(r + 1)(r − 1)4)1/5)

for some rational number r �= 0,±1. We set r = x/y, where x and y
are integers with gcd (x, y) = 1 and y > 0. As r �= 0 we have x �= 0 and
as r �= ±1 we have x �= ±y. Then

Q(θ) = Q((x3(x+ y)(x− y)4y2)1/5).

If Q(θ) = Q(p1/5) for some prime p, we must have

(5.1)
x3(x+ y)(x− y)4y2 = piv5,

where i = 1, 2, 3 or 4, v �= 0, v ∈ Z.
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We obtain a contradiction by showing that (5.1) cannot hold. We treat
two cases according to whether x and y are of opposite parity or not.

Case 1. x and y are of opposite parity. In this case x, y, x+ y, x− y
are pairwise prime and hence pi divides exactly one of these numbers.
By unique factorization the rest of the factorizations of these numbers
are into fifth powers. We treat four subcases.

Subcase 1a. x = piA5, y = B5, x + y = C5, x − y = D5,
for nonzero integers A,B,C and D. These equations imply that
C5 + (−D)5 = 2B5. As C,D,B are nonzero, by Proposition 5.1, we
have (C,−D,B) = (λ, λ, λ) for some nonzero integer λ. Hence C = −D
which implies x = 0, a contradiction.

Subcase 1b. x = A5, y = piB5, x + y = C5, x − y = D5,
for nonzero integers A,B,C and D. These equations imply that
C5 + D5 = 2A5. As C,D and A are nonzero, by Proposition 5.1, we
have (C,D,A) = (λ, λ, λ) for some nonzero integer λ. Hence C = D
which implies that y = 0, a contradiction.

Subcase 1c. x = A5, y = B5, x+ y = piC5, x− y = D5, for nonzero
integers A,B,C and D. These equations imply that A5 +(−B)5 = D5,
which contradicts Fermat’s last theorem.

Subcase 1d. x = A5, y = B5, x+ y = C5, x− y = piD5, for nonzero
integers A,B,C and D. These equations imply that A5 + B5 = C5,
which contradicts Fermat’s last theorem.

Case 2. x and y are of the same parity. As x and y are of the
same parity and coprime, x and y must both be odd. It follows
that x, y, (x+ y)/2, (x− y)/2 are pairwise prime and hence pi exactly
divides one of these numbers. By unique factorization the rest of the
factorizations of these numbers are into fifth powers. Again we treat
four subcases.

Subcase 2a. x = piA5, y = B5, (x+ y)/2 = C5, (x− y)/2 = D5, for
nonzero integers A,B,C,D. These equations imply that C5+(−D)5 =
B5, which contradicts Fermat’s last theorem.

Subcase 2b. x = A5, y = piB5, (x+ y)/2 = C5, (x− y)/2 = D5, for
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nonzero integers A,B,C,D. These equations imply that C5+D5 = A5,
which contradicts Fermat’s last theorem.

Subcase 2c. x = A5, y = B5, (x+ y)/2 = piC5, (x− y)/2 = D5, for
nonzero integers A,B,C,D. These equations imply that A5+(−B)5 =
2D5. Hence, by Proposition 5.1, we have (A,−B,D) = (λ, λ, λ) for
some λ ∈ Z\{0}. Hence A = −B and so x = −y, a contradiction.

Subcase 2d. x = A5, y = B5, (x + y)/2 = C5, (x − y)/2 = piD5 for
nonzero integers A,B,C,D. These equations imply that A5 + B5 =
2C5. Hence, by Proposition 5.1, we have (A,B,C) = (λ, λ, λ) for some
λ ∈ Z\{0}. Hence A = B and so x = y, a contradiction.

This completes the proof that Q(θ) �= Q(p1/5) for any prime p.

Finally, from Theorems 4.1 and 5.1, we have the following result.

Theorem 5.2. The pure quintic field Q(p1/5), where p is a prime,
can only be defined by a trinomial of the form X5 + aX + b or
X5 + aX2 + b, where a, b ∈ Q\{0}, if p = 2, in which case it is defined
by X5 + 100X2 + 1000.
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