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PURE QUINTIC FIELDS
DEFINED BY TRINOMIALS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. Pure quintic fields which can be defined by
a trinomial X% + aX + b or X% + aX2 + b, where a and b
are nonzero rational numbers, are characterized. Using this
characterization it is shown that the only pure quintic field
Q(p'/®) (p a prime) which can be defined by a trinomial is

Q(21/%) = Q(0), where @ is the unique real root of 25 +100z2+
1000 = 0.

1. Introduction. Let Q denote the field of rational numbers, and let
K be a quintic extension of @, that is, [K : @] = 5. The quintic field K
is said to be defined by a trinomial if there exist a,b € Q\{0} such that
there is a root 6 of z°+az+b = 0 or 2°+ax?+b = 0 such that K = Q(0).
Clearly if K is defined by a trinomial, then the corresponding trinomial
X5+ aX +bor X5+ aX?+bis irreducible in Q[X]. The quintic field
K is called a pure field if K = Q(z'/®) for some rational number z
which is not a fifth power in Q and z'/> denotes the real fifth root of
z. In this paper we are interested in quintic fields defined by trinomials
which are pure fields, see Theorems 3.1 and 4.1. Our approach is based
upon the characterization of solvable quintic trinomials given in [6].
General solvable quintics are treated by Dummit [2]. We show that
the only pure quintic field Q(p'/®), p a prime, which can be defined
by a trinomial is Q(2/%) = Q(f), where 0 is the unique real root of
2% + 10022 + 1000 = 0, see Theorem 5.2.

2. Solvable quintic fields defined by X° 4 aX + b. Throughout
this section we assume that a and b are nonzero rationals such that the
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372 B.K. SPEARMAN AND K.S. WILLIAMS

quintic trinomial X® + aX 4+ b is both irreducible and solvable. It is
shown in [6] that there exist rationals e(= +1), ¢(> 0) and e(# 0) such
that

_ 5e*(3 — 4dec)
241

4e5(11e + 2¢)

2.1
(2.1) c2+1

, b=

Moreover, x° + ax + b = 0 has exactly one real root [6, p. 989], which
we denote by xg. We set, see [6, equations (14), (15), (16)],

(2.2) D=c*+1,
(23){012@+VD—6\/§ vy = —VD — /D +eVD,
v3 = —VD+ /D +eVD, vy =+vD /D —¢eVD,

2 1/5 2 1/5
[ V13 (V31
(2.4) Uy = (F) ) U2 = (F) )
- U%Ul 1/5 - UZUQ 1/5
uz = Dz s Uq = Dz )
(2.5) w = e2m/5,

Then the roots of 2% 4+ ax + b = 0 are xq, 21, 22, 23, 24, where
(2.6) xj = e(wuy + w¥uy + w¥uz +whuy), §=0,1,2,3,4,
see [6, equation (13)].

Lemma 2.1. For j =0,1,2,3,4,

, (eD1/2 (D
T —e<w3u1 +w2]< >u%+w33 <—>ui’
(%1 V1U3

Proof. The lemma follows immediately from (2.6) on noting the
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following relations

5 Y

5
(uQ> _ v3uy D* v D? eD>/?
=2 04,2 = 5 =
D? wvivs v} U7

5,3 — ,5,57

5
(U3> v3vy D¢ w3iD*  DP
- 2 ,,6,3
D2 v vyUs vyvs

5
(&) vivey D¥ wiviugus DS —eD15/2

1) T Tp2 8.4 10,5 = 10,5 °
uj D? vivg V1o Us v1Ovs
where we have made use of the relations vivy = eV D, voug = —ev/ D.
O

We leave it to the reader to give the z;, j = 0,1, 2, 3,4, as polynomials
in each of us, us, us analogously to Lemma 2.1.

Lemma 2.2. If ui’ € Q for some j =1,2,3 or 4, then D = m? for
some positive rational m.

Proof. We assume that u} € Q. The argument is similar if u3,u3

or uj € Q. If D = m? for some positive rational m, we are finished.
Thus, we may suppose that D # m? for any nonzero rational m and so

Q(VD ++/D) is a cyclic quartic field with unique quadratic subfield
Q(VD). Hence, 1,v/D, a, § are linearly independent over Q, where

a=1\/D+eVD, B=1\/D-eVD.

Now, by (2.3) and (2.4),

D*u} = v}y = (VD + B)*(~vVD + o)
= —2DVD 4 eVD + 2¢D + 2Da — 2D — eV Da € Q.
But
VDa =ca + ¢

SO
(eD +2¢D) — 2DVD + (2D — 1)a — (2D + ¢¢)B € Q.
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This contradicts that 1,v/D,«, 3 are linearly independent over @ as
the coefficient of v/D is nonzero. i

Lemma 2.3. If ug’ € Q for some j =1,2,3 or 4, then D = m? and
m?2 +m = n? for some positive rationals m and n.

Proof. We assume that u] € Q. The proof is similar if u3,u3 or

uj € Q. By Lemma 2.2 we have D = m? for some positive rational m.
Suppose m? +m # n? for any rational n. By (2.3) and (2.4), we have

D?u} = v¥v3 = (m 4+ Vm2 —em)?(—m + V/m?2 + em)
= m((—Qm2 +em 4+ 2cm) + (2m — e)\/m
— 2m\/m> €qQ,
so that
(2.7) 2m — e)V/m2 + em — 2my/m2 —em € Q.
If c =0, then D =1=m?som =1 and (2.7) becomes
2-oVIte-2/I-ceq,
which is impossible for e = 1. If ¢ # 0, then D = m? # 1 so m # +¢
" VB e =~ T em
m+e

so that (2.7) yields

2m2_26m+€m—1\/m662.

m—+e¢

(m?* —m)(m? +m) =m?c* #0

and
m? +m #n? for any rational n,

we deduce that

m? —m # 1% for any rational [.
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Hence vVm? + em is irrational and thus

2m? —2em +em —1=0.

We have
_2m*+em—1
- 2m
SO )
<2m2+€m— 1) 1 =m2,
2m
that is,

dem® +m? —2em + 1= (m +¢)(dem? —3m +¢) = 0.

As 5
3¢ 7
4em? — 3 = 2m — — — 0
em m+e 5{<m 4) +16}75
we must have m = —e. This gives ¢ = m?—1 = 1—1 = 0, contradicting

¢ # 0. Hence m? +m = n? for some rational n. As m is positive, we
can take n to be positive. ]

We remark that, if D = m? and m? + m = n? for some positive
rationals m and n, then m # £1, D # 1 and ¢ # 0.

Lemma 2.4. If u? € Q for some j = 1,2,3 or 4, then
1)1,1)2,1}3,’1)4,’&?, ugvugvui €Q.

Proof. By Lemma 2.3 there exist positive rationals m and n such that
D =m?, m? 4+ m = n?.
Then

(m? —m)(m? +m) = m?*(m? — 1) = m*(D — 1) = m?c?

so that
m? —m = (mc/n)>.
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Hence there exist nonnegative rationals r and s such that

m2+€m:r2, m? —em = s°.

Thus, by (2.3), we have

vp=m+s€Q, vg =—m—1 € Q,
vg=-—-m+71 € Q, vy=-m-—s€Q.

Finally, from (2.4), we deduce that

5.5 .5 5
ug, us, u3, uy € Q. O

3. Pure quintic fields defined by X° + aX +b. We begin by
proving the following result.

Lemma 3.1. Let a,b € Q\{0}, and suppose that X° + aX + b
is irreducible and solvable in Q[X]. Let x¢ be the unique real oot of
x% +ax +b=0. Then the following hold.

(i) Q(zo) is pure if and only if u3, u3, u3, ui € Q.
(ll) If Q(IO) is pure, then Q(IO) = Q(u])7 j = 1a25374

Proof. Suppose first that u3,u3,u3,u] € Q. Then, by Lemma 2.3,
there exist positive rationals m and n such that

D =m?, m? +m =n>.

Thus, by Lemma 2.1, we have

emy o m?\ em3\ 4
To=¢€elu+ | — |Jui + uy — | = — Ju1 ),
(%1 V1U3 V13
and, by Lemma 2.4, v; € @) and v3 € ). Hence,

zo € Q(u1).

Asu} € Q, [Q(u) : Q] = 1 or 5. Now zp is a root of the irreducible
quintic X°+aX +bso [Q(xg) : Q] = 5. Since Q(z0) C Q(u1), we must
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have [Q(u1) : Q] = 5 and Q(xo) = Q(u1). By a similar argument we

have Q(zo) = Q(u2) = Q(us) = Q(u4). Thus Q(xg) is a pure field.
This completes the proof of (i) in one direction. We now prove (i) in
the other direction. Assertion (ii) then follows from the above proof.

Now we suppose that Q(zp) is a pure field, and we show that
ul, u3, ul, uj € Q. We set
M = Q(zo, 1,72, 73,74)
the splitting field of X°® +aX +b. As x4 = —xg — 1 — T2 — T3, We see
that
M = Q(zo,v1, 72, 73).
Further, as Q(z¢) is a pure field, we have w € M, where w is defined in
(2.5). Also as Q(zo) is a pure field its Galois group is solvable and so
must be isomorphic to the Frobenius group Fbg or the dihedral group
D5 of order 10 [6, p. 990]. In the latter case, M does not contain a
quartic subfield, contradicting that Q(w) C M. Hence the Galois group
must be Fyy and the subfield structure of M given in [8, p. 16] shows
that M contains a unique quartic subfield which must be Q(w). Indeed,
Q(w) contains all the elements of M of degree 1, 2 or 4 over Q.
Taking 7 =0,1,2,3 in (2.6), we obtain
uy + u2 + ug + uqg = xo/e,
wug 4 wus + wius + whuy = x1/e,
wuy + whug + wuz + wduy = 29 /e,
Wy + wus + whus + wug = x3/e.
The determinant of the coefficient matrix of this system of four linear
equations in uy, ug, usz, uq i

1 1 1 1
w o w? W Wt
2wt W W —5V5#0
(.L)3 w w4 W2

Hence, by Cramer’s rule, we see that

xofe 1 1 1
r1/e w? WP W
rafe wt o w WP
r3/e w w! w

uy = € Q(U],l’o,iEl,iEQ,Ig) = M(UJ) = M7

_5\/5
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and similarly uz, uz,us € M. Thus, Q(u3) C M and so as [M : Q] = 20
we have

[Q(ud): Q] =1,2,4,5,10 or 20.
Now, by (2.3) and (2.4), we see that

ut € (\/D VDD + VD)
so that
[Q(u?): Q] =1,2,4 or 8.
Hence,
[Q(U?) :Q)l=1,2o0r 4.

But, as we have already noted, all the elements of M of degree 1, 2 or
4 over @ belong to Q(w). Thus,

ui € Qw).

If wy € Q(w), each summand in the expression for zp given in
Lemma 2.1 has degree a power of two so that xg could not be a quintic
irrationality. Hence, u; ¢ Q(w). Thus, by [3], Theorem 10(b), p. 214],
Q(w, u1) is cyclic over Q(w) of degree five. Now

[Qw,u1): Q) =[Q(w,u1) : QW)][Q(w) : Q] =5 x4=20=[M : Q]

and
Q(wa Ul) g Ma

so that M = Q(w, u1). Thus the Galois group of M/Q(w) is cyclic of
order five and the conjugates of u; over Q(w) are wiuy, j = 0,1,2,3, 4.
Let ¢ be the automorphism of M/Q(w) such that

d(u1) = wuq.
Now by [6, p. 989], we have

VD=-—"_¢cm.
U1U4

But all the elements of M of degree 1, 2 or 4 over () are contained in
Q(w), so
VD € Q(w).
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Thus .
UUg = _ﬁ € Qw),
and so
d(urug) = ujuy.
Hence,
¢(u4) _ Uiy Uil _ 4u4.

Plur)  wuy

Further, by [6, equation (24), p. 989], we have
vy = Duluz € M

and, by (2.3), we see that vy is of degree 1, 2 or 4 over Q. hence,

v € Qw).
Thus,
¢(v1) = v,
and so
U1 U1
d(utuz) = ¢<5) =5 = uius.
Hence,
U%’U,g ’U,%’LLP, 3
o(ug) = = 5 = w us.

Pp(u1)?  wiui

Now, by [6, equation (23), p. 989], we have ujususus = —1/D, so that
d(urugusuy) = uususuy, and thus

UL UL2UZ U4 U U2U3U4
Oluz) = - = wuz.

d(ur)p(us)p(us)  (wur)(wiusz)(whug)

Hence we have shown that

B(uj) = wuy, j=1,2,3,4.

Next, since Q(zp) is pure, there exists z € @, z is not equal to
the fifth power in @, such that Q(zo) = Q(z'/®). A simple degree
argument shows that M = Q(w,z'/?). Clearly, ¢(z'/°) = wiz!/®
for some j = 0,1,2,3,4. Certainly j # 0 as ¢ is not the identity
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isomorphism. Let k be the unique integer such that 0 < k£ < 5 and
jk =1 (mod 5). We have

¢(zk/5) — (wjzl/5)k — wzk/5_

Hence, replacing the generator z of Q(z'/%) by z*, if necessary, we can
suppose that

P27 = w2 Q(m) = Q(21?).

Thus, ‘ o
(%) =wi/P j=1,2,3,4.

As zo € Q(2'/9), there exist rationals A, B, C, D, F such that
o= A+ Bz'/5 4 C2*/° + D235 4 E2*/5.
Hence, by (2.6), we have
e(ur +ug +uz +ug) = A+ Bz + 0225 4 D23/5 4 B0,

Applying the automorphism ¢ j times to both sides of this equation,
we obtain

e(wlur + wus + wVuz + whuyg)
= A+ Bwi 2% 4 Cw? 2/5
+ Dw¥ 235 4 Bw45 j=0,1,2,3,4.

Summing these equations for j = 0,1,2, 3,4, we see that A = 0. Then
the equations with j = 0,1, 2,3 can be written as

(euy — BzY%) + (euy — C22/%) + (eus — D2%/%) + (eus — Ez*°) =0,

w(eu; — BzY%) 4 w?(euy — C2%/%)

+ w3 (eus — DZ3/°) + w(euy — EzY/°) =0,

w?(eu; — Bz'/%) + wh(euy — C22/%)
+ w(eus — DZ/%) + w3 (euy — EzY%) =0,
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wi(eu; — B2'/%) 4+ w(euy — C2%/7)
+ wh(eus — D23/°) + w2 (euy — Ez*°) = 0.
The determinant of the coefficient matrix of this system of four lin-
ear equations in the four quantities eu; — Bz'/5, euy — C22/5 eus —
D2z3/% euy — Ez%/% is, as already noted earlier, nonzero. Hence,
euy — B2Y% = euy — C2%/° = eus — Dz = euy — Ez*° = 0.
Thus

5.5 .5 5
uy, us, us3, Uy € Q. ]

We are now ready to prove our main result.

Theorem 3.1. (i) If r is a rational # 0,1, then
QUr(r+1)(r = 1)H)'?)

is a pure quintic field, which is defined by the trinomial X° + aX + b,
where

_807"(7‘2 — D2 4+r—-1)(r2—4r-1)

3.1 =

(3.1) a (r2 + 1) ’

(3.2) b _32r(r2 —1)(r* + 2273 — 612 — 22r + 1)
' B (r241)4 '

(i) Let a,b € Q\{0}, and suppose that X° + aX + b is irreducible
in Q[z]. Let zo be a real root of the equation x® + ax +b = 0, so that
Q(zg) is a quintic field. If Q(xo) is a pure field, then

Qo) = Q(r*(r + 1)(r — HH?)

for some rational r # 0, £1.

Proof. (i) Let r be a rational # 0,£1. Define a,b € Q\{0} by
(3.1) and (3.2). Since @ and b are invariant under the transformations
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r— —=1/r,r— ((r—1/(r+1) and r — ((1L +r)/(1 —r)), we may
suppose that r > 1. Set

|+ 2r —1)(r? —2r — 1)
(3:3) ‘= 4r(r2 —1) ’
and
o (r2+2r—1)(r?—-2r—1)
(3.4) €=e=sgn < (=) >

We note that ¢ = £1, ¢ > 0 and e # 0. Then a simple calculation

shows that
. 5et(3 — 4ec)

c2+1

and
4e5(11e + 2¢)

cc+1
Next we observe that

(r2 +1)% 125

D=c+1=—FF " #—
CHl=giagroqe 7

so that ¢ # 11/2. Now suppose that ¢ = 3/4 so that ¢ + 1 = 25/16.
Thus (r2+1)2/(r(r?—1)) = £5 and so r* F5r3+2r2+5r+1 = 0, which
is impossible with r rational. Hence ¢ # 3/4. Thus, by [9, Proposition
4], X°+aX +bis irreducible in Q[x]. Moreover, X°+aX +b is solvable
by [6, p. 987]. Let zg be the unique real root of x° + ax + b = 0.

Next we note that

(3.5) D=m? m= %

and that

m2 b — P2+ +2r —1)\° o (r2+1)(r2 —2r — 1)\ 7
£m= < 4r(r? —1) ) ( 4r(r? — 1) ) '

Then, by the proof of Lemma 2.4, we see that u? €Q,j=1,234.
Hence, by Lemma 3.1, Q(zo) is a pure quintic field and Q(zo) = Q(u;),
j=1,2,3,4.

Appealing to (2.3), (3.4) and (3.5), we obtain Table 1.
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TABLE 1.
Case A Case B
r>14+42 1+v2>r>1
VD +(r?+1)%/(4r(r*~1)) +(r2+1)%/(4r(r*~1))
€ +1 —1

D—eVD | +(r241)(r2=2r—1)/(4r(r2=1)) | +(r24+1)(r2+2r—1)/(4r(r>=1))

(
D+eVD | +(r241)(r242r—1)/(4r(r2=1)) | =(r2+1)(r2—2r—1)/(4r(r2-1))

v1 +(r2+1)/(2(r+1)) +(r2+1)/(2(r—1))
v2 —(r*+1)/2(r-1)) —(r?41)/(2r(r=1))
v3 +(r2+1)/(2r(r+1)) —(r24+1)/(2(r+1))
V4 +(r24+1)/(2r(r—1)) —(r2+1)/(2r(r+1))

From Table 1 and (2.4), we see that

viv 2 b

ul = 11)—23 = (7‘2 - 1) r3(r+1)(r—1)* in Case A.
V3V 2 g

uh = 3D—24 = <— o 1> r3(r+1)(r —1)* in Case B.

Hence Q(x0) = Q((r*(r+1)(r—1)*)/5). Thus Q((r3(r+1)(r—1)4)'/?)
is a pure quintic field defined by X°+aX +b, where a and b are defined
n (3.1) and (3.2).

(i) Let a,b € Q\{0}, and suppose that X° + aX + b is irreducible
in Q[z]. Let xo be a real root of the equation z° + ax +b = 0, so
that Q(xo) is a quintic field. Suppose that Q(z¢) is a pure field. Then
X?® + aX + b is both irreducible and solvable in Q[z], and there exist
rationals e(= 1), ¢(> 0) and e( 0) such that (2.1) and (2.2) hold. By
Lemma 3.1 we have u? € Qand Q(z0) = Q(u;), j = 1,2,3,4, where the
u; are defined in (2.4). Then, by Lemma 2.3, D = m? and m?+m = n?
for some positive rationals m and n. Hence ¢2+1 = m?. By the remark
just before Lemma 2.4 we have ¢ # 0. Clearly (m —c)(m+c¢) =1, so
there exists ¢t € Q\{0} such that

m—c=t, m+c=1/t.
Hence,
241 1t

(36) 2 T T2t
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Asm >0 and ¢ > 0, we see that 0 < t < 1. Next m? 4+ m = n? gives
241 2+ 241 )
=n
2t 2t
2tn \ 2
?4+1=(—
M <t+1>’
t2—|—1:sz,

where s = 2tn/(t + 1). As above, from the equation t* + 1 = s, we
obtain

so that

that is,

r24+1 t_l—?“Q
2r oo

for some r € Q\{0}. Asr — —1/r and s — —s in (3.7) preserves (3.7),
we may suppose that 7 > 0. As 0 <t <1 and r > 0, we see that

(3.8) 1>r>V2-1.
From (3.6) and (3.7), we deduce that
1(r2+2r—1)(r2—2r—-1)

(3.7) 5=

(39) Cc = Z 7"(7“2 — 1)
and

2 2
(3.10) @—m——i%.

We now consider two cases depending upon the value of ¢ (=1 or —1).
We make use of (3.10) to calculate vy, ve,vs,v4 from (2.3) and then
Uy, Uz, uz, ug from (2.4), see Table 2.

TABLE 2.
€ 1 -1
D—eVD | =(r2+1)(r?+2r—1)/(4r(r*~1)) (r?+1)(r?=2r—1)/(4r(r?-1))
D+evD | (r241)(r2—2r—1)/(4r(r2=1)) —(r2 1) (r2+2r—1)/(4r(r2 1))
v3 (r2+1)/(2(r+1)) —(r2+1)/(2r(r+1))
v4 (r?+1)/(2r(r+1)) —(r?+1)/(2(r+1))
u3 2/ 4+ 1)) (r+ D=1 | (2r?/(r2+1)))5(1/r)*(1/r)+1)((1/r)=1)*
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Finally, from Table 2, we see that
Q(zo) = QU™ (' + 1)(' = 1)H)'/)

for v’ = r(#0,%1) or v = 1/r(# 0, £1). o

Remark. The rational number r in part (i) of Theorem 3.1 can be
chosen to satisfy r > 1 since Q((r*(r + 1)(r — 1)H)'/?) = Q((s3(s +
1)(s — DY) for s = —(1/r), ((r — 1)/(r 4+ 1)) and (1 +7)/(1 - 1)),

Example 3.1. Taking » = 2 in Theorem 3.1, we see that the pure
quintic field Q(24'/°) is defined by the trinomial

or equivalently (X — 2X/5) by

X5 + 750X — 3750.

Example 3.2. Taking r = 3 in Theorem 3.1, we see that the pure
quintic field Q(1728'/%) = Q(12'/5) is defined by the trinomial

X5 4 1056X 26688

125 625
or equivalently (X — 2X/5) by

X° + 330X — 4170.

4. Pure quintic fields defined by X°+aX?+b. Let a,b € Q\{0},
and suppose that X°® 4+ aX? + b is irreducible in Q[X]. Let x be a
real root of the equation 2° + ax? + b = 0, so that Q(zo) is a quintic
field. Suppose that Q(x¢) is a pure field. Then X° 4+ aX? + b is both
irreducible and solvable in Q[X]. It was shown in [7] that there are
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essentially only five solvable irreducible quintic trinomials of the form
X%+ aX?+0b. They can be taken to be

X% 4+5X2 43,
X5 4+5X% 15,
X5 +25X2 4 300,
X% +100X2 + 1000,
5) X5 +250X2 + 625.

el e
N O

(4.1)
(4.2)
(4.3)
(4.4)
(4.

Each of these polynomials has one real root which we denote by zg. As
X®4+aX?+b defines a pure quintic field, its Galois group must be Fag.
This eliminates the polynomials (4.1)—(4.3) as their Galois group is Dj.
For polynomial (4.4) we have xq = 23/° — 24/5 — 26/5 _27/5 [7_p. 756]
so that Q(zo) C Q(2'/%). However, [Q(xo) : Q] = [Q(2Y/%) : Q] = 5
so that Q(x0) = Q(2'/%). Hence X® + 100X?2 4 1000 defines the pure
quintic field Q(2'/%). We now show that the polynomial (4.5) does not
define a pure quintic field. We make use of the following three results.

Proposition 4.1 [11]. If K is a pure quintic field, then K = Q(2'/%),
where z is a rational integer not divisible by the fifth power of any prime
and z # 0, %1, and the discriminant d(K) of K is given by

d(K) =5 or 5%n%,

where n = [, p # 1.

Proposition 4.2 [4, pp. 60-61]. Let 0 be an algebraic integer, and let
K = Q(0). If the minimal polynomial over Q of 0 is Eisensteinian with
respect to the prime p, then the index ind 0 of 0 in K is not divisible
by p and the powers of p dividing the discriminant d(0) of 6 and the
discriminant d(K) of K are the same.

Proposition 4.3 [10, Theorem 2]. Let 6 be a root of the irreducible
polynomial X" + AX® + B € Z[X]|, where 1 < s < n. Then the
discriminant of 6 is given by

d(f)) _ (_1)n(n71)/2mnBsfl
. ((n/)n’Bn’fs' + (_l)n’fl(n/ _ S/)n’fs’(s/)s'An')m,
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where
m = ged (n, s), n=mn, s=ms’.

We are now ready to prove that (4.5) does not define a pure field.

Proposition 4.4. The polynomial f(X) = X° + 250X?2 + 625 does
not define a pure quintic field.

Proof. Let xy denote the unique real root of f(X), and set K = Q(xq)
so that K is a quintic field. We suppose that K is a pure field. Now
set

X5 5 5 3

Let # be the unique real root of ¢g(X) so that Q) = K. By
Proposition 4.3 we have

d(f) =57 - 592,
Now (ind )2d(Q(0)) = d(6) so we have

57 - 592

Since g(X) is five-Eisenstein, by Proposition 4.2, we have 5 { ind 6.
Hence,

57 if ind 9 = 59
4.6 d(K) = ’
(46) () {57-592 ifindd = 1.

As K is a pure quintic field, we deduce from (4.6) and Proposition 4.1
that

(4.7) dK)=5", n=5 indf =59,

and
z=5 t=1,2,3or 4.

Thus K = Q(2'/%) = Q(5'/%). Therefore, K is also defined by X° — 5.
Since X® — 5 is also five-Eisenstein, by Proposition 4.2, the power of
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5 dividing d(K) is the same as the power of 5 in the discriminant of
X5 —5. However, this latter discriminant is 5%, which contradicts (4.7).
Hence, X® + 250X2 + 625 does not define a pure quintic field. O

From the remarks at the beginning of this section and Proposition 4.4,
we obtain the following result:

Theorem 4.1. The only pure quintic field defined by a trinomial
X5 +aX?+0b, a,b € Q\{0}, is Q(2Y/°), which is defined by X° +
100X?2 + 1000.

5. Q(p'/®) defined by a trinomial. In this section we show that
the pure quintic field Q(pl/ ®), where p is a prime, cannot be defined
by a trinomial X° + aX + b, where a,b € Q\{0}. We make use of the
following result.

Proposition 5.1 [1, 5]. The only integral solutions of x° +1y® = 22°
with xyz # 0 are (z,y,z) = (A, A, A), A € Z\{0}.

We are now ready to prove the following result.

Theorem 5.1. Let 0 be the unique real root of the solvable irreducible
trinomial X° +aX 4+ b, a,b € Q\{0}. Then Q(0) # Q(p*/®) for any
prime p.

Proof. Suppose that Q(6) is a pure field. Then, by Theorem 3.1 (ii),
we have
Q(8) = Q((r*(r + 1)(r — 1))"/?)
for some rational number r # 0,+1. We set r = x/y, where x and y

are integers with ged (z,y) = 1 and y > 0. As r # 0 we have x # 0 and
as r # +1 we have xz # +y. Then

Q(0) = Q((#°(z + ) (x — y)*y*)'/?).
If Q(0) = Q(p*/®) for some prime p, we must have
2z +y)(x —y)'y* = p'o®,

(5.1) )
where i =1,2,30r4, v#0, v€EZ
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We obtain a contradiction by showing that (5.1) cannot hold. We treat
two cases according to whether x and y are of opposite parity or not.

Case 1. x and y are of opposite parity. In this case z,y,z +y,z —y
are pairwise prime and hence p’ divides exactly one of these numbers.
By unique factorization the rest of the factorizations of these numbers
are into fifth powers. We treat four subcases.

Subcase la. x = p'AS, y = B x4+y = C% x—y = D>,
for nonzero integers A, B,C and D. These equations imply that
C5 + (—=D)% = 2B%. As C, D, B are nonzero, by Proposition 5.1, we
have (C, —D, B) = (A, A\, A) for some nonzero integer A\. Hence C = —D
which implies x = 0, a contradiction.

Subcase 1b. x = A% y = p'B% z4+y = C5 z —y = D>,
for nonzero integers A, B,C and D. These equations imply that
C® 4+ D®> =245 As C,D and A are nonzero, by Proposition 5.1, we
have (C,D,A) = (A, A\, A) for some nonzero integer \. Hence C = D
which implies that y = 0, a contradiction.

Subcase lc. © = A% y= B° x+y = p'C% x —y = D5, for nonzero
integers A, B, C and D. These equations imply that A%+ (—B)% = D5,
which contradicts Fermat’s last theorem.

Subcase 1d. = A%, y = B%, x4+ y = C°, x —y = p' D", for nonzero
integers A, B,C' and D. These equations imply that A% 4+ B% = C°,
which contradicts Fermat’s last theorem.

Case 2. = and y are of the same parity. As x and y are of the
same parity and coprime, x and y must both be odd. It follows
that z,y, (z + y)/2, (z — y)/2 are pairwise prime and hence p’ exactly
divides one of these numbers. By unique factorization the rest of the
factorizations of these numbers are into fifth powers. Again we treat
four subcases.

Subcase 2a. ¥ = p'A® y= B (z+vy)/2=C® (z—vy)/2 = D5, for
nonzero integers A, B, C, D. These equations imply that C° +(—D)® =
B%, which contradicts Fermat’s last theorem.

Subcase 2b. x = A%,y =p'B5, (x +y)/2 = C5, (z —y)/2 = D5, for
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nonzero integers A, B, C, D. These equations imply that C°+ D% = A5,
which contradicts Fermat’s last theorem.

Subcase 2c. ¥ = A%, y = B%, (x +y)/2 = p'C®, (x —y)/2 = D5, for
nonzero integers A, B, C, D. These equations imply that A%+ (—B)® =
2D°. Hence, by Proposition 5.1, we have (A,—B, D) = (\,\,\) for
some A € Z\{0}. Hence A = —B and so z = —y, a contradiction.

Subcase 2d. ¥ = A% y = B% (v +y)/2 = C°, (x —y)/2 = p'D® for
nonzero integers A, B,C, D. These equations imply that A% + B% =
2C5. Hence, by Proposition 5.1, we have (4, B,C) = (A, A\, \) for some
A € Z\{0}. Hence A = B and so z =y, a contradiction.

This completes the proof that Q(6) # Q(p'/®) for any prime p. O
Finally, from Theorems 4.1 and 5.1, we have the following result.

Theorem 5.2. The pure quintic field Q(p1/5), where p is a prime,
can only be defined by a trinomial of the form X° 4+ aX + b or
X5+ aX?+b, where a,b € Q\{0}, if p = 2, in which case it is defined
by X° 4 100X2 4 1000.
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