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1 Introduction

Pure spinor superfield theory [1] provides a solution to the long-standing problem of
covariant quantisation of (Brink–Schwarz) superparticles [2,3] or (Green–Schwarz)
superstrings [4] with manifest supersymmetry, or roughly equivalently, to the prob-
lem of finding off-shell superspace formulations of maximally supersymmetric field
theories, including supergravity.

Concretely, the difficulties with space-time supersymmetric particles and strings
manifest themselves as a mixture of first and second class constraints in the same
spinor. This is the famous κ-symmetry [5–7], which is necessary for the superparti-
cle/superstring action to describe the dynamics of a 1

2
-BPS object.

In the present overview, we will not start with these superparticle or -string
actions. Rather, the introduction of pure spinor variables will be motivated by the
structure of the (on-shell) multiplets of maximal super-Yang–Mills theory (SYM)
and supergravity (SG) in their traditional treatment on superspace. The relation of
the pure spinor formulation to the Green–Schwarz superstring is explained in ref. [8].

The basics of the formalism is laid out in Section 2. In Section 3 it is applied
to supergravity, with maximal supergravity as main focus. A brief account of the
pure spinor superstring theory of Berkovits is given in Section 4. Quantum theory is
sketched in Section 5, and some convergence results for loop diagrams are restated.
Finally, some remarks are made in Section 6 concerning possible refinement and
development of the formalism.

The technical level of the presentation is kept at a minimum. Instead, we aim at
collecting results from the sources in the reference list and present them as concisely
and coherently as possible, while emphasising concepts rather than techniques.

2 Pure spinor superfield theory

Before going into a more precise derivation of pure spinor superfield formulations
of specific supersymmetric models, we would like to sketch what lies at the heart of
the formalism. The supersymmetry algebra (which of course is a subalgebra of the
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super-Poincaré algebra) takes the generic form tQα, Qβu “ 2γaαβBa. Here, α is some
(possibly multiple) spinor index, and Qα “

B
Bθα ` pγ

aθqαBa. Covariant fermionic
derivatives Dα “

B
Bθα ´ pγ

aθqαBa satisfy tQα, Dβu “ 0. They anticommute among
themselves as tDα, Dβu “ ´2γaαβBa — flat superspace in endowed with torsion
Tαβ

a “ 2γaαβ.

Suppose we introduce a bosonic spinor λα subject to the constraint

pλγaλq “ 0 . (2.1)

Then we may form a fermionic operator

Q “ λαDα , (2.2)

which, thanks to the constraint on λ is nilpotent: Q2 “ 0.

It seems meaningful to consider the cohomology of Q, acting on functions of x, θ
and λ. This cohomology is guaranteed to be supersymmetric, since Q anticommutes
with the supersymmetry generators. It thus describes some supermultiplet. As it
turns out, any linear supermultiplet in any dimension may be obtained this way. In
the case of on-shell multiplets the virtue of the formalism is even greater, since it
seems to offer a natural way to an off-shell formulation by relaxation of the linear
“equation of motion” QΨ “ 0. The correspondence will be made more precise below,
first for D “ 10 super-Yang–Mills theory and later for D “ 11 supergravity.

A word of caution: We will refer to a spinor λ subject to the constraint (2.1)
as a “pure spinor”. This is a slight misuse of the mathematical terminology. A pure
spinor, in the sense of Cartan [9], is a chiral spinor in even dimension D “ 2n,
constrained to lie in the minimal Spinp2nq orbit of the spinor module. This implies
that, if the Dynkin label of the spinor module in question is p0 . . . 01q, monomials of
degree of homogeneity p in λ belong to the single module p0 . . . 0pq. The concept of a
pure spinor is not defined in other cases, neither for odd dimensions or for extended
supersymmetry. In certain cases, our constrained spinors coincide with Cartan pure
spinors. This happens notably in D “ 10. There, the spinor bilinears are a vector
p10000q and a self-dual 5-form p00002q, and the constraint in the vector immediately
puts λ in the minimal orbit. In other situations, for example D “ 11 which we will
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encounter later, where the symmetric spinor bilinears are a vector, a 2-form and
a 5-form, the vector constraints puts λ in (a completion of) an intermediate orbit,
which is not the minimal one.

2.1 From superspace to pure spinor superspace

Although we ultimately aim at addressing supergravity, the introduction of pure
spinor superspace is much simpler in the setting of super-Yang–Mills theory [10],
first treated in superspace in ref. [11].

Flat p10|16q-dimensional superspace, appropriate for D “ 10 super-Yang–Mills,
has coordinates ZM “ pxm, θµq. There is no metric on superspace, but a super-
vielbein EMA. The Lorentz frame indices A “ pa, αq consist of a Lorentz vector and
a chiral spinor. The non-vanishing superspace torsion is

Tαβ
a “ 2γaαβ , (2.3)

where the components are converted to Lorentz frame using the inverse vielbein:
TBC

A “ pE´1qC
N pE´1qB

MTMN
A.

Let us now recollect some known facts about D “ 10 super-Yang–Mills. A
connection on superspace, taking values in the adjoint of some gauge group, is
written A “ dZMAM “ dZMEM

AAA. There is a priori two superfields, Aapx, θq
(bosonic, dimension 1) and Aαpx, θq (fermionic, dimension 1

2
)1. The field strength is

F “ dA`A^A, and due to the presence of torsion we have

Fαβ “ 2DpαAβq ` 2ApαAβq ` 2γaαβAa . (2.4)

The symmetric product of two spinors can be decomposed into a vector Fa “
1
16
γαβa Fαβ and a self-dual 5-form Fabcde “

1
2¨5!¨16

γαβabcdeFαβ. Obviously, from eq. (2.4),
setting Fa “ 0 expresses Aa in terms of Aα, leaving only the latter as an independent
superfield. This goes under the name of “conventional constraint”. Note that it is
natural, since Fαβ has dimension 1, and there are no physical and gauge-covariant
fields of this dimension in the supermultiplet we want to derive (the spinor χα has

1As is standard, dimension is in terms of powers of inverse length.
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dimension 3
2
and the field strength Fab dimension 2). For this reason, it is tempting

to also set the 5-form part Fabcde to zero. However, doing this turns out to put the
theory on shell. It indeed describes the on-shell D “ 10 super-Yang–Mills multi-
plet. The constraint in question is physical, rather than conventional. Details can
be found e.g. in refs. [12,13]. It is of course also well known that the supersymmetry
transformations of the component fields work (“close”, modulo gauge transforma-
tions) only when the equations of motion are satisfied. There is no set of auxiliary
fields that remedies this.

This observation prompted Nilsson [12] to first draw the (correct) conclusion that
in order to go off-shell one needs to relax the 5-form part of Fαβ “ 0. And this is what
pure spinor superfield theory naturally does, as we will see. Indeed, the equations of
motion in the pure spinor superfield description of D “ 10 super-Yang–Mills theory
will be γαβ

p5q
Fαβ “ 0.

This structure was found when searching for deformations of the equations of
motion for maximally supersymmetric super-Yang–Mills [13–15]. Introduce a bosonic
spinor λα, subject to the constraint pλγaλq “ 0. A function Ψ of x, θ and λ, expanded
in powers in λ, is2

Ψpx, θ, λq “ Cpx, θq ` λαAαpx, θq `
1
2
λαλβBαβpx, θq ` . . . (2.5)

Now, acting with the “BRST operator” Q gives

QΨ “ λαDαC ` λ
αλβDαAβ ` . . . (2.6)

The linearised equations of motion are encoded as Ψ being Q-closed, and gauge
transformations correspond to Q-exact functions. It also immediately follows that,
for the specific choice Ψ “ λαAα,

QΨ`Ψ2 “ λαλβFαβ . (2.7)
2There is no other way of dealing with the λ dependence, since no scalar is encountered at any

power of λ.
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The full non-linear equations of motion are encoded as

QΨ`Ψ2 “ 0 . (2.8)

One should think of λ as a ghost variable, which explains it being bosonic,
although it is a spinor. Then Ψ should also be assigned ghost number 1, so that
Aα has ghost number 0. The above shows that the cohomology of Q in the ghost
number 0 sector is precisely the linear super-Yang–Mills multiplet. One should also
make sure that there is no essential cohomology in other ghost numbers (powers of
λ). This can be done as follows.

In order to investigate the cohomology, we will do it in two steps: first we find
the zero-mode (i.e., x-independent) cohomology. It will correspond to fields in in
a component formulation. Then, in the second step, these fields will, in the full
cohomology, be related by differential operators constructed from B

Bx . The procedure
is not presented as a mathematical proof here; a fuller account can be found in
refs. [1, 16, 17].

The zero-mode cohomology of Q is the cohomology of λα B
Bθα . Had λ been un-

constrained, the only cohomology would have been the constant one. Now, when λ
is constrained, the problem is algebraic, and the result is reflected in the partition
function of λ. Encode the power of λ in a variable t. Then the partition function,
taking values in the representation ring, is

Zptq “ p00000q ‘ p00001qt‘ p00002qt2 ‘ p00003qt3 ` . . . (2.9)

It is straightforward to factor out the dependence of an unconstrained spinor, which
we write as

p1´ tq´p00001q “ p00000q ‘ p00001qt‘_2p00001qt2 ‘_3p00001qt3 ` . . . (2.10)

(_p is the p-fold totally symmetric product). We then obtain

Zptq “ p1´ tq´p00001q (2.11)

b
“

p00000q a p10000qt2 ‘ p00010qt3 a p00001qt5 ‘ p10000qt6 a p00000qt8
‰

.
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Each term inside the square brackets represents a component field. They are, in
order of appearance, the ghost c, the fields in the physical multiplet Aa and χα,
the antifields χ‹α and A‹a, and the ghost antifield c‹. Each of them appears in the
zero-mode cohomology as some function of θ and λ, for example the physical gauge
field appears as pλγaθqAa.

Going back to the full cohomology of Q, it will relate the component fields,
now x-dependent, with differential operators. The proper mathematical tool for this
procedure is that of homotopy transfer, see ref. [16]. It is straightforward to show
that the action of Q is indeed that of the BRST operator of the component fields
and antifields of the super-Yang–Mills theory. The cohomology consists precisely of
the linearised physical (on-shell) fields, and a ghost zero-mode.

It looks tempting to try to derive eq. (2.8) from a Chern–Simons like action. This
can indeed be done, leading to the appropriate off-shell formulation, but requires
the machinery of the following subsection. It is also clear from the nature of the
cohomology that such an action should be regarded as a Batalin–Vilkovisky (BV)
action [18], containing ghosts, fields and their antifields.

2.2 Non-minimal variables, integration, BV actions

In order to write an action that reproduces the equations of motion of the previous
subsection, one needs an integration over the pure spinor λ. In addition, it should
(when one also includes integration over θ) pick up the top zero-mode cohomol-
ogy, i.e., the top component of the component super-Yang–Mills BRST complex,
corresponding to the ghost antifield. This cohomology sits at λ3θ5. One is in the
seemingly problematic situation of needing a residue-like measure, in the sense of
picking a certain component, while on the other hand having a series expansion that
contains only positive powers of λ. Such a measure is clearly degenerate, and not
useful.

This problem was solved in ref. [19], using what is known as a non-minimal set
of variables. In addition to the pure spinor λα, one introduces a conjugate pure
spinor λ̄α. In order not to disturb the cohomology, an equal number of additional
fermions rα, which are pure with respect to λ̄: pλ̄γarq “ 0. We identify rα as dλ̄α,
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and products of r’s with wedge product of dλ̄’s. Then, the modified non-minimal
BRST operator

Q “ pλDq ` B̄ , (2.12)

where B̄ “ dλ̄α
B

Bλ̄α
is the Dolbeault operator, has the same cohomology as the

minimal one previously considered.

The pure spinor space is a (non-compact) Calabi–Yau space [20]. It possesses
a holomorphic top form, in this case an 11-form Ω. The schematic form of this
Calabi–Yau form is

Ω „ λ´3pdλq11 . (2.13)

For detailed expressions, see refs. [1, 19,20].

Remember that the pure spinor field Ψ now depends on x, θ, λ, λ̄ and dλ̄. The
last dependence is seen as Ψ being an antiholomorphic cochain. One may try an
integration measure

ż

rdZsf “

ż

d10x

ż

d16θ

ż

Ω^ f , (2.14)

where the last integral is over the pure spinor Calabi–Yau space. This measure
is non-degenerate, and carries ghost number ´3 as desired, due to the λ´3 in Ω.
However, the cohomologies we encountered have representatives which are 0-forms,
so any pair of such functions seems to have vanishing scalar product. On the other
hand, the pure spinor space is a non-compact cône, so integrals naïvely diverge at
large radius. This “0 ˆ 8” structure can be regularised [19] to yield finite results.
The trick is to observe that the behaviour on pure spinor space is topological, and
to insert a Q-invariant regularisation [19, 21] e´ttQ,χu for some fermion χ. Such a
regulator will give t-independent results. If one chooses χ “ θαλ̄α, one gets a factor

e´ttQ,χu “ e´tppλλ̄q`pθdλ̄qq . (2.15)

The first factor makes integrals convergent at large radius. The second one contains
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terms up to θ11pdλ̄q11. When integrated with a 0-form, it will pick up a component
at θ5. This regulated measure is exactly what is needed. We can think of it as an
operator that localises the integral to the vicinity of the tip λ “ 0 of the pure spinor
cône. Alternatively, the basis for cohomology can be chosen to include such factors,
and then no regularisation of the measure is necessary.

Now, a Chern–Simons-like BV action for D “ 10 can be written as [22,23]

S “

ż

rdZstr p1
2
ΨQΨ` 1

3
Ψ3q . (2.16)

Note that the action only contains a cubic interaction term, while the component
F 2 contains quartic interactions. A component action can be derived by homotopy
transfer [16], or put more mundanely, the higher order interactions arise from re-
peated use of the equations of motion. See also ref. [24]. This property, that the
supersymmetric action is of lower order than the component action, becomes even
more pronounced when we turn to supergravity in the following Section.

The superfield Ψ is self-conjugate with respect to the BV anti-bracket:

pA,Bq “

ż

A

ÐÝ
δ

δΨpZqrdZs
ÝÑ
δ

δΨpZqB . (2.17)

Then it is straightforward to show that the classical master equation pS, Sq “ 0 is
satisfied.

2.3 Other models

Any supermultiplet can be derived as the cohomology in a pure spinor superfield. In
many cases, the zero-mode cohomology is such that the corresponding fields define
a component BV complex, and an integration can be defined. Situations where this
does not happen is e.g. when self-dual tensors are contained in the supermultiplet,
such as the N “ p2, 0q multiplet in D “ 6 or type IIB supergravity. If the multiplet
has an off-shell formulation with some auxiliary fields, this off-shell multiplet is
found as the cohomolgy of Q [25,26]. In such cases, the pure superspinor complex
only contains ghosts and fields, and anti-fields to these are found in a conjugate
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pure spinor superfield [26]. In many cases one needs to use pure spinor superfields
in non-trivial modules [27–32] (see for example the field Φa in Section 3.1). In the
language of ref. [16], they belong to sections of some sheaf over the pure spinor space.

Higher derivative deformations of supersymmetric models, for example super-
symmetric Born–Infeld theory may be given simple (polynomial) actions in pure
spinor superfield theory [27,33].

Supergravity, in particular in 11 dimensions, will be addressed in the following
Section.

2.4 Pure spinor partition functions and superalgebras

Given the usefulness of pure spinors for the description of supermultiplets in general,
it seems meaningful to pursue a deeper mathematical investigation of the algebraic
properties of pure spinor space itself. Functions on pure spinor space can be thought
of algebraically as power series in λ, modulo the ideal generated by pλγaλq. The
partition function of eqs. (2.9), (2.12) can indeed be understood as the partition
function of the on-shell super-Yang–Mills multiplet by factoring out also a level 2
vector:

Zptq “p1´ tq´p00001q b p1´ t2qp10000q (2.18)

b

«

p00000q ‘
8
à

n“0

`

pn0010qt3`2n a pn1000qt4`2n
˘

ff

.

The factor in the square represents the ghost zero-mode and the on-shell n’th deriva-
tive of the fermion and the field strength. This is for the D “ 10 super-Yang–Mills
example. Similar statements hold for any multiplet. The first two factors are can-
celled by the partition functions for functions of θ and x. In this way it becomes
clear that the pure spinor entirely encodes a full supermultiplet.

The investigation of the partition function of a pure spinor through the ghost
structure associated to the bilinear constraint was initiated by Chesterman [34],
and refined by Berkovits and Nekrasov [35]. Consider the BRST operator q for the
pure spinor constraint. It will (generically) involve an infinite number of ghosts due
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to the infinite reducibility of the constraint. One may think of q as the coalgebra
differential of a superalgebra, and the content of the algebra as a vector space may
be deduced from a continued factorisation of the partition function

Zptq “
8
ź

n“1

p1´ tnqRn . (2.19)

One has to remember that statistics are switched and modules are conjugated when
going from the ghosts (coalgebra elements) to the superalgebra. The superalgebra
in question, which is our definition of the Koszul dual to the functions of a pure
spinor, will always be some deformation of the direct sum of the supersymmetry
algebra (levels 1 and 2) and the freely generated algebra on the supermultiplet
(levels n ě 3) [17]. The Koszul duality can be interpreted as a denominator formula
for the superalgebra. In cases where the superfield is not a scalar, this is expected
to generalise to character formulas for representations of the superalgebra.

When the constraint puts λ in a minimal orbit, the superalgebra is a Lie su-
peralgebra, more precisely a Borcherds superalgebra [36]. For the particular case of
D “ 10 super-Yang–Mills theory, the corresponding Borcherds superalgebra in fact
exactly encodes the structure of interacting super-Yang–Mills theory [23]. This is a
quite amazing and unexpected result, since all that is described by the cohomology
is the linear multiplet. It is not yet clear what the corresponding statement is for
other theories, e.g. D “ 11 supergravity, but partial results exist [17,37]. There, the
superalgebra is not a Lie superalgebra, but and L8 algebra involving (at least) a
3-bracket and a 4-bracket.

3 D “ 11 supergravity

We will not turn to D “ 11 supergravity [38]. The pure spinor superfield formulation
of this model can be derived from its traditional superspace [39, 40] formulation
[41, 42] in much the same way as the super-Yang-Mills theory was in Section 2,
however with some additional ingredients.

Recall the component field content of the D “ 11 supergravity multiplet: the
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Figure 1: A sketch of the space of D “ 11 pure spinors.

metric gmn, a 3-form C with a 4-form field strength H “ dC, and the gravitino field
χm

α with field strength ψmnα. An essential feature, that was used as a guideline for
the construction of the supersymmetric action, is that supersymmetry demands the
presence of a Chern–Simons term

ş

C ^H ^H.

In what follows, we will use 11-dimensional “pure spinors” λα. A Dirac spinor
in D “ 11 has 32 components. The symmetric spinor bilinears consist of a vec-
tor, a 2-form and a 5-form, constructed with γaαβ, γabαβ and γabcdeαβ . A spinor sub-
ject to pλγaλq “ 0 is not necessarily in a minimal orbit, which would require also
pλγabλq “ 0. Rather, the pure spinor space consists of a “generic”, 23-dimensional
part, complemented by the 16-dimensional minimal orbit, which is a singular sub-
space, and the zero orbit, the tip of the cône. The space is sketched in Figure 1.

3.1 Geometry vs. 4-form

There are two different versions of superfields that can describe the on-shell (lin-
earised) supergravity multiplet. One relies on the standard description of superspace
geometry, where one introduces a dynamical super-vielbein EM

A. Then, conven-
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tional constraints are used to eliminate all components except the lowest-dimensional
ones, Eµa in a controlled and covariant way [43–45]. Note that physical fields then are
described by 1-forms (in fermionic indices), but with an extra index a, while superdif-
feomorphisms can be thought of as sitting in a superfield ξa with the bosonic diffeo-
morphism parameters as leading components. The situation reminds of the treat-
ment of super-Yang–Mills theory in the previous Section, although all fields have an
extra index a. It can indeed be verified that the linearised (around Minkowski space)
multiplet is described by the cohomology of Q “ pλDq on a field Φapx, θ, λq. The
field is in addition required to have a “shift symmetry” [27,46,47] Φa » Φa`pλγa%q

for an arbitrary parameter %αpx, θ, λq. (The shift symmetry ties together the index
structure with the cohomology, and is also directly responsible for the presence of
the fermionic diffeomorphism ghosts in the zero-mode cohomology.)

The above is one way to relate the on-shell linearised supergravity multiplet to
pure spinor superfield cohomology. Since it is geometrical, it carries no information
about the gauge symmetry of the 3-form C, which indeed only appears through
its field strength H in the dimension 1 torsion. The other way of reproducing the
linearised multiplet is through a scalar field. The full ghost system for the C field
contains a ghost, a ghost-for-ghost and a ghost-for-ghost-for-ghost. The latter is a
fermionic 0-form. We can think of it as the θ- and λ-independent zero-mode coho-
mology of a pure spinor superfield Ψ of ghost number 3 and dimension ´3. A careful
calculation of the zero-mode cohomology gives at hand that it indeed contains the
mentioned ghosts, together with the super-diffeomorphism ghosts (at λ2), the phys-
ical fields (at λ3) and all corresponding antifields. We refer to refs. [1,46,47] for the
detailed calculations.

Now we are in a situation where the traditional supergeometric approach gives
the full non-linear equations of motion, but does not account for the full ghost
structure. The scalar field Ψ, on the other hand, is more fundamental in that it
contain all ghosts, and also the potential C, but it is a priori unclear how to go
beyond the linearised level. Importantly, in order to write down an action containing
the Chern–Simons term, Ψ is needed.
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3.2 BV action

Before giving the form of the full non-linear action, we need to understand inte-
gration, regularisation etc. in a way analogous to the 10-dimensional case. We will
refrain from detailed expressions. The pure spinor space is 23-dimensional. We again
introduce non-minimal variables λ̄ and dλ̄, and include the Dolbeault operator B̄ in
Q. The top cohomology of the third order ghost antifield now sits at λ7θ9. A mea-
sure based on this cohomology has the correct ghost number ´7 for an action with
ş

ΨQΨ, where Ψ carries ghost number 3. The pure spinor space is again Calabi–Yau,
with Ω „ λ´7pdλq23. A completely analogous regularisation will contain θ23pdλ̄q23,
so the θ integration will effectively pick out a term with θ9 (9 “ 32´23), as desired.
A linearised action

S2 “
1
2

ż

rdZsΨQΨ (3.1)

reproduces the on-shell multiplet correctly.

How are interactions constructed as additional terms in a BV action? One start-
ing point may be to look at the Chern–Simons term

ş

C ^H ^H. It must contain
at least one field Ψ, but the remaining factors can in principle be formed from Φa,
containing the field strength H. The concrete task now becomes to find an expres-
sion for Φa in terms of Ψ, such that cohomology maps to cohomology. This means
that one needs to find a bosonic operator Ra of ghost number ´2 and dimension 2
which commutes with Q modulo terms of the type pλγa%q. The procedure is similar
to that of finding a b operator, used in gauge fixing (see Section 5). Such an oper-
ator was constructed in ref. [46] using non-minimal variables. It takes a somewhat
complicated form, beginning as

Ra “ ppλγcdλqpλ̄γ
cdλ̄qq´1pλ̄γabλ̄qBb ` . . . (3.2)

One can then use Ψ as the fundamental field, and write Φa “ RaΨ. A term

S3 “
1
6

ż

rdZspλγabλqΨRaΨRbΨ (3.3)
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is then guaranteed to fulfil pS2, S3q “ 0, i.e., work as a linear deformation of S2 [46].
Note that the factor pλγabλq serves several purposes: It contracts the indices on a
pair of fermionic fields. It ensures the correct ghost number and dimensions of the
interaction term. And finally, it ensures the invariance under the shift symmetry,
thanks to the Fierz identity pγbλqαpλγabλq “ 0, which holds for pure spinors. It can
be verified, using explicit expressions for the cohomologies, that the Chern–Simons
term is correctly reproduced by S3.

In order to construct a complete action, the master equation pS, Sq “ 0 must be
checked, not only to linear order in S3 as above. It turns out [47] that only a minor
modification is needed: a 4-point coupling which is almost of the same form as S3.
It relies on yet another operator, T , of ghost number ´3 and dimension 3. The field
TΨ then carries ghost number and dimension 0, and its ghost number 0 part can be
thought of as containing the trace of the linearised gravity field. Then, the action

S “

ż

rdZs
´

1
2
ΨQΨ` 1

6
pλγabλqp1´ 3

2
TΨqΨRaΨRbΨ

¯

(3.4)

turns our to satisfy pS, Sq “ 0 to all orders, It is striking, but ideal from the point
of view of perturbative calculations, that a model containing gravity becomes poly-
nomial around Minkowski space. A detailed understanding, e.g. through homotopy
transfer, of how the non-polynomial nature of geometry around Minkowski space
arises, is still lacking. Neither does the construction offer any direct clues concern-
ing how to proceed to other backgrounds. Some remarks concering these issues are
given in the concluding Section.

3.3 Twisting

Pure spinor superfields provide a good framework for twisting supersymmetric theo-
ries, and to find all possible twistings [48,49]. This is because any point in the space
of spinors obeying pλγaλq “ 0 provides a nilpotent operator λαDα. (Note that here
λ is not a variable, but takes some specific value.) The list of possible twistings can
be read off from the stratification of pure spinor space in different orbits under the
Lorentz group, forming subspaces of pure spinor space.
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In supergravity, supersymmetry is local, and twisting is performed by giving
an expectation value to a superdiffeomorphism ghost [50]. A treatment in the pure
spinor formalism is favourable, since these ghosts are naturally present. Among other
theories, the twistings of D “ 11 supergravity has been thus examined [49,51,52].
The minimal twist leads to the SLp5q supersymmetric model of ref. [32].

4 Superstrings

The covariant quantisation of space-time supersymmetric string theory remained
elusive for a long time, until Berkovits constructed the pure spinor superstring [53–
56]. The variables used are the same as displayed above for D “ 10 super-Yang–
Mills theory. In both the left- and right-moving sectors of the world sheet, one
introduces in addition to the superspace coordinates X (self-conjugate) and θ, with
its conjugate p, a pure spinor λ and its conjugate ω. The variable λ has the same
chirality as θ. In type IIA superstring theory this chirality is opposite for left- and
right-movers, and in type IIB the same.

The left-moving BRST operator reads

Q “

¿

λαdα , (4.1)

where

dα “ pα ` BX
apγaθqα `

1
8
pγaθqαpθγaBθq , (4.2)

with the operator product expansion

dαpzqdβpζq “
1

z ´ ζ
γaαβΠa ` (regular) , (4.3)

where Πa “ BXa´pθγaBθq is the momentum conjugate to X in the Green–Schwarz
superstring. This implies Q2 “ 0. Again, it can of course be extended with non-
minimal variables.

Notably the list of fields above is complete, including ghosts. There is no Vi-
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rasoro ghost pair pb, cq (and, unlike the Neveu–Schwarz–Ramond superstring, no
super-Virasoro ghosts pβ, γq). This of course also happens for the superparticle. All
“coordinates” are world-sheet scalars. The cancellation of the conformal anomaly
requires no Virasoro ghost, but simply reads c “ 10´ 2 ¨ 16` 2 ¨ 11 “ 0. This may
seem as a simplification, but also has its price in making e.g. gauge fixing more
complicated, see Section 5.

Integration over pure spinor variables follows the same principles as for the super-
Yang–Mills theory.

5 Quantum theory

The procedures sketched in this Section focus on principles and qualitative results.
The issue of gauge fixing and the b operator is discussed in somewhat more detail,
since this is one of the points where the formalism becomes complicated and sim-
plifications are desired. The physical fields are “hidden” within a structure which
exhibits many qualitatively simple features. Their extraction from that structure
is more complicated [16, 24]. If one wants to use the formalism to derive precise
quantitative results, much work is involved (see refs. below).

5.1 Gauge fixing

The non-minimal variables open for a possibility to construct operators with nega-
tive ghost number. The so-called “b ghost”, or b operator, is the standard example
(see also the negative ghost number operators of Section 3). It is called b because
it assumes the rôle of the conjugate to the ghost c for world-line reparametrisa-
tions or world-sheet conformal transformations (see the cancellation of the conformal
anomaly in Section 4). In pure spinor superfield theory it is a composite operator.
This is because “p2 “ 0” (in a superparticle action) is only a derived linearised
equation of motion, a consequence (after gauge fixing) of QΦ “ 0, not a constraint
associated with a world-line symmetry.

In order to perform perturbative quantum calculations gauge fixing is necessary.
The “kinetic operator” Q is of course not invertible. If one can find an operator b
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such that tQ, bu “ l and chooses the Siegel gauge [57]

bΨ “ 0 , (5.1)

the propagator G can be written as

G “
b

l
. (5.2)

In the following we will write the field theory b operator. The one for string theory is
very similar (in the same way as the Q’s of eqs. (2.2) and (4.1) are), just containing
a small number of more terms with derivatives. As mentioned, this is one of the
instances where things become complicated in the pure spinor formalism.

The b operator in D “ 10 was constructed in ref. [22] using non-minimal vari-
ables, and reads

b “ b0 ` b1 ` b2 ` b3

“ ´1
2
pλλ̄q´1pλ̄γaDqBa

` 1
16
pλλ̄q´2pλ̄γabcdλ̄q

“

NabBc ´
1
24
pDγabcDq

‰

(5.3)

` 1
64
pλλ̄q´3pdλ̄γabcdλ̄qpλ̄γaDqNbc

´ 1
1024

pλλ̄q´4pλ̄γabidλ̄qpdλ̄γ
cdidλ̄qNabNcd ,

where N “ pλωq and Nab “ pλγabωq are invariant operators, in the sense that they
respect the pure spinor constraint pλγaλq “ 0.

The b operator in D “ 11 [58,59] is somewhat more complicated. We will not
display the full expression, but note that it is singular on the 16-dimensional subspace
(like the negative ghost number operators encountered in Section 3), and begins as

b “ ppλγdeλqpλ̄γ
deλ̄qq´1pλ̄γabλ̄qpλγ

abγcDqBc ` . . . (5.4)

There is also a possibility to find a b operator that acts within functions of the
minimal variables [60], using the principles of ref. [61]. On (holomorphic) functions
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of a D “ 10 pure spinor λ, the ‘ìnvariant derivative operator”

ω̃α “ ωα ´
1

4pN`3q
pγaλqαpωγaωq (5.5)

acts exactly like ωα between monomials λα1 . . . λαp , and annihilates the ideal gener-
ated by pλγaλq. The minimal b1 operator reads

b1 “ 1
pN`4qpN`5qpN`6q

”

1
2
pN2 ` 9N ` 15qpω̃γaDqBa ´ 1

128
Nabpω̃D3

abq

ı

, (5.6)

where D3
ab is the antisymmetric product of three D’s in p01001q,

pD3qαab “ pγ
iqαrβpγabiq

γδsDβDγDδ . (5.7)

It can be shown explicitly that b and b1 differ by a Q-exact expression. Using b1, it
is seen directly that Siegel gauge implies Lorenz gauge for the Yang–Mills connec-
tion. Namely, acting on a ghost number 0 field Ψ “ λαAα, b1Ψ “ 1

16
BapDγaAq. A

similar minimal b operator should exist for any supersymmetric theory with local
symmetries, e.g. D “ 11 supergravity, but has not been constructed.

It may rightly be claimed that gauge fixing, in the form presented here, is rudi-
mentary, and more or less implemented at a first-quantised level. A proper field-
theoretic BV gauge fixing [62], involving a gauge fixing fermion, has not been de-
veloped in pure spinor superfield theory.

5.2 Perturbative results

The construction sketched above gives a recipe for calculating scattering amplitudes
in the pure spinor formalism. Any diagram — which will contain a large number
of component field diagrams — should be saturated with appropriate vertex opera-
tors [63] representing external states. There is a remaining issue of regularisation at
λ “ 0 which was addressed and solved in ref. [64]. This is due to the b operators in
propagators containing negative powers of pλλ̄q that ultimately risk to make inte-
grals divergent. Explicit evaluation of the regulated integrals is in general extremely
complicated. Results exist for superstring theory on Minkowski space [63–67] and
on anti-de Sitter space [68,69].
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The degree of convergence of loop diagrams in pure spinor superfield theory
is generically much better than for loop diagrams in a component formulation or
with superfields manifesting some fraction of supersymmetry. Typical behaviour is
the vanishing of bubbles and triangles in off-shell diagrams, i.e., as subdiagrams
of any diagram. For maximal super-Yang–Mills theory in D “ 4 [70, 71], power
counting is enough to demonstrate perturbative finiteness. In maximal supergravity
in D “ 4 [58,72–74], power counting shows finiteness up to 6 loops, and possibly a
divergence at 7 loops, see also refs. [75–77]. The precise statement is that an L-loop
diagram is convergent in D dimensions if D ă 2 ` 14

L , while for super-Yang–Mills
theory it reads D ă 4` 6

L .

6 Remarks

Some final remarks, concerning shortcomings of the present status of pure spinor
superfield theory, and some desirable developments.

The classical theory of pure spinor superfields exhibits a striking simplicity.
Quantum calculations tend to become cumbersome, although in principle well de-
fined, mainly due to the complicated expression for the b operator used in gauge
fixing, and the regularisation it brings along. It remains an open question if these
calculations can be simplified, either by finding a replacement for the b operator, or
by some completely different means.

One approach, which has not been properly explored, would be to use the min-
imal (holomorphic) version of the b operator, b1 of eq. (5.6). The construction will
certainly extend to other negative ghost number operators [60,61]. Possibly, in such
a framework, the rôle of the non-minimal variables can be limited to integration,
with the “simple” regularisation of eq. (2.15), and the complicated regularisations
at λ “ 0 may be avoided.

An urgent question for supergravity is the lack of manifest background invariance
of the action (3.4). This is of course usual in string theory and string field theory [78]
(see however ref. [79]), but one should be able to do better in a supergravity theory.
Indeed, even if the basis of the construction is in supergeometry, the geometric
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picture is lost in the final form. There is some hope for “re-geometrisation”, and
for an understanding how to deform the model to non-flat backgrounds. It relies
on deforming the algebra which is Koszul dual to functions of 11-dimensional pure
spinors [17], in a manner similar to ref. [80].

As mentioned in Section 5.1, a proper field-theoretic BV gauge fixing procedure
has not been developed for pure spinor superfield theory. There is no doubt that
this can be done. It is probably one of the most important points on which the
framework should be developed.

The whole idea about the formalism presented is to manifest as much symmetry
as possible. It is well known that dimensional reductions of D “ 11 enjoys U-duality,
and that this symmetry can be “geometrised” within the context of exceptional
geometry [81–84]. Can the pure spinor framework be extended to accomodate for
these symmetries? Such a task may be very difficult, due to the infinite reducibility of
local symmetries in extended geometry, since the pure spinor superfields always are
based on the lowest-dimensional ghost field. Indeed, already double supergeometry
[85,86] contains infinite reducibility in the Ramond-Ramond sector.
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