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Abstract. Rational secret sharing is a problem at the intersection of cryptogra-
phy and game theory. In essence, a dealer wishes to engineer a communication
game that, when rationally played, guarantees that each of the players learns the
dealer’s secret. Yet, all solutions proposed so far did not rely solely on the players’
rationality, but also on their beliefs, and were also quite inefficient.

After providing a more complete definition of the problem, we exhibit a very
efficient and purely rational solution to it with a verifiable trusted channel.

1 Introduction

In [LMPS04], Lepinski, Micali, Peikert and shelat put forward the notion and the first
implementation of Fair Secure Function Evaluation . This is a communication protocol
extending the traditional notion of secure function evaluation [GMW87]. In essence, a
Fair SFE is an SFE in which either (1) all players learn the result of evaluating a given
function on their secret inputs (but no other information about their inputs) or (2) none
of them learns anything. The first outcome is reached when all players want it, and the
second one when at least one of the players wants it. The difficulty lies in the fact that
such objectives must be reached no matter what the function may be and no matter how
many the player are, provided that at least one of the players is honest, that is sticking
to his communication instructions in all cases.

In [HT04], Halpern and Teague put forward the notion of rational secret sharing
(RSS), aiming at distilling separately, and in purely game theoretic terms, the last stage
of a Fair SFE (where the players attempt to reconstruct the specified output from their
shares of it). We believe this to be a very valuable contribution, but we also believe that
the notion of an RSS can be improved.

In this extended abstract we shall solely deal with the two-player version of the
notion, arguably the best way to highlight the novel and most poignant aspects of the
problem.1

1 Our approach easily extends to n players, where the dealer wishes that n out of n of them learn
the secret. The k-out-of-n definition of traditional secret sharing is very relevant for robustness,
and protects against the potential loss of shares, but is quite distracting and orthogonal to the
rationality problem at hand. Indeed, in a “k-out-of-n” rational secret sharing (assuming as
usual that the fewer the players knowing the secret, the more value to them), k players will
presumably prevent the others from learning their secret. Is this the natural wish of the dealer?
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1.1 Rational Secret Sharing as a Special Form of Mechanism Design

The Intuitive Notion. At the verge of dyeing, a dealer possessing a secret string S
wishes to ensure that two players will later on cooperate so as to both learn S. To this
end, he provides each player i with his share of the secret, a string Si. Each share is
individually meaningless (i.e., its distribution is independent of S), while together the
two shares reveal S. If the players were both honest, the dealer’s goal could be trivially
achieved. Unfortunately, honesty is not an available commodity: each player is assumed
to be rational (i.e., always trying to maximize his own utility), and the utilities that the
players attach to the possible ways of learning S are quite problematic. In particular,
each player prefers most to be the only one learning S, prefers less learning S together
with the other player, and even less not learning S at all. Accordingly, the dealer wishes
to chose the shares such that,

for a suitable communication channel, there exists a communication game that,
when rationally played, yields the secret to both players.

It is thus worth to recall quickly the traditional notions of solving a game.

Game Solution Concepts. Given a game G, a solution concept essentially is a way of
predicting how G will be played. From the cryptographic perspective of the authors,
traditional solution concepts are only partially meaningful, as they are stated from the
perspective of individual players, disregarding collusion altogether. Nonetheless their
meaningfulness is intact for the problem at hand restricted to just two players. (This is
by itself a good reason to focus on the two-player case.)

The strongest, traditional solution concept is that of solvability in dominant strate-
gies. Here, each player has a strategy σi that is best of him, no matter what strategies
the other players may use. In such a case predicting that each player i will play σi is
indeed the strongest form of prediction of play. Note that, in choosing σi, each player i
does not need to rely on the rationality on the other players, but just be rational himself!
Unfortunately, not all games admit dominant-strategy solutions.

The “next best” solution concept is dominant solvability, which now very roughly
explain. In a game G, a strategy a for player A is said to weakly dominate another
strategy a′ for A if (1) for all possible strategies b of player B, A’s utility under a is
greater than or equal to his utility under a′; and (2) for at least one strategy b′ of B,
A’s utility under a is strictly greater than his utility under a′. This being the case, a
rational A should remove strategy a′ and all of his weakly dominated strategies from
consideration.And a rationalB should do the same on his side. Trusting thatB has done
so, A should then eliminate from his remaining strategies all those that now become
weakly dominated (relative to the strategies left over to B). And so on, until neither
player can eliminate any more strategies. At that point, if A is left with a single strategy
a and player B with a single strategy b, then G is called dominant solvable, and (a, b)
is a very strong prediction for the way in which G will be rationally played. Notice,
however, that this second solution concept is weaker than the first one, since each player
must rely non only on his rationality, but also on that of his opponent. Again, not all
games admit such a strong solution concept.
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The next solution concept we wish to roughly recall is that a Nash equilibrium. This
is a pair of strategies (a, b), such that a is the best strategy for A if he believes that B
will play b (and symmetrically for B). The good news is that each game admits such
equilibria, but the bad news is this is a very distant third among these solution concepts.
The meaningfulness of a Nash equilibrium in fact depends not only on the rationality of
both players, but also on their beliefs. Typically a game has a plurality of equilibria, often
having symmetric payoffs, making it very uncertain to predict which of them will be
played. Furthermore, the game may easily not end up in equilibrium at all. IfA believes
that equilibrium (a, b) will be played, while B believes (a′, b′), then the strategy profile
ultimately played may be (a, b′) which needs not to be an equilibrium at all!

Mechanism Design. Very roughly said the goal of mechanism design is to engineer
a game so that, “when rationally played”, a given property P is guaranteed to hold.
The quality of such design therefore crucial depends on the solution concept adopted:
it is exceptionally meaningful (recall that we are focusing on the two-player case!)
when the game has dominant strategy solution, it is very meaningful when the game
is “dominant solvable”, and it has only very limited meaningfulness when the game
is “Nash solvable.” Such limited meaningfulness persists even if P is guaranteed to
hold at each of possible Nash equilibria of the game. In a sense, if the game has k Nash
equilibria, then—due mismatched beliefs— it roughly has k2 (kn if there are n players)
possible ways not to end in any equilibrium.

Another quality measure in mechanism design is the amount of knowledge about the
players (e.g., knowledge about their utilities) required to engineer the game. Indeed,
since precise knowledge about the players may not be available or too expensive to
gather, the lesser the knowledge required from the designer the better.

Rational Secret Sharing and Mechanism Design.We propose to view rational secret
sharing as a special mechanism-design problem. That is, one should try to guarantee
the property “all players learn the secret” by means of a pure communication game.
In essence, the game should be such that (1) all player actions consist of exchanging
messages over a special channel, (2) no trusted party is involved, and (3) no exogenous
punishments, fines, etc. can be triggered by the final outcome: the players’ utilities must
solely depend on who has, or has not, learned the secret.

This point of view enables us to extend to RSS the same quality analysis applicable
to mechanism design, providing a more meaningful comparison among various RSS
protocols.

1.2 Prior Solutions

In their quoted paper, Halpern and Teague present a protocol for the 3-out-of-3 case (and
then show how to modify it for the m-out-of-n case, where 3 ≤ m < n). Their proto-
col guarantees that all players learn the secret at a Nash equilibrium whose strategies
survive the iterated elimination of weakly dominated strategies (IEOWDS for short).
Rather than the swap channel of Lepinski, Micali, Peikert, and shelat, they rely on
simultaneous-broadcast channels, and prove that no rational secret sharing protocol
can be fixed-round with such channels. A main limitation of their protocol is that the
trusted dealer continues to be an active participant. (In most settings, such a dealer could
directly inform the players of what the secret is.)
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Gordon and Katz [GK06] present a protocol for just two players that dismisses the
need for the periodic involvement of the dealer. Their protocol too relies on simultaneous-
broadcast channels, and guarantees that all players learn the secret at a Nash equilibrium
whose strategies survive IEOWDS. Abraham, Dolev, Gonen, and Halpern [ADGH06]
present a similar protocol, but focus on defining (and protecting against) coalitions of
rational players.

Lysyanskaya and Triandopoulos [LT06], with the same channels and implementation
type, consider a model with a mix of rational and malicious players.

Kol andNaor [KN08b] present a quite different protocolwith simultaneous-broadcast
channels, which guarantees that all players learn the secret at a “strict Nash equilibrium”,
a locally stronger version of a Nash equilibrium. (In essence, any player deviating from
his own equilibrium strategy expects to receive a strictly smaller utility.)

A Separate Protocol. We wish to mention an interesting and recent protocol of Ong,
Parkes, Rosen, and Vadhan [OPRV08]. Their protocol however works in a quite differ-
ent model. On one side, it does not require any special channels (that is, it relies on
ordinary broadcast channels rather then simultaneous-broadcast ones). On the other, it
relies on the honesty of a few players. (As we focus solely on rational players, we shall
not include this protocol in any future discussion or comparison.)

1.3 Weaknesses of Prior Solutions

Protocol Inefficiency and Excessive Designer Knowledge. The prior protocols share
the following logical structure. The players interact in several rounds, using some spe-
cial channels. The protocol has a special round R, unknown to the players because it is
secretly selected by the dealer according to a given distribution. If no player “cheats”
then all players learn the secret. A player can successfully cheat only if he correctly
guesses R. If a player i erroneously guesses R, then no one learns the secret (which
gives i utility ui). But if i guesses R correctly (and acts appropriately), then he is the
only one to learn the secret (which gives him utility Ui).

In essence, therefore, to hope that it is rational to stick to the protocol’s prescribed
strategies without cheating, letting p be the probability of successfully guessing R, p
needs to be so small that p·ui ≤ (1−p)Ui. This shows two separate weaknesses of these
protocols. First, because properly engineering the game implies properly selecting p, the
designer needs to know the ui’s and the Ui’s quite accurately. (Thus, from a mechanism
design perspective, this diminishes the quality of these approaches.) Second, because
the expected number of rounds must be greater or equal to p, this implies that all prior
protocols run in exponential time. In fact, independent of the distribution according
to which R is selected, the expected number of rounds of the prior protocols must be
exponential in k, assuming as it is natural that all players utilities are presented in binary,
and that their length is k. This inefficiency alone calls for new protocols.

Limited Guarantee for the Desired Property. Prior solutions ensure that the property
“all players learn the secret” holds at a given Nash equilibrium of the engineered com-
munication game. Again, however, this assurance is far from guaranteeing our property
for two separate reasons: equilibrium selection and equilibrium absence. Let us discuss
the first reason first. Even if one were certain that the engineered game will end up in an
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equilibrium, he could not be certain of which equilibrium would be actually selected.
And since, in the engineered games of the previous works, the “all-know-the-secret”
property was guaranteed only at one of the possible Nash equilibria, the equilibrium
ultimately selected could very well be one in which not all players learn the dealer’s
secret. Let us now discuss the second reason. The meaningfulness of any Nash equilib-
rium is inextricably linked to the assumption that the players’ beliefs are “consistent”,
which of course needs not be the case. Thus, even if all players learned the secret at
each Nash equilibrium of the engineered games, there is no guarantee at all that the en-
gineered game ends up in equilibrium. Again: assume that (a, b) and (a′, b′) are Nash
equilibria, that A believes that B will play b, and that B believes that A will play a′.
Then, A will rationally (based on her belief!) play strategy a, and B will play b′. And
since (a, b′) may not be an equilibrium, let alone an outcome in which all players learn
the secret.

To be sure, the prior protocols were engineered so that all players learned the dealer’s
secret not just at a generic Nash equilibrium, but at one whose strategies survived IE-
OWDS. But as long as multiple Nash survive IEOWDS (which is the case in prior
protocols), then equilibrium selection and equilibrium absence will continue to poison
the landscape.

To be sure too, some of the prior RSS protocols guaranteed that all players learned
the secret at an even stronger type of equilibrium, such as the strict Nash of [KN08b].
But these equilibria are in a sense only “locally stronger.” That is, if the players believe
that a strict Nash equilibrium (a, b) will be played out, they would have “even less
incentives” of deviating from it. But ensuring that A does not deviate from a if she
believes that B chooses strategy b is not too meaningful, unless one can also ensure
that B actually chooses b. If the game is engineered so that the best we can say about
it is that it has a strict Nash equilibrium (at which the desired property holds) alongside
with other additional equilibria, then equilibrium selection and equilibrium absence will
continue to stand in the way.

In sum, all prior RSS protocols did not solely depend on the players’ rationality, but
also on their beliefs. Thus they could not guarantee that all players, if rational, learned
the secret.

1.4 Our Contributions

Our contributions can be summarized as follows.

• Modeling.We put forward a more complete modeling of the RSS problem.
In particular: we highlight the inputs available to the designer of protocol; pro-
vide a more comprehensive set of utilities —including the possibility of learning
the wrong secret—; highlight the necessity of modeling RSS as a potentially infi-
nite communication game; provide a very general definition of a communication
channel; highlight the necessity of worrying about other channels even in a com-
munication game designed for a specific channel; provide the first rationalization
of aborting in a communication game; and bring to the fore the necessity of in-
cluding bargaining into the definition of RSS.
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• Purely Rational Implementation. Our RSS protocol is an implementation in sur-
viving strategies, as put forward by Chen and Micali [CM08]. In essence, such an
implementation is “equilibrium-less.” It guarantees that the desired property holds
for any combination of strategies surviving IEOWDS. Implementation in surviv-
ing strategies thus implies that the desired property is guaranteed based solely on
the rationality of the players, and not on their beliefs. In a sense, as long no player
chooses a dumb strategy, the desired property is guaranteed to hold.

Actually, our protocol satisfies a stronger notion of implementation: namely,
the surviving strategy of each player is essentially unique.2 That is, in our RSS
protocol, after iteratively deleting all weakly dominated strategies, essentially a
single strategy survives for each player, and playing these two strategies guaran-
tees that both players learn the secret. That is, our RSS protocol essentially is a
dominant solvable game.

Note that IEOWDS often eliminates very few strategies (a fact that has been
used to argue that Nash equilibria that survive IEOWDS is a solution concept not
really better than an ordinary Nash). Thus it is even more remarkable that our
protocol is such that, for any player, all but one strategy is “rationally credible.”

Note too that, in general, which strategy survives depends on the order in
which weakly dominated strategies are eliminated. In our case, however, the (es-
sentially) unique surviving strategy of a player is the same irrespective of any
possible elimination order. In sum, our solution concept is indeed very strong.

• Communication Channel and Security. Our communication channel uses only or-
dinary envelopes (as a way of temporarily and perfectly hiding a secret value) and
the dealer’s public key.

The security depends on the ability of envelopes to perfectly hide their content
and unforgeable digital signatures.

• Operational Efficiency. Ours is the first polynomial-time RSS protocol, fully ac-
counting for all inputs. In fact, each surviving strategy requires a total of 10k
envelope operations, 4kL bit operations, plus the time of verifying two signatures
relative to k-bit public keys. Here L is an upperbound to the length of the binary
representation (of the absolute value) of any of the players’ utilities, and k is a
security parameter. The security parameter k controls the probability that some-
thing goes wrong. (The probability of something going wrong is guaranteed to be
exponentially small in k.)

The dealer is required to perform a total of 4kL bit operations, to generating
matching public and secret keys of a digital signature with security parameter k,
and to produce two signatures relative to the selected public key.

2 The reason that we do not say unique is that, as we shall argue, a pure communication game
G should be modeled as a possibly infinite sequence of the same sub-game g. Thus, a strategy
of any player in G actually consists of a sequence of strategies, σ1, σ2, . . ., where σj is the
player’s intended strategy for jth copy of g, if reached. By saying that each player has an
essentially unique surviving strategy in G we mean that any of his surviving strategies is of the
form s, σ2, . . ., where s is fixed; that is first sub-strategy is the same for any surviving strategy
of the player. And when all players play their first such strategies, G terminates.
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• Round Efficiency. A play of our surviving strategies involves only 6 rounds (1 for
the players, and 5 for the channel).

2 Selected Modeling Issues

Dealer Secret, Player Outputs, Player Utilities, and Designer Knowledge. For con-
creteness, we model the secret as a uniformly selected string of n bits. (Our protocol of
course works for all kinds of other distributions as well.)

We assume that, upon termination, each player outputs either an n-bit string (inter-
pretable as the player’s guess for the dealer’s secret) or the special symbol “?” (inter-
pretable as the player’s having no information about the secret). The protocol terminates
when a prespecified stage is publicly reached, or when either one of the players aborts,
that is stops communicating and for ever takes no further action —after setting his own
output.3

We define an outcome of an RSS protocol to consist of three possible outputs for
each player: (1) the correct secret the dealer, (2) the symbol “?”, and (3) an incorrect
string. We assume that each player prefers his outputs in this order, and prefers the
inverse order for the outputs of the other player. That is, for each player i, denoting by
Ki (for “i knows the secret”) his first output, by Wi (for “i wrongly learns the secret)
his third output, and by ui his utility function, we assume that the utilities of the first
player over the possible 9 outcomes are as follows:

u1(K1, W2) ≥ u1(K1, ?) ≥ u1(K1, K2) ≥
u1(?, W2),≥ u1(?, ?) = 0 ≥ u1(?, K2) ≥
u1(W1, W2),≥ u1(W1, ?) ≥ u1(W1, K2).

Player 2’s utilities are symmetrically defined. (Setting the players’ utilities to 0 when
both of them have no information about the secret is somewhat arbitrary, but concretely
useful to fix our thoughts.) All of the above inequalities can be strict. But for our anal-
ysis it suffices that u1(K1, ?) > u1(K1, K2) > u1(?, ?) > u1(W1, W2), and symmet-
rically for player 2. That is, each player prefers learning the secret alone to learning
together with the other player, prefers the latter outcome to not learning the secret, and
prefers the latter outcome to learning the wrong secret.4 It is also useful to assume that a
player’s expected utility when randomly guessing the secret is negative. (Alternatively,
we must ensure that the utility of random guessing the dealer’s secret is less than that
of learning the secret together with the other player. Else, a player would not have any
incentive to participate in an RSS protocol.)

3 That is, we explicitly assume that one players’ aborting is detectable by the other player. (After
all, stopping all communications should be “eventually detectable” in practical settings, and
immediately detectable in synchronous ones.) Alternatively, each player may keep track of his
current output at all times (rather than producing his output at termination). This way if a player
aborts without the “courtesy” of informing the other player, the latter’ output is properly set.

4 Indeed, if the secret were the combination of a safe with money and a bomb inside, and the
safe exploded when the wrong combination were entered, learning the wrong secret could have
truly negative utility for a player!
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This structure of the utility is assumed to be known to the designer. And so is an up-
perbound to the number of bits necessary to write down the largest of the 16 possibilities
of the players. (In other words, it suffices for the designer to know the players’ utilities
within an exponential accuracy, rather than the linear accuracy of the prior works.)

Ensuring the Rationality of Abort. Our protocol, if a special point in which a player i
has not yet learned the secret is reached, calls for him to abort. By so doing, of course,
the player looses any hope of learning the secret. Thus, in order to guarantee that the
suggested strategy survives IEOWDS, we need to ensure that, at that point of our pro-
tocol, the player no longer has any rational hope of learning the secret (whether alone
or together with the other player). What should this mean? In particular, of course, it
should mean that i’s expected utility when continuing the current execution of the pro-
tocol is worse than that of aborting outputting “?”. But it should not mean just that.
The dealer who has provided the players with their shares is now dead, and can no
longer control what the players do from his grave. RSS is a pure communication game,
the players have all the information they need to continue any given execution of our
protocol (if they so want) and no authority is there to stop them from (or fine them
for) doing so. In addition, the players also have the ability of starting another execution
from scratch. (For instance, they may use their same shares, but different coin tosses
for their strategies, if probabilistic. Alternatively, if reusing the old shares is not “ratio-
nally advisable,” they may first resort to a secure function evaluation to “compute new,
equivalent and, independently selected shares from their old ones, and then execute our
protocol again. The possible alternatives abound.) Better yet, perhaps, they also have
the ability to start a totally different RSS protocol using the same communication chan-
nel. More generally yet (unless one were ready to make the outlandish assumption that
no other channel exists), they have the ability to execute a totally different RSS protocol
with a totally different channel! In sum,

To rationalize player i’s aborting in an RSS protocol, we should prove that any
chance of i’s learning the secret has vanished.

Realizing, formalizing, and delivering this property is a main contribution of our work.

Modeling Special Channels. All RSS protocols with rational players must use some
special communication channel, such as a swap channel or a simultaneous-broadcast
channel. Since we have just argued that a proper analysis of RSS should include the
possibility of running a different protocol over a different channel, it becomes imper-
ative to model any possible special channel of communication. We do so by letting
special channels consist of “mildly trusted parties in abundant supply.” Let us explain.
If some party T could be totally and universally trusted, then many problems (includ-
ing rational secret sharing) would be trivialized. For instance, the dealer might as well
confide his secret to T and ask him to reveal it when all the designated players show up
together. Thus “mild trust” became imperative. As for abundant supply we mean that
there is not a unique mildly trusted party in the world. (If this were the case, one might
ask T to interact only once with a given group of players for a given task, and simplify
a lot of things too.) By contrast, to model the fact that a special communication channel
(if it exists at all) is indeed a commodity purchasable at any store, we envisage that
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there is a plurality of mildly trusted parties, not aware of —or not in contact with—
each other.

Accordingly, following [ILM08], we model a mildly trusted party in abundant supply
as a verifiable trusted party (VTP for short) with no memory. By verifiable we mean
that every one can see the actions a VTP takes and verify that they are the prescribed
ones. That is, a VTP is not trusted to keep, nor to correctly make any secret actions. A
VTP knows nothing and acts publicly, so that he is trusted only to the extent that he will
indeed publicly perform his prescribed public actions.

For example, a VTP can trivially implement a swap channel between two parties as
follows. First each of A and B seals his message for the other into an opaque envelope
and publicly gives it to the VTP. Then the VTP publicly hands A’s envelope to B and
B’s envelope to A.

As for another example, a VTP can implement a simultaneous-broadcast channel as
follows. First, A and B seal their respective messages for the other in two envelopes
and publicly hand them to T , then T publicly opens both of them.

In sum, VTPs can be viewed as a formalization of a legal system. One may not
want to trust his secrets to —say— a judge, but should at least trust a judge to carry
out under public scrutiny a specified sequence of totally public actions. Since typically
there are multiple judges to choose from, the analogy with the legal system makes it
clear that the players can always walk to an new judge to execute their protocol one
more time. The analogy also makes it clear that if one type of channel is available, then
indeed other types are likely to be available too. Whether or not, as functions, the “swap
channel” is reducible to the “simultaneous-broadcast-channel” (or viceversa), from the
VTP perspective, both exist. (Indeed any judge can, with envelopes, implement both
channels and a host of similar ones.) This highlights the point that when a player is
asked to abort, then it really must be the case that no hope to resurrect the secret exists
for him, no matter what other protocol and channel might be considered.

Adding Costs to the Model. Consider a cryptographic rational secret sharing protocol
in which the dealer also announces an encryption E of the secret S. Then, a player, in
addition to any other strategy, also has available a computational-attack one: namely,
abort and try to decrypt E. A computational-attack strategy is also possible in our pro-
tocol, but in a more complex way. Indeed, successfully forging a given value enables a
player to learn the secret alone, and force the other to learn a false secret. Thus we too
need to argue that computational-attack strategies are not rational. One way to do so
is to define a computationally bounded version of rational secret sharing. A preferable
way is to attach cost to computation so as make it preferable for a player to play hon-
estly our protocol rather than try to attack the signature scheme and then, if the attack
is successful, getting an advantage in the protocol. Details will be provided in the final
version. (In any case, as argued by Halpern and Pass [HP08] considering computational
costs may be meaningful even for more traditional —i.e., non-cryptographic— game
theoretic settings.)

We also associate a small additive cost of γ to each use of the channel. (E.g., every
one has the right to access the legal system, but incurs a fixed cost in doing so.
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We note that additive (or multiplicative) discounts of the players final utilities are
quite standard in game theoretical models in which the players could go on interacting
(possible even for ever), typically by executing a given sub-game.5

The Issue of Bargaining. Finally, let us bring to the reader attention a point totally
neglected so far. Traditionally, to guarantee the dealer’s wish that all players learn the
secret (at least when everyone behaves rationally), the only restrictions envisaged for the
utilities are local to each player (e.g., each player must prefer reconstructing the secret
alone to reconstructing it together with the other player, etc.). That is, the utilities of
an individual player must be “compatible with each other,” but not with those of other
players. We wish to point out, however, that it is necessary to consider inter-player
restrictions on the players’ utilities, or be ready live with the consequences relative to
the dealer’s wishes. Let us explain.

A dealer providing players with shares of his secret S automatically enables them to
bargain. In a bargaining situation, one player may get a better deal than others without
any failure of rationality. For instance, in an RSS context, Player 1 may simply insist
that unless everyone plays a protocol in which he learns the secret alone 99 times out
of 100, he is not going to cooperate. (In a sense, if to Bill Gates learning the secret
together with you and me is worth $1K, but learning it alone is worth $1B, then he
would be wasting time and opportunity costs in participating with you and me in a
“fair” reconstruction of the secret. Therefore, he may successfully bargain for a higher
probability of learning the secret.) Now, if the dealer indeed has come up with shares
and channels enabling the players to rationally reconstruct the secret together using a
given special communication channel, then we should also expect that —whether with
the same or with a different channel— the players can use their same shares to skew
the payoffs so as to suit their bargaining needs. Truly unbelievable assumptions must
be made to prevent the shares to be used in this alternative manner (especially in light
of the result of [ILM08], that essentially enables the players to do rationally almost
anything, although not too conveniently). Thus, either one must make the additional
assumption that the players utilities are such that their bargaining game has a unique
solution (e.g., some form of symmetry), or the dealer must be ready to die in peace with
the comfort that either all players (if rational) will learn the secret, or that he has put all
of them on a technically equal bargaining position.

The reader is free to pick the assumption he prefers. But always guaranteeing that
all players together learn the secret may not be possible. For the rest of this extended
abstract let us assume that the utilities are such that there is a unique bargaining solution.

3 Our Enriched Solution

It is simpler to explain our protocol assuming first that also special, dealer-sealed, en-
velopes are available: anyone can verify that such an envelope has been sealed by the
dealer, and thus that its content is what the dealer wanted it to be, because any attempt
to break the dealer’s seal is guaranteed to be detectable by anyone.

5 For instance, if a given contract is executed after i days of negotiation it is worth less to the
players than executing the same contract as i − 1 days of negotiation.
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Notice that, if such special envelopes were available, then a trivial solution to the
RSS problem exists. In essence, letting s be the secret, the Dealer creates two random
strings sA, sB such that s = sA⊕sB , and then provides player A (respectively B) with
infinitely many pink (respectively, blue) dealer-sealed envelopes, each containing sA

(respectively sB). Players A and B then interact as follows. First, each player, simulta-
neously with the other, gives the VTP one of his dealer-sealed envelopes. Then, if the
VTP receives both a pink and a blue dealer-sealed envelope, he publicly opens both of
them. Else (e.g., one of the envelopes is ordinary, or has a broken seal), he destroys all
envelopes received. In either case, the players incur a positive cost for this interaction.

The above indeed is an RSS protocol working in dominant-strategies. The fact that s
becomes public is not a problem: the dealer could just give both players the same string
r and choose sA and sB such that their bit-by-bit exclusive-or is s ⊕ r. The problem is
that we see no way of keeping its analysis by simulating its dealer-sealed envelopeswith
ordinary ones and digital signatures. We thus now describe a more complex protocol
for which we can “simulate” dealer-sealed envelops as follows. Rather than handing to
a player infinitely many dealer-sealed envelopes with content c, the dealer gives him
a single digital signature of c, which then the player can —copy and— put into an
ordinary envelope and give to the VTP as many times as necessary. (In the final version
we shall prove that this simulation keeps our analysis essentially intact.)

In order to guarantee implementation in surviving strategies, our protocol critically
introduces an asymmetry in the way the players are treated.

3.1 Dealer’s Instructions

On input an �-bit secret s and a security parameter k′, do:
1. Choose a random string σ ∈ {0, 1}� and compute s′ ← s ⊕ σ.
2. Choose a value k such that for all i

(a) ui(K1, K2) >
(
2−k/2

)
ui(K1, ?) +

(
1 − 2−k/2

)
ui(?, ?)

3. For i = 1, 2, . . . , k, repeat the following
(a) Randomly select a four-tuple (a0, a1, b0, b1) such that a0, b0 are a random

⊕-sharing of the secret s′ and a1, b1 are random and independent values of
the same length as s.

(b) Pick two random bits e1, e2 ← {0, 1}.
(c) Player 1’s share is (ae1 , a1−e1) and Player 2’s share is (be2 , b1−e2).
(d) Player 1’s check value is C1,i = (e2, b1) and player 2’s check value is

C2,i = (e1, a1).
(e) Place value aj into envelopeE1,i,j and place value bj into envelopeE2,i,j

for j ∈ {0, 1}.
4. Let C be the k(� + 1)-bit number corresponding to the check values

C2,1, . . . , C2,k. Choose random values α, β ∈ Zk and compute the message
authentication code γ = α · C + β.

5. Place into an envelopeE1,0 the values (C1,1, . . . , C1,k, α, β) and into an enve-
lope E2,0 the values (C2,1, . . . , C2,k, γ). Seal the envelope E1,0.

6. Place into an envelope Ep,σ the value σ for p ∈ {0, 1}.
7. Send the player 1 the envelopes E1,0, E1,σ and E1,i,j for i ∈ [1, k] and j ∈

{0, 1}. Send to player 2 the envelopes E1,0, E1,σ and E1,i,j for i ∈ [1, k] and
j ∈ {0, 1}.
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3.2 Reconstruction Instructions

Recall that a player’s strategy consists of a Turing machine that on input a history h
outputs either a special symbol ⊥ to indicate abort, an output string s, or a sequence of
2k +1 strings to place into envelopes that are submitted to the VTP. We use the symbol
ε to denote the initial history consisting of only the envelopes received from the dealer.

Player p instructions T (h) :
1. If h = ε, then submit envelopesEp,0 and Ep,i,j for i ∈ [1, k] to the VTP. If the

VTP destroy the envelopes, output ⊥ and stop. Else, after the VTP completes
all of its steps, reconstruct n candidates of s by xor’ing the non-check values
that have been opened. Let s′ be the majority candidate. If no majority exists,
then output⊥. Otherwise, privately open envelopeEσ and output s′ ⊕ σ.

2. For all other histories, output⊥ (i.e. do not invoke the VTP).
VTP Instructions :

1. Publicly verify envelope E1,0. If the envelope’s seal does not verify, then de-
stroy all envelopes. Otherwise, publicly open the envelope to reveal the values
(C1,1, . . . , C1,k) and α, β.

2. Publicly open envelope E2,0 to reveal values C = (C2,1, . . . , C2,k) and γ. If
γ �= α · C + β, then destroy all envelopes.

3. Open the check envelopes (left or right) of player two indicated by
C1,i, . . . , C1,k. If there exists an opened envelope E2,i,j that does not match
its stated value in C1,i, the check fails: destroy all envelopes.

4. Open the check envelopes (left or right) of player one indicated by
C2,i, . . . , C2,k. If there exists an opened envelope E1,i,j that does not match
its stated value in C2,i, the check fails: destroy all envelopes.

5. If all k checks succeed, open the remaining 2k envelopes (corresponding to
shares of the secret s′).

3.3 Analysis

Theorem 1. The strategy profile (T, T ) for players 1 and 2 constitute a profile that
uniquely survives the iterated deletion of weakly dominated strategies in the given VTP
model.

The main idea of the proof. Unless the first envelope submitted by the first player is
sealed correctly, the VTP destroys envelopes. Once the one-and-only sealed envelope
E1,0 is opened, the second player knows which of her share values are check values, and
which are values that are used in the sharing of s′. If the VTP succeeds in the same use
that E1,0 is opened, then both players learn the secret. If it does not, then some check
envelope has failed and therefore no share value has yet been opened. In subsequent
uses of the VTP, the second player can then modify all of her share values by XORing
a random string r to them. This action is undetectable by the first player. Moreover,
this action is the weakly dominant response for player 2 since player 2 prefers to learn
the secret alone. Therefore, the first player has no hope to recover the secret (since
any future opened share values will be independent of the real secret s′. Thus, the first
player will abort in every subsequent use of the VTP. As a result, it is best for the second
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player to submit the envelopes received from the dealer on the first use (since either her
envelopes are never opened, or they are opened in the first and only rational opportunity
there will be to recover the secret). In this case, the first player should follow T since
each use of the VTP incurs a small cost. Then finally, the second player should also
play T .

Definition 1. A revealing history h is a history in which the envelope E1,0 has been
opened and verified in some use of the VTP, but in every use of the VTP, all envelopes
have been destroyed.

Let X1 be the set of all player-one strategies, and X2 be the set of all player-two
strategies. Notice that for all σ ∈ X1, u2(σ, T ) ≥ u2(?, ?) and for all τ ∈ X2,
u1(T, τ) ≥ u1(?, ?). Therefore in the first step of removal, all guessing strategies that
have expected utility less than ui(?, ?) can be removed.

For any player-two strategy τ , define Γ (τ) as the following strategy:

1. For the first use of the VTP, follow τ(ε). If the first use of the VTP results in all
envelopes being opened, output the same as strategy τ .

2. If the first use of the VTP does not result in all envelopes being opened, for the
subsequent uses of the VTP, follow strategy τ with the following exception: for
any revealing history h, compute which of player 2’s envelopes are non-check en-
velopes, choose a random value r and XOR r to each of these non-check values.
Use these new non-check envelope values in place of the original non-check values
received from the dealer to compute τ(h) for all subsequent histories h. If in this
use or any subsequent use of the VTP, all envelopes are opened, compute the output
O as per τ using the original non-check envelope values.

Claim. The player-two strategy Γ (τ) weakly dominates τ whenever τ �= Γ (τ).

For any player-one strategy σ, the player-two strategies τ and Γ (τ) are the same for the
first use of the VTP, and thus result in similar utilities in any execution that succeeds.

For any revealing history, Γ (τ) never does worse than τ since Γ (τ) is both perfectly
indistinguishable from τ to player one, and the share values produced by Γ (τ) do not
have any information about the secret s′. Since Γ (τ) �= τ , then there is some σ and
some execution for which Γ (τ) will be strictly better than τ .
Set X1

2 = {Γ (τ)}τ∈X2 . For any player-one strategy σ, let Π(σ) be the strategy that
does the following: If the input history h is not revealing, then follow σ(h). If input
history h is revealing, then (a) never use the VTP in any subsequent round and (b) if
σ(h) outputs a string s, then output s and otherwise output⊥.

Claim. The player-one strategy Π(σ) weakly dominates σ whenever (1) σ(ε) submits
the sealed envelope E1,0, and (2) there exists τ ′ ∈ X1

2 such that (σ, τ ′) produces a
revealing history h with positive probability and σ(h) does not instruct to abort.

Consider any profile (σ, τ) were τ ∈ X1
2 . The strategies σ and Π(σ) are equivalent on

the first use of the VTP and therefore result in the same history h. If h is successful,
then both σ andΠ(σ) result in reconstructing the secret. Similarly, if h is not successful
and also not revealing, then the two strategies are equivalent. If h is revealing, but σ(h)
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produces an output, then both are equivalent. Finally, if h is a revealing history and
σ(h) uses the VTP again, then Π(σ) is strictly better. This follows because τ survives
the first step of removal, and therefore τ produces envelopes for the second (and future)
uses of the VTP that are independent of the secret s′. This upper-bounds player 1’s
utility u1(σ, τ) by −ε + u1(?, ·). However, u1(Π(σ), τ ′) = u1(?, ·) which is strictly
greater. (Similar analysis for the case when σ outputs s instead of ⊥.)

The second condition of the claim ensures this situation occurs for some τ , and
therefore therefore Π(σ) weakly dominates σ.
Set X1

1 to be the set of player-one stratgies in which after the sealed envelope is submit-
ted, the VTP is never used again. Let Θi(τ) be the player-two strategy that plays T (ε)
in the first i uses of the VTP, and follows τ for all subsequent uses.

Claim. If τ �= Θ1(τ), then Θ1(τ) weakly dominates τ .

Consider any player-one strategy σ ∈ X1
1 .

For those executions of σ in which player 1 submits an unsealed envelope in the
first use of the VTP, all envelopes are immediately destroyed and therefore it holds
that u2(σ, Θ(τ)) = u2(σ, τ) since both strategies are equivalent for all second and
subsequent uses of the VTP.

We now consider those executions of σ in which the sealed E1,0 is submitted. (This
can only happen once.) Let pσ,τ be the probability that under profile (σ, τ), the first use
of the VTP results in destroyed envelopes. Observe that pσ,τ ≥ pσ,Θ(τ) for all σ. Since
σ ∈ X1

1 , the VTP is never used again by σ, and therefore u2(σ, τ) = pσ,τu2(·, K2)
which is less than or equal to pσ,Θ(τ)u2(·, K2) = u2(σ, Θ(τ)). The condition that
Θ(τ) �= τ implies that the inequality is strict for some player one strategy σ which
establishes the claim. Induction can be used to show that the claim holds for all i.
Set X2

2 = {Θ(τ)}τ∈X1
1
.

Claim. The player-one strategy T weakly dominates every surviving strategy σ.

Observe that u1(T, τ) = u1(K1, K2) for any τ ∈ X2
2 . Any other player one strategy

has a positive probability of causing the VTP to destroy all envelopes, and therefore
incurring a cost of −ε.

A similar argument with Π can be applied to every player-two strategy. Thus, in any
use of the VTP that reveals the dealer-received envelope E2, the player-two strategy
no longer uses the VTP. This implies that the player-two strategy T weakly dominates
every surviving strategy.
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A The Ballot-Box Model

Ballot-box mechanisms are extensive-form, imperfect-information mechanisms with
Nature. Accordingly, to specify them we must specify who acts when, the actions and
the information available to the players, when the play terminates, and how the outcome
is determined upon termination.

A ballot-box mechanism ultimately is a mathematical abstraction, but possesses a
quite natural physical interpretation. The physical setting is that of a group of players,
seated around a table, acting on a set of ballots. Within this physical setting, one has
considerable latitude in choosing reasonable actions available to the players. In this
paper, we make a specific choice, sufficient for our present goals.

A.1 Intuition

Ballots. Externally, all ballots of the same kind are identical. (Unlike [ILM08], we
do not need super-envelopes here.) An envelope may contain a symbol from a finite
alphabet. An envelope perfectly hides and guarantees the integrity of the symbol it
contains until it is opened. Initially, all ballots are empty and in sufficient supply.

Ballot-Box Operations. We only need 3 classes of ballot-box operations. Each opera-
tion except for the first type is referred to as a public action, because it is performed
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in plain view, so that all players know exactly which action has been performed. These
classes are: (1) writing a symbol on a piece of paper and sealing it into a new, empty en-
velope; (2) publicly opening an envelope to reveal its content to all players; (3) publicly
destroying a ballot; and (4) do nothing.

Public Information. Conceptually, the players observe which actions have been per-
formed on which ballots. Formally, (1) we associate to each ballot a unique identifier, a
positive integer that is common information to all players (these identifiers correspond
to the order in which the ballots are placed on the table for the first time or returned to
the table —e.g., after being ballot-boxed); and (2) we have each action generate, when
executed, a public string of the form “A, j, k, l, ...”; where A is a string identifying the
action and j, k, l, ... are the identifiers of the ballots involved. The public record is the
concatenation of the public strings generated by all actions executed thus far.

A.2 Formalization

Basic Notation. We denote by Σ the alphabet consisting of English letters, arabic nu-
merals, and punctuation marks; by Σ∗ the set of all finite strings over Σ; by Sk the
group of permutations of k elements; by x := y the operation that assigns value y
to variable x; by p := rand(Sk) the operation that assigns to variable p a randomly
selected permutation in Sk; and by ∅ the empty set.

If S is a set, by S0 we denote the empty set, and by Sk the Cartesian product of S
with itself k times. If x is a sequence, by either xi or xi we denote x’s ith element,6

and by {x} the set {z : xi = z for some i}. If x and y are sequences, respectively
of length j and k, by x ◦ y we denote their concatenation (i.e., the sequence of j + k
elements whose ith element is xi if i ≤ j, and yi−j otherwise). If x and y are strings
(i.e., sequences with elements in Σ), we denote their concatenation by xy.

If A is a probabilistic algorithm, the distribution over A’s outputs on input x is de-
noted by A(x). A probabilistic function f : X → Y is finite if X and Y are both finite
sets and, for every x ∈ X and y ∈ Y , the probability that f(x) = y has a finite binary
representation.

Ballots and Actions. An envelope is a triple (j, c, 0), where j is a positive integer, and
c a symbol of Σ. A ballot is an envelope. If (j, c, L) is a ballot, we refer to j as its
identifier, to c as its content, and to L as its level.

A set of ballots B is well-defined if distinct ballots have distinct identifiers. If B is
a well-defined set of ballots, then IB denotes the set of identifiers of B’s ballots. For
j ∈ IB , Bj (or the expression ballot j) denotes the unique ballot of B whose identifier
is j. For J ⊂ IB , BJ denotes the set of ballots of B whose identifiers belong to J .

Relative to a well-defined set of ballots B: if j is an envelope in B, then contB(j)
denotes the content of j; if x = j1, . . . , jk is a sequence of envelope identifiers in IB ,
then contB(x) denotes the concatenation of the contents of these envelopes, that is, the
string contB(j1) · · · contB(jk).

6 For any given sequence, we shall solely use superscripts, or solely subscripts, to denote all of
its elements.
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A global memory consists of a pair (B, R), where

• B is a well defined set of ballots; and

• R is a sequence of strings in Σ∗, R = R1, R2, . . ..

We refer to B as the ballot set; to R as the public record; and to each element of R
as a record. The empty global memory is the global memory for which the ballot set and
the public record are empty. We denote the set of all possible global memories by GM .

Ballot-box actions are functions from GM to GM . The subset of ballot-box actions
available at a given global memory gm is denoted by Agm. The actions in Agm are
described below, grouped in 8 classes. For each a ∈ Agm we provide a formal identifier;
an informal reference (to facilitate the high-level description of our constructions); and
a functional specification. If gm = (B, R), we actually specify a(gm) as a program
acting on variables B and R. For convenience, we include in R the auxiliary variable
ub, the identifier upper-bound: a value equal to 0 for an empty global memory, and
always greater than or equal to any identifier in IB .

1. (NEWEN, c) —where c ∈ Σ.
“Make a new envelope with content c.”
ub := ub + 1; B := B ∪ {(ub, c, 0)}; and R := R ◦ (NEWEN, c, ub).

2. (OPENEN, j) —where j is an envelope identifier in IB .
“Publicly open envelope j to reveal content contB(j).”
B := B \ {Bj} and R := R ◦ (OPENEN, j, contB(j), ub).

3. (DESTROY, j) —where j is a ballot identifier in IB .
“Destroy ballot j”
B := B \ {Bj} and R := R ◦ (DESTROY, j, ub).

4. (DONOTHING).
“Do nothing”
B := B and R := R ◦ (DONOTHING, ub).

Remarks
• All ballot-box actions are deterministic functions.

• The variable ub never decreases and coincides with the maximum of all identi-
fiers “ever in existence.” Notice that we never re-use the identifier of a ballot that
has left, temporarily or for ever, the table. This ensures that different ballots get
different identifiers.

Definition 2. A global memory gm is feasible if there exists a sequence of global mem-
ories gm0, gm1, . . . , gmk, such that gm0 is the empty global memory; gmk = gm;
and, for all i ∈ [1, k], gmi = ai(gmi−1) for some ai ∈ Agmi−1 .

If (B, R) is a feasible memory, we refer to R as a feasible public record.

Notice that if gm = (B, R) is feasible, then Agm is easily computable from R alone.
Indeed, what ballots are in play, which ballots are envelopes and which are super-
envelopes, et cetera, are all deducible fromR. Therefore, different feasible global mem-
ories that have the same public record also have the same set of available actions. This
motivates the following definition.
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Definition 3. If R is a feasible public record, by AR we denote the set of available
actions for any feasible global memory with public record R.

B The Notion of a Public Ballot-Box Mediator (VTP in Our
Language)

Definition 4. Let P be a sequence of K functions. We say that P is a public ballot-box
mediator (of length K) if, for all k ∈ [1, K] and public records R, P k(R) is a public
ballot-box action in AR.

An execution of P on an initial feasible global memory (B0, R0) is a sequence of
global memories
(B0, R0), . . . , (BK , RK) such that (Bk, Rk) = ak(Bk−1, Rk−1) for all k ∈ [1, K],
where ak = P k(Rk−1).7

If e is an execution of P , by Bk(e) and Rk(e) we denote, respectively, the ballot set,
the public record, and the private history profile of e at round k. By Rk

P (e) we denote
the last k records of Rk(e) (i.e., “the records appended to R0 by executing P”).

Remarks
• Note that the above definition captures our intuitive desideratum that no special
trust is bestowed on a public mediator. Because he performs a sequence of public
ballot-box actions, any one can verify that
(i) he performs the right sequence of actions;

(ii) he does not choose these actions; and

(iii) he does not learn any information that is not publicly available.

• Note too that ifP = P 1, . . . , PK andQ = Q1, . . . , QL are publicmediators, then
their concatenation, that is, P 1, . . . , PK , Q1, . . . , QL is a public mediator too.

7 Note that the executions of P are, in general, random since P k(R) may return an action of
Nature.
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