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A central tenet of tumor immunology is that tumor-specific antigen may induce
a host immune response, which results in a cellular immune reaction characterized
by accumulation of cytotoxic macrophages in the tumor site. Our laboratory, among
many others, has explored in vivo and in vitro aspects of this hypothesis. It was shown
in experiments with transplantable tumors in inbred guinea pigs that at dermal sites
of delayed hypersensitivity reactions to one tumor cell line, antigenically unrelated
tumor cells were also destroyed (1). This suggested that the attack on the antigeni-
cally unrelated tumor cells was immunologically nonspecific, and was mediated by
activated macrophages infiltrating the site. It was shown in many experimental models
that macrophages were capable of destroying tumor cells in vitro, provided that they
were activated (2, 3). The activated macrophage was thus assigned a critical role
in host destruction of tumors. A minimal requirement for the reaction would in-
clude () local elaboration of a chemoattractant to mediate accumulation of macro-
phages at the site, and () factors that activate macrophages to become cytotoxic.

On the other hand, although macrophages are often found in human tumors, the
degree of infiltration varies; and neither the role of tumor-associated macrophages
nor the mechanism of infiltration has been clarified (4, 5). It has been suggested,
for example, that tumor-associated macrophages may stimulate tumor growth or
connective tissue development (4).

Our current interests center on the suggestion that chemoattractants mediate mac-
rophage infiltration into tumor sites. There are at least two possible cellular sources
for chemoattractants released at foci of growing tumors. One would be in the con-
text of a cellular immune reaction to the tumor, since it is known that stimulation
of sensitized lymphocytes with specific antigen causes elaboration of chemotactic
factors (6, 7). An additional source of chemoattractant is the tumor itself. Meltzer
et al. (8) reported macrophage chemotactic activity (MCA)! in culture fluid of mu-
rine tumor cell lines. Bottazzi et al. (9) found MCA in culture supernatants of mu-
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rine and human tumor cells. There was a correlation between the amount of MCA
in culture supernatants and the number of tumor-associated macrophages found
when the cultured mouse tumor cells were transplanted into mice.

Reports of tumor cell-derived chemotactic activity raise several interesting ques-
tions. Is the chemoattractant structurally related to attractants released by normal
cells? Is attractant production a property of most tumor cells? Is the attractant specific
for macrophages? Can the attractant not only induce translational movement but
also activate macrophages to become cytotoxic? Since unequivocal answers to these
questions require a pure product, we attempted to isolate and purify a tumor-derived
chemoattractant. Recently, we found MCA in culture supernatants of human glioma
cell lines (9a). In this communication, we report purification to apparent homogeneity
of glioma-derived chemotactic factor (GDCF) from the U-105MG cell line, which
constitutively secretes high amounts of MCA.

Materials and Methods

Cell Culture.  Human glioma cell line U-105MG, initiated by J. Pontane and B. Wester-
mark at the University of Uppsala, Uppsala, Sweden (10), was a generous gift from Dr. Y.
Gillespie at the University of Alabama at Birmingham. Cells were cultured in 150-cm? tissue
culture flasks (Costar, Cambridge, MA) in RPMI 1640 medium (Advanced Biotechnologies
Inc., Silver Spring, MD) supplemented with 10% FCS (HyClone Laboratories, Logan, UT),
20 mM tr-glutamine, and 50 ug/ml gentamycin. When cells became confluent, medium was
replaced with 100 ml of FCS-free RPMI 1640 medium, which was collected 4 d later and
frozen at -20°C.

Dye-ligand Chromatography. 4 liters of culture fluid was concentrated to 50 ml on a 150-mm-
diameter Diaflo membrane (Amicon Corp., Danvers, MA) (YM-5, molecular weight cutoff,
5,000), dialyzed against 20 mM Tris-HC1, pH 8.0, and applied on a column of Orange A-
Sepharose (1 x 5 cm; Amicon Corp.) that was equilibrated with the same buffer. The column
was eluted with a linear NaCl gradient (limit, 0.6 M) at a flow rate of 0.5 ml/min; 2-ml frac-
tions were collected, and those with chemotactic activity were pooled.

Cation Exchange HPLC. The pool of active fractions eluted from Orange A-Sepharose was
concentrated to 2 ml, dialyzed overnight at 4°C against starting buffer (20 mM MOPS, pH
6.5, in 0.1 M NaCl), and applied to a 0.75 x 7.5-cm CM 3SW column (Toyo Soda, Tokyo)
at room temperature. The column was eluted with a series of linear NaCl gradients (limit,
20 mM MOPS, pH 6.5, in 0.4 M NaCl) at a flow rate of 1 ml/min. 1-ml fractions were col-
lected and assayed for chemotactic activity. Two separate peaks were found.

Reverse Phase HPLC. Each of the active peaks from the cation exchange column was ap-
plied to a 0.5 x 25-cm Hi-Pore reverse phase column (Bio-Rad Laboratories, Richmond,
CA), equilibrated with a starting solvent of 0.1% trifluoroacetic acid in water. A linear gra-
dient was programmed, with a limit buffer of 70% (vol/vol) acetonitrile in water containing
0.1% TFA. Flow rate was 1 ml/min; 1.0-ml fractions were collected, and those in the region
of Asgo peaks were assayed for chemotactic activity.

SDS-PAGE. Electrophoresis was carried out on a vertical slab gel of 15% acrylamide with
a discontinuous tris glycine buffer system (11). Samples, as well as a solution of molecular
weight standards, were mixed with equal volumes of double-strength sample buffer (20%
glycerol, 6% SDS, with or without 10% 2-ME), boiled, and applied to the gel. After elec-
trophoresis at 10 mA for 4 h, the gel was stained with a silver staining kit (ICN Biomedicals,
Irvine, CA).

Amine Acid Composition and Sequence Analysis.  After a 24-h hydrolysis in 6 M HCl in vacuo
at 106°C, amino acid composition was determined on a Beckman System 6300 (Beckman
Instruments, Inc., Fullerton, CA). NH:-terminal sequence analysis was performed on pro-
tein sequencer (model 470A; Applied Biosystems, Inc., Foster City, CA).

Chemotaxis Assayp. Mononuclear cells from human venous blood were separated by cen-
trifugation on metrizoate/Ficoll (Accurate Chemical & Scientific Corp., Westbury, NY) and
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used for chemotaxis assay in multiwell chambers (12). Cell suspensions were added to upper
wells of the chambers; they were separated from lower wells containing chemoattractant by
a 10-pm-thick polycarbonate membrane with 5-pm-diameter holes (Neuro Probe, Inc., Cabin
John, MD). The number of monocytes that migrated through the holes to the attractant
side of the membrane during a 90-min incubation was counted with an image analyzer (13).
Results were expressed as the percentage of the input number of monocytes that migrated
per well (for duplicate wells). The reference chemoattractant, FMLP (Peninsula Laborato-
ries, Inc., Belmont, CA), was dissolved in ethanol at a concentration of 1 mM and diluted
for assay.

Results

Purification of GDCFE. 4 liters of conditioned medium from U-105MG cells was
concentrated to 50 ml, dialyzed against starting buffer and applied to an Orange
A-Sepharose column. The column was eluted with a linear NaCl gradient. Fig. 1
shows that the bulk of the protein did not bind to the column, and emerged directly
in the first 27 fractions. Chemotactic activity bound to the column and was eluted
between 0.2 and 0.45 M NaCl. As shown in Table I, MCA was separated from ~98%
of the conditioned medium protein, and recovery of chemotactic activity was 78%.
Thus, this step was very efficient. Pooled active fractions were concentrated to 2 ml
and applied to a carboxymethyl HPLC (CM-HPLC) column. Fig. 2 shows that
chemotactic activity was recovered in two separate peaks that coeluted with two major
Aggo peaks. Sequential fractions corresponding to the two MCA peaks were ana-
lyzed by SDS-PAGE. The first MCA peak (GDCF-1), which had maximal chemotactic
activity in fractions 36 and 37, showed a major band with maximal intensity in these
fractions. There was also a narrower band immediately above the major band, which
can be seen in the lanes of fractions 35 and 36 (Fig. 2). The second MCA peak
(GDCF-2), with maximal chemotactic activity in fractions 45 and 46, showed a single
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TabLe 1
Purification Schema for Human GDCF
Total Specific
Purification step protein Total MCA* activity
mg U U/mg

Crude supernatant 291 200,000 6,900
Concentrated and

dialyzed supernatant 291 190,000 6,600
Orange A-Sepharose 0.52¢ 148,000 288,000
CM-HPLC

P-I (fractions 36 + 37) 0.03t 21,600 720,000

P-II (fractions 45 + 46) 0.03t 18,200 607,000
Reverse phase PHLC

GDCEF-1 0.005% 3,700 1,140,000

GDCF-2 0.0198 20,000 1,053,000

* MCA concentration of 1 U/ml was defined as the reciprocal of the dilution
at which 50% of the maximal chemotactic response was obtained.

! Protein concentration was determined by dyte protein assay with BSA as
standard.

$ Protein concentration was calculated from amino acid composition.
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major band with peak intensity in these fractions. By reference to the mobility of
protein standards, estimates of the molecular masses of GDCF-1 and -2 were 15 and
13 kD. For further purification, GDCF-1 (fraction 37) and GDCF-2 (fractions 45
and 46) were applied to reverse phase HPLC columns and eluted with a linear acetoni-
trile gradient. Fig. 3 a, and & show that each MCA peak coeluted with a single, sharp
Agos peak. The presence in these chromatograms of absorbance peaks without
chemotactic activity shows that the reverse phase column removed residual extraneous
protein. This is also shown in Table I by the increased specific activity of the RP-
HPLC products. When RP-HPLC GDCF-1 and GDCF-2 were analyzed by SDS-
PAGE, single bands were found, with estimated molecular masses of 15 and 13 kD,
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A B
94 kD —
67 kD —
43 kD —
30kD — Fieure 4. SDS-PAGE of purified GDCF. Approximately 25 ng of GDCF
from the reverse phase HPLC column was applied to a 15% polyacryl-
amide gel under reducing conditions. (4) GDCF-1; (B) GDCF-2. Posi-
20.1 kD — tions of molecular mass markers on this gel are indicated at the left.
144 kD — - -

respectively (Fig. 4). As summarized in Table I, from 4 liters of conditioned medium,
~5 ug of GDCF-1 and 19 ug of GDCF-2 were purified to apparent homogeneity.
Specific activity was 165 times that of the starting material for GDCF-1, and 150
times for GDCF-2. Total recovery was ~13%.

Amino Acid Analysis of GDCF-1 and GDCF-2.  Table II shows the amino acid com-
position of purified GDCF-1 and -2, based on two separate analyses of each peptide.
Within the limits of error of the method, the amino acid composition of the peptides

TabLe II
Amino Acid Composition of Human GDCF

Residues per molecule*

Amino acid GDCF-1 GDCF-21
Asp + Asn 7.6 8.0
Thr 6.8 6.8
Ser 4.6 4.6
Glu + Gin 8.4 8.0
Pro 5.1 4.5
Gly 2.0 0.3
Ala 5.7 6.1
Val 4.7 4.5
Met 0.9 0.7
Ile 5.3 5.0
Leu 2.3 2.3
Tyr 1.8 1.8
Phe 2.1 2.0
His 1.2 0.9
Lys 8.6 9.1
Arg 4.0 3.6
Cys ND 3.58
Trp ND ND

* The data were calculated on the basis of a total of 74 residues/molecule.
! GDCF-2 was reduced and [*H]carboxymethylated for composition analysis.
§$ [PH]Carboxymethylcysteine.
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is identical. A minimal molecular mass, calculated from the amino acid composi-
tion, is 8,400 daltons. The amino acid composition of GDCF is different from IL-1,
TNEF, granulocyte-macrophage CSF, macrophage CSF, and transforming growth
factor, cytokines that have been reported to be chemotactic for monocytes (14-18).

When NHoa-terminal amino acid analysis was attempted, no degradation of ei-
ther peptide occurred, suggesting that the NH: terminus was blocked.

Assay of GDCF Chemotactic Activity for Monocytes and Neutrophils. ~ Fig. 5 shows potency
and efficacy of pure GDCF-1 and -2 for monocytes. For both peptides, ~35% of
monocytes added to assay wells migrated at the optimal concentration of 1 nM. Migra-
tion to the optimal concentration of FMLP in the same assay was also 35%. No
significant neutrophil migration was observed over a GDCF concentration range
of 0.01-30 nM in that experiment. Thus, GDCF attracts monocytes but not neu-
trophils.

Assay to Distinguish Chemotaxis from Chemokinesis. Purified GDCF was added in
different concentrations to top and bottom wells of multiwell chambers, as outlined
in Table III. Dose-dependent monocyte migration was observed only when GDCF

TasLE III
Assay to Distinguish Chemotactic from Chemokinetic Activity
Concentration Monocyte migration®* at concentration in bottom wells of (M):
in top wells (M) 0 4 x 10°1 2 x 10710 1072
GDCF-1
0 1 +£02 5+ 0.9 22 + 2.4 35 + 0.7
4 x 1071 1+02 4+ 05 15 + 1.3 34 + 46
2 x 10710 2+ 0.4 2+£03 3+12 21 + 4.2
10-° 1+ 02 13 0.1 1+ 0.1 3+02
GDCF-2
0 2+ 02 12 + 1.8 25 + 6.2 27 + 3.9
4 x 1071 1+ 01 5+ 0.5 18 + 0.6 26 + 5.0
2 x 10710 3105 2+ 02 5+ 0.6 24+ 1.5
10-° 1+ 01 2+ 0.1 2 ¢ 0.1 4+ 0.1

* Percent of input cell number + SEM.
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was in bottom wells. No significant migration occurred when top and bottom wells
contained equal concentrations of GDCF, showing that migration was due primarily
to chemotaxis, not chemokinesis.

Discussion

Two chemotactic peptides for human monocytes, GDCF-1 and GDCF-2, were
purified to apparent homogeneity from culture fluid of a human glioma cell line.
Although these two peptides were separated into two completely distinct peaks by
CM-HPLC chromatography, their elution patterns from a reverse phase HPLC
column were identical; and their amino acid compositions were indistinguishable.
Chemotactic potency and efficacy of both peptides were very similar (Table II, Fig.
5), and both were chemotactic for monocytes but not neutrophils. It is possible that
the two peptides differ only by post-translational modifications, such as phosphory-
lation, glycosylation, or degradation. Based on the amino acid composition, our es-
timate of the molecular mass of GDCF is 8,400 daltons, which is considerably less
than the 15- and 13-kD values determined by SDS-PAGE for GDCF-1 and -2. Dis-
crepancies between molecular mass estimates obtained by these different methods
of biologically active peptides have been reported by others (19).

As shown in the last column of Table II, purification of GDCF to homogeneity
was associated with only a 150-fold increase in specific activity, which reflects the
relatively high concentration of GDCF in U-105MG glioma cell culture fluid. This
is due to the absence of FCS in the medium, and also indicates that GDCF represents
a significant percentage of the proteins secreted by the U-105MG cell line.

The amino acid composition of GDCF is different from other cytokines that have
been reported to be chemotactic for monocytes (14-18). This includes IL-1, TNF,
granulocyte-macrophage CSF, macrophage CSF, and transforming growth factor
B. GDCEF is also distinct from other cytokines produced by glioma cells, including
IL-1 and platelet-derived growth factor (20, 21). In contrast to these chemically defined
cytokines, there are reports in the literature of incompletely characterized monocyte
chemoattractants, the molecular masses of which are similar to that of GDCF (8,
9, 22-27). Of particular interest in the light of the basic pl of GDCF (9a) are two
reports. Valente et al. (26) recently found that baboon aortic medial smooth muscle
cells produce monocyte chemotactic factor with a molecular mass of 10-12 kD and
pl above 10.5. This factor may be involved in the generation of atherosclerotic lesions.

The other report, by Altman et al. (27), is on monocyte chemotactic factors pro-
duced by mitogen-stimulated lymphocytes (lymphocyte-derived chemotactic factor
[LDCF]). These factors had a molecular mass of 13 kD, with isoelectric points of
5.6 and 10.1. Despite the probable importance of LDCFs as mediators of cellular
immune reactions, they have never been completely characterized. Therefore, we
applied our procedure for purification of GDCF to LDCF, and obtained a product
the amino acid composition of which is indistinguishable from that of GDCF (28).
Thus, monocyte chemotactic factors produced by different normal tissues or by tumors
derived from different organs may be similar or identical. These attractants may
account for not only monocyte infiltration into tumors but also accumulation of
mononuclear phagocytes at sites of delayed hypersensitivity reactions.

Pure GDCF provides an opportunity to answer the questions posed in the in-



YOSHIMURA ET AL. 1457

troduction to this communication. In addition, development of specific antibody
to GDCF should provide immunochemical means to determine the incidence and
localization of tumor-derived attractants at sites of human tumors.

Summary

- Two chemoattractants for human monocytes were purified to apparent homogeneity
from the culture supernatant of a glioma cell line (U-105MG) by sequential chroma-
tography on Orange A-Sepharose, an HPLC cation exchanger, and a reverse phase
HPLC column. On SDS-PAGE gels under reducing or nonreducing conditions, the
molecular masses of the two peptides glioma-derived chemotactic factor 1 and 2 were
15 and 13 kD, respectively. Amino acid composition of these molecules was almost
identical, and differed from other cytokines that have been reported. The NHj ter-
minus of each peptide was apparently blocked. When tested for chemotactic efficacy,
the peptides attracted ~30% of the monocytes added to chemotaxis chambers, at
the optimal concentration of 107° M. Potency and efficacy were comparable with
that of FMLP, which is often used as a reference attractant. The activity was
chemotactic rather than chemokinetic. In contrast to their interaction with human
monocytes, the pure peptides did not attract neutrophils. These pure tumor-derived
chemoattractants can now be compared with attractants produced by normal cells
and evaluated for their biological significance in human neoplastic disease.

Received for publication 10 October 1988.

Note added in proof: The amino acid sequence of GDCF-2 has now been completely analyzed (29).
In addition, we recently prepared a cDNA from the U-105MG glioma cell line (30). By Northern
blot analysis, this cDNA hybridized with RNA from both glioma cells and PHA-stimulated
human blood mononuclear cells. The result provides additional evidence that the monocyte
attractant can be produced by different cell types. In future articles, the attractant will be
referred to by the generic term monocyte chemoattractant protein 1 (MCP-1). Greek letter
suffixes will indicate different forms of the protein.
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