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A keratinolytic protease secreted by a feline clinical isolate of Microsporum canis
cultivated in a broth containing feline keratin as the sole nitrogen source was
puri�ed from the culture �ltrate by af�nity chromatography on bacitracin-agarose
and by hydrophobic chromatography on octyl-agarose. The enzyme had an apparent
molecular mass of 43¢5 kDa and the pI was 7¢7. It had a signi�cant activity against
keratin azure, elastin-Congo red and denatured type I collagen (azocoll). Using the
latter substrate, the optimum pH was around 8 and the apparent optimum
temperature around 50 oC. The protease was strongly inhibited by 1,10-phenanthro-
line, phosphoramidon and EDTA. The �rst 13 N-terminal amino acid sequence
showed a 61% homology with that of the extracellular metalloprotease of
Aspergillus fumigatus and with the neutral protease I of A. oryzae, con�rming that
this 43¢5 kDa keratinase is a metalloprotease. This keratinolytic metalloprotease
could be a virulence-related factor involved in pathophysiological mechanisms of
M. canis dermatophytosis.
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Introduction

The dermatophytes have the capacity to invade the
keratinized skin layers, hair and nails, causing a
cutaneous mycosis called dermatophytosis [1]. The main
causative agent of dermatophytosis in cats and dogs is
Microsporum canis [2]. This zoophilic dermatophyte
causes a human infection that is on the increase in many
European countries [3] and occurs mainly by direct
contact with infected animals [4].

Pathophysiological mechanisms of dermatophytosis
are poorly understood. It has been suggested that
keratinases might be virulence-related factors, giving
the ability to invade keratinized tissues and playing a
role in the nutrition of the fungi [5,6] and in controlling

host defense mechanisms [7,8]. Therefore, the character-
ization of keratinases would appear to be a major step
towards a better understanding of the pathogenicity of
the fungus and the host–fungus relationship. Some
dermatophyte keratinases have been isolated from
Trichophyton rubrum [6,9,10], T. mentagrophytes [11–
13] and M. canis [14–17]. Mignon et al. [17] puri�ed and
characterized a M. canis 31¢5 kDa keratinolytic sub-
tilisin-like protease secreted in vitro in a minimal liquid
medium containing cat keratin, and produced in vivo in
naturally infected cats [18]. Keratinolytic activity was
observed in the culture supernatant even in the presence
of chymostatin, which completely inhibits the 31¢5 kDa
keratinolytic subtilisin-like protease [17], suggesting that
there was at least one more keratinase belonging to
another class of proteases [B. Mignon, unpublished
results].

This paper describes the isolation, puri�cation and
characterization of a keratinolytic metalloprotease of
43¢5 kDa produced by a feline clinical isolate of M. canis
cultivated in a minimal liquid medium containing feline
keratin as the sole nitrogen source.
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Material and methods

Strain and culture conditions

M. canis strain IHEM 15221 (Brussels, Belgium) was
obtained from a hair-coat brushing of an infected cat.
After propagation carried out at 27 oC on Sabouraud
liquid medium containing chloramphenicol (0¢05%) in
150 cm2 culture �asks, the fungus was inoculated into 10 l
of a minimal liquid medium containing feline keratin
(5¢2 g l¡1) as the sole nitrogen source, as described by
Mignon [17]. The time-course production of the protease
was monitored in duplicate cultures regularly sampled
between days 4 and 11. Simultaneously, the fungus was
grown in the same minimal liquid medium, except that
keratin was replaced by peptone as nitrogen source.

Puri®cation of the keratinolytic protease

The extracellular �uid was separated from hair and
fungus by �ltration through Whatman No. 1 �lter paper
and concentrated 357-fold by ultra�ltration using a
Prepscale system (Millipore, Bedford, MA, USA), with
a 10 kDa membrane cut-off. The �ltrate was applied
onto a bacitracin-agarose [19] column (16¢5 £ 1 cm)
previously equilibrated in Tris buffer (50 mM Tris-HCl,
2 mM CaCl2, pH 7¢5). Elution was performed with a
linear gradient of NaCl (65–65 ml, 1¢5 M NaCl) at a �ow
rate of 18 ml h¡1. Fractions (2¢7 ml) of the �rst peak with
proteolytic activity were pooled and dialyzed against
ammonium sulfate buffer (50 mM Tris-HCl, 2 mM CaCl2,
0¢5 M (NH4)2SO4, pH 7¢5). The solution was further
loaded onto an octyl-agarose (Amersham Pharmacia
Biotech, Uppsala, Sweden) column (10 £ 1¢5 cm)
previously equilibrated with the same buffer. The bound
protein was eluted with a linear decreasing gradient of
ammonium sulfate (40–40 ml, 0 M (NH4)2SO4) at a �ow
rate of 90 ml h¡1 and fractions of 3¢7 ml were collected.
Puri�cation was monitored by both sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
[20] and azocoll degradation (see below). Protein
concentrations were determined using the Pierce protein
assay kit (Pierce, Rockford, IL, USA), based on the
Bradford method [21]. All puri�cation procedures were
carried out at 4 oC.

Electrophoresis

SDS-PAGE was performed using the method of
Laemmli [20] with a 12% resolving gel under reducing
conditions. Gels were stained with Coomassie brilliant
blue R-250 (Bio-Rad Laboratories, Hercules, CA, USA).
Molecular mass markers were the low range standards
from Bio-Rad Laboratories.

Isoelectrofocusing was run in an immobilized 3–10
linear pH gradient (Immobiline DryStrip, Amersham
Pharmacia), essentially as described by the supplier.

Protein N-terminal sequencing

The puri�ed protease was subjected to SDS-PAGE and
electroblotted to an Immobilon membrane (Millipore)
according to standard protocols [22]. After staining, the
band was cut and subjected to N-terminal sequencing on
a Perkin Elmer sequencer type Procise (Applied Bio-
systems, Foster City, CA, USA). Sequence alignment
search was performed using the BLASTP [23] and FASTA3

[24] methods.

Proteolytic assays

Standard assay of proteolytic activity was carried out
using azocoll (Sigma, St Louis, MO, USA) as substrate in
50 mM Tris-HCl, 2 mM CaCl2, pH 7¢5 buffer. From a
suitably diluted protease solution, 1 ml was incubated
with 10 mg of substrate at 37 oC for 30 min under
continuous shaking. The degradation of the substrate
was estimated by measuring the absorbance at 520 nm
after centrifugation. One unit of collagenolytic activity
released 0¢001 A520 units min¡1 under the assay
conditions.

Keratinolytic activity was measured using keratin
azure (Sigma) as previously described [17]. Brie�y,
samples (1 ml) were incubated with keratin azure
(5 mg) at 37 oC for 24 h in Tris buffer. One unit of
keratinolytic activity was �xed as an increase of 0¢001
A595 units h¡1 under the assay conditions.

Elastin degradation was determined using elastin-
Congo red (Sigma) as substrate. Samples (1 ml) were
incubated with the substrate (10 mg) at 37 oC for 2 h in
Tris buffer. The reaction was stopped by removing the
substrate by centrifugation. A change of 0¢001 A495 units
min¡1 corresponded to 1 unit of elastinolytic activity.

All proteolytic assays were run at least in triplicate,
except for the standard assay on the fractions collected
during the chromatographic steps.

pH and temperature optima and stability

The thermodependence of the activity and stability of
the puri�ed enzyme was determined using the standard
assay as previously described. For determination of the
apparent optimum temperature, the reaction was carried
out at temperatures ranging 25–75 oC. The effect of
temperature on the enzyme stability was investigated by
measuring the residual activities after a 15-min to 2-h
incubation of the protease solution at 25, 37 and 50 oC.
The determination of the optimum pH was made using
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the standard assay with the following buffers: 50 mM

sodium acetate (NaAc), 2 mM CaCl2, pH 3¢8–7¢2; 50 mM

Tris-HCl, 2 mM CaCl2, pH 7¢4–9¢1; and 100 mM glycine-
NaOH, 2 mM CaCl2, pH 9–12. The pH stability was
evaluated using the standard assay and a pre-incubation
of the enzyme in sodium acetate buffer at pH 4¢6, in Tris
buffer at pH 7¢5 and in glycine-NaOH buffer at pH 11¢2,
for times ranging from 20 min to 6 h.

Inhibition assays

The inhibitors ethylenediamine-tetraacetic acid
(EDTA), phosphoramidon, soybean trypsin inhibitor
(SBTI), elastatinal and iodoacetamide were dissolved in
water. 1,10-Phenanthroline, phenylmethylsulfonyl �uor-
ide (PMSF) and pepstatin were dissolved in methanol.
Chymostatin was dissolved in dimethyl sulfoxide
(DMSO). All inhibitors were from Sigma except for
SBTI from Fluka (Buchs, Switzerland). Each compound
was pre-incubated with the puri�ed enzyme for 20 min at
25 oC and tested for activity using the standard assay. An
appropriate control, without inhibitor, was assayed
simultaneously.

Results

Enzyme production

The enzyme production on minimal medium containing
feline keratin was followed as a function of time (Fig. 1).
Proteolytic activities using azocoll, keratin azure and
elastin-Congo red were detected after several days.
Keratinolytic and collagenolytic activities reached a
maximum around day 8 and then decreased. Elastinoly-
tic activity reached a maximum around day 11. In the
medium with peptone instead of keratin, no proteolytic
activity was detected (data not shown).

Puri®cation of the protease

The results of the puri�cation processes are summarized
in Table 1 and Figure 2. Two major proteases, bound to
bacitracin-agarose (Fig. 3a), were partially separated
with the elution gradient (Fig. 2). Both peaks showed
proteolytic activity. The second peak mainly contained
the 31¢5 kDa keratinolytic subtilisin-like protease pre-
viously puri�ed by Mignon et al. [17] (Fig. 3a). Fractions
of the �rst peak were pooled for the subsequent
puri�cation procedure. This �rst chromatographic step
allowed a 54% recovery of the protease of interest with a
14-fold puri�cation (Table 1). At this stage, SDS-PAGE
revealed two contaminating bands of approximately 20
and 30 kDa (Fig. 2). After hydrophobic chromatography
on octyl-agarose (Fig. 3b), SDS-PAGE revealed a single
band with no signi�cant contamination (Fig. 2). Con-

taminants were found in the �ow-through (data not
shown). The entire puri�cation procedure resulted in a
75-fold puri�cation of the protease from the concen-
trated supernatant, with a 42% yield (Table 1).

Molecular characterization

SDS-PAGE revealed a single band with an apparent
molecular mass of 43¢5 kDa (Fig. 2, lane 3). The
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Fig. 1 Kinetics of extracellular enzyme production by M. canis
IHEM 15221 grown in a minimal medium containing cat keratin.
(a) Time course study of collagenolytic, elastinolytic and keratino-
lytic activities of M. canis culture �ltrate. The maximum proteolytic
activities of the culture supernatant were set at 100%. (b)
Coomassie blue-stained SDS-PAGE (12% gel) temporal pattern
of M. canis culture �ltrate. Constant volumes (15 ml) of samples
�ltered and lyophilized were loaded. Molecular mass standards (in
kDa) are shown on the left.
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isoelectric point (pI) was 7¢7. Partial N-terminal amino
acid sequencing (13 residues) disclosed a 61% homology
(Fig. 4) with a metalloprotease from Aspergillus fumi-

gatus [25,26] and with the neutral protease I from A.
oryzae [A. Doumas, unpublished results] which are both
metalloproteases.

pH and temperature optima and stability

The protease was found to have an alkaline optimum pH
around 8 (Fig. 5a). The residual activity remained above
80% between pH 6 and pH 9. Exposure of the protease
to alkaline pH (>11) for less than 1 h resulted in a loss
of more than 60% of its activity (Fig. 5b).

The apparent optimum temperature for enzyme
activity was around 50 oC. The protease was stable at
25 and 37 oC for 2 h, but lost more than 80% of its
activity after 1 h exposure at 50 oC (data not shown).

Inhibition studies

Results are summarized in Table 2. The enzyme was
inhibited by metalloprotease inhibitors, such as 1,10-
phenanthroline, phosphoramidon and EDTA. With
EDTA, inhibition occurred in a dose-dependent manner.
Speci�c cysteine-, aspartate- and serine- protease in-
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Table 1 Puri�cation of the keratinolytic metalloprotease from M. canis IHEM 15221

Puri�cation step
Volume
(ml)

Protein
(mg)

Total
activity (U)

Speci�c activity
(U mg¡1)

Yield
(%)

Puri�cation
(fold)

Ultra�ltration 28 9¢9 3308 332 100 1
Bacitracin-agarose 16 0¢4 1800 4 500 54 14
Octyl-agarose 56 0¢056 1400 25 000 42 75

Enzymatic activity was performed using the standard proteolytic assay on azocoll.

Fig. 2 Coomassie blue-stained SDS-PAGE (12% gel) pattern of
the keratinolytic metalloprotease of M. canis at each step of
puri�cation. Lane 1, ultra�ltered culture supernatant; lane 2,
fractions 23–28 from bacitracin-agarose; lane 3, fractions 38–52
from octyl-agarose. Molecular mass standards (in kDa) are shown
on the left.

Fig. 3 (a) Chromatographic pro�les on bacitracin-agarose. Fractions 23–28 with activity on azocoll were pooled, dialyzed against 50 mM

Tris-HCl, 2 mM CaCl2 , 0¢5 M (NH4)2SO4, pH 7¢5 and applied onto octyl-agarose. (b) Chromatographicpro�les on octyl-agarose. Fractions 38–
52 were pooled. Assays on azocoll were performed with an incubation time of 2 h.
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hibitors except PMSF had no or little effect on the
enzyme activity. The activity was also strongly inhibited
by 2-mercaptoethanol.

Enzymatic activity

The 43¢5 kDa protease was active against azocoll,
elastin-Congo red and keratin azure. Comparison
between proteolytic activities of the 31¢5 kDa sub-
tilisin-like protease and the 43¢5 kDa protease revealed
that the latter was more collagenolytic than the 31¢5 kDa
subtilisin-like protease. Both proteases had quite similar
activity on keratin azure. However, the 31¢5 kDa
subtilisin-like protease was not elastinolytic under the
assay conditions (Table 3).

Discussion

Among the factors that could be implicated in the
pathogenicity of M. canis, special attention has been paid

to proteases [27,28]. In this study, the isolation, puri�ca-
tion and characterization of a 43¢5 kDa extracellular
keratinolytic metalloprotease are reported. The protease
was produced by a feline clinical isolate of M. canis
grown in a minimal liquid medium containing keratin as
the sole nitrogen source. Neither collagenolytic nor
keratinolytic activities were detected in the medium
containing peptone instead of keratin; moreover, SDS-
PAGE analysis did not reveal any band corresponding to
the 43¢5 kDa metalloprotease (results not shown),
indicating that the M. canis metalloprotease was
probably induced by keratin. This result is in agreement
with the observations of other authors suggesting that
the in vitro production of keratinolytic proteases of
M. canis [14,29,17], T. rubrum [5] and A. fumigatus [30]
might be induced. It also strongly suggests that easily
metabolized carbon and nitrogen sources could repress
fungal keratinolytic protease secretion in vitro
[5,10,29,31].

The protease was puri�ed to a quite high, 42%,
recovery by af�nity chromatography on bacitracin-
agarose followed by hydrophobic chromatography on
octyl-agarose. The inhibition pro�le suggested that it was
a metalloprotease. The high percentage of homology
found at the level of the N-terminal amino acid sequence
with two other metalloproteases of �lamentous fungi
con�rmed that hypothesis. Therefore, this is, to our
knowledge, the �rst dermatophyte keratinolytic metallo-
protease to be puri�ed and characterized. The enzyme,
despite an apparent molecular mass of 43¢5 kDa, appears
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Fig. 4 N-terminal amino acid sequence alignment of M. canis
keratinolytic metalloprotease with other fungal metalloproteases.
1, M. canis 43¢5 kDa metalloprotease; 2, A. fumigatus extracellular
metalloprotease [25,26]; 3, A. oryzae neutral protease I [A.
Doumas, unpublished results]. Boxes indicate sequence identity.

Fig. 5 pH dependence (a) and stability (b) of the activity of M. canis keratinolytic metalloprotease. The standard assay with azocoll was
performed at 37 oC. Maximal activities were set as 100% relative enzyme activity.
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to be different from the extracellular 45 kDa keratinase
puri�ed previously by Takiuchi et al. [14]. Indeed, these
authors suggested that the enzyme they puri�ed was a
serine protease. Unfortunately, data are lacking about its
biochemical characterization so further comparison with
the keratinolytic metalloprotease reported here is
impossible. Other keratinases have been puri�ed from
M. canis [16,17], T. mentagrophytes [11–13] and
T. rubrum [9,10]. Most of them seem to belong to the
serine protease family. The activity of the M. canis
43¢5 kDa metalloprotease was optimal at a pH around 8,
as is the case for most of the aforementioned keratino-
lytic proteases.

N-terminal amino acid sequencing of the 43¢5 kDa
keratinase revealed a 61% homology with metallopro-
teases from A. fumigatus [25,26] and A. oryzae
[A. Doumas, unpublished results], whereas the
31¢5 kDa keratinolytic subtilisin-like protease previously
puri�ed [17] disclosed marked homologies with other
subtilases from A. fumigatus [32], A. oryzae [33],
A. nidulans [34] and A. �avus [35]. These homologies
between proteases from M. canis and other Onygenales
sensu lato members, some of them opportunistic patho-
gens, would suggest that these fungi have fundamental
similarities in their proteolytic systems even though the
proteinases they produce may have adaptive speci�city

related to the substrates and tissues normally invaded by
particular species.

It is interesting that the 43¢5 kDa metalloprotease was
both more collagenolytic than the 31¢5 kDa subtilisin-
like protease, and also showed elastinolytic activity while
the latter protease did not. Further studies should
investigate the possible speci�c roles of the metallo-
protease in subcutaneous infections. Despite the fact that
the 31¢5 kDa subtilisin-like protease is produced in vivo
in naturally infected cats [18], it seems that it is not a
major antigen in M. canis infection in either cats [36] or
guinea pigs [37]. However, an immune response to a
crude M. canis exo-antigen containing the 31¢5 kDa
subtilisin-like protease has been demonstrated in both
animals. Therefore, the 43¢5 kDa metalloprotease could
be a valuable candidate for additional immunological
studies.

This is believed to be the �rst report which demon-
strates that a metalloprotease is keratinolytic in vitro.
Further investigations will be undertaken to determine if
the 43¢5 kDa metalloprotease is also secreted in vivo,
especially in the cat, which is the natural host of M. canis.
Furthermore, a molecular characterization of the genes
encoding keratinolytic proteases of M. canis and the
production of recombinant proteases could be of great
interest for both fundamental studies on pathogenicity
and for vaccine purposes.
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