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The small ubiquitin-like modifier (SUMO) can undergo self-
modification to form polymeric chains that have been implicated
in cellular processes such as meiosis, genome maintenance
and stress response. Investigations into the biological role of
polymeric chains have been hampered by the absence of a
protocol for the purification of proteins linked to SUMO chains.
In this paper, we describe a rapid affinity purification procedure
for the isolation of endogenous polySUMO-modified species that
generates highly purified material suitable for individual protein
studies and proteomic analysis. We use this approach to identify
more than 300 putative polySUMO conjugates from cultured
eukaryotic cells.
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INTRODUCTION
Small ubiquitin-like modifiers (SUMOs) are linked by isopeptide
bonds between their carboxy-terminal residue and the e-amino
group of a lysine side chain in the target protein. The functional
consequences of SUMO modification are mostly mediated by
recruitment of effector proteins that contain a SUMO interaction
motif (SIM). SIMs are composed of short stretches of hydrophobic
residues that directly engage the SUMO molecule (Song et al,
2004; Hecker et al, 2006). Vertebrates express three SUMO
paralogues (1–3), of which both SUMO2 and SUMO3 contain a
SUMO consensus modification motif (cKxE/D) that allows the
formation of polySUMO chains (Tatham et al, 2001). The ability of
SUMO to form polySUMO conjugates is conserved throughout
eukaryotes, and genetic studies in yeast have suggested a role for
polySUMO chains in chromosome segregation, recovery from
checkpoint arrest, DNA-damage response and meiosis (Bylebyl
et al, 2003; Cheng et al, 2006; Schwartz et al, 2007). More

recently, polySUMO chains have been shown to be recognized by
proteins containing several SIMs, such as the RING-finger 4 (RNF4
or Snurf) ubiquitin E3 ligase. RNF4 contains four amino-terminal
SIMs and a C-terminal RING domain that together facilitate
polySUMO-specific ubiquitination (Tatham et al, 2008).

Here, we describe a procedure that uses the polySUMO-
binding function of RNF4 to facilitate the specific isolation
of endogenous polySUMO-modified proteins from almost any
biological material in purity and yield that is suitable for
high-resolution mass spectrometric analysis. We demonstrate this
method by measuring changes in the polySUMOylation state of
more than 300 proteins in response to heat shock.

RESULTS
Affinity purification of polySUMO chains
The affinity purification strategy uses a fragment of RNF4 (residues
32–133) comprising four SIMs (Fig 1A,C) that have low affinity
for single SUMO moieties, but high affinity for polySUMO
chains (Tatham et al, 2008). A form of RNF4 with all four SIMs
mutated (RNF4mt; Fig 1A,C) is used as the negative control.
Selective elution is obtained by competition with a SIM-containing
peptide (Song et al, 2004) derived from the protein inhibitor of
activated STATS (PIASX; Fig 1B). In vitro-generated recombinant
polySUMO2 chains were efficiently bound by the RNF4 matrix,
but not by the matrix linked to RNF4 with mutated SIMs.
PolySUMO2 chains retained on the matrix were efficiently
released by treatment with the SIM peptide, with only trace
amounts of polySUMO2 chains remaining on the beads (Fig 1D).
Affinity chromatography studies (supplementary Fig S1 online)
show that wild-type RNF4 has SIM-dependent, preferential
binding for polymers of SUMO irrespective of their linkage,
compared with SUMO monomers, and shows no affinity for
ubiquitin. These in vitro studies establish this method as the basis
for specific purification of polySUMO conjugates.

Identification of endogenous polySUMOylated proteins
When exposed to protein-damaging stress, HeLa cells respond by
enhancing SUMO2/3 conjugation (Saitoh & Hinchey, 2000), as
well as polySUMO chain formation (Golebiowski et al, 2009).
To preserve SUMO-modified proteins during the preparation of
cytoplasmic and nuclear eukaryotic cell extracts, iodoacetamide
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was used to inhibit SUMO protease activities (see Methods
section). Comparison between the SUMO-modified species in the
nuclear extract and those from cells directly lysed under
denaturing conditions showed that SUMO modification was
preserved, and most of the SUMO-modified species was present
in the soluble nuclear extract (Fig 2A, lanes 1–6; supplementary
Fig S2A,B online). The increased quantities of SUMO conjugates
triggered by heat shock were also preserved. PolySUMO
conjugates from nuclear extracts were bound to RNF4 SIMs
coupled to Sepharose beads and eluted from the RNF4 matrix

by competition with the SIM peptide (Fig 2A, lanes 7–10).
Importantly, free SUMO was not isolated, implying that
individually modified proteins are not purified by this method
(supplementary Fig S1 online). A silver stain of the isolated
material (Fig 2B) agreed with the immunoblot analysis. To assess
the extent of purification and recovery of polySUMO2 chains by
this procedure, isotopically labelled recombinant, Lys 11-linked,
SUMO2 dimers were ‘spiked’ into the nuclear extract and
RNF4-purified material. After trypsin digestion and analysis by
mass spectrometry, the relative amount of Lys 11-linked SUMO
chains in each fraction was calculated by reference to the
isotopically labelled standard (supplementary Fig S2C online).
This showed that the recovery of polySUMO chains was 80%
with a 40,000-fold purification.

Proteomics of polySUMO conjugates after heat stress
To demonstrate proteomic capability, RNF4-mediated SUMO
purification was scaled up by using 375 mg of nuclear extract in
each purification (Fig 3A, left panel). Isolates were subjected to
in-gel digestion, followed by analysis by mass spectrometry.
The success of polySUMO purification was confirmed by the
identification of SUMO–SUMO branched peptides (supplemen-
tary Fig S3A–C online). After the removal of contaminants (such
as trypsin and keratins), only 79 proteins were identified in the
37 1C RNF4mut elution, with 95 being identified from the RNF4
wild type (RNF4wt) equivalent. Of these 95, 76 were either
enriched in the wild-type condition or were not present in the
mutant purification (supplementary data file 1 online). When
cells were exposed to heat shock, some of the proteins identified
from the RNF4mut purification approximately doubled from that
of unstressed cells to 162, whereas the wild-type equivalent
increased 10-fold to 979, including all 76 identified previously. A
total of 828 of the 979 identified proteins had no intensity in the
RNF4mut purification and 143 were more abundant in RNF4wt
purification (supplementary data file 1 online). Only eight proteins
were detected to approximately the same degree in both
purifications. The biological relevance of these data is indepen-
dently confirmed by their consistency with a previous study
(Messner et al, 2009), which showed that poly-ADP ribose
polymerase 1 (PARP1) is a polySUMO conjugate, the conjugation
of which is stimulated by heat shock (supplementary Fig S4A
online). Evidence that SUMO-modified species were being
purified by this procedure was obtained by the detection of
SUMO-substrate branched peptides for the previously identified
proteins HNRNPM (supplementary Fig S3D online) and topo-
isomerase II (TOP2; supplementary Fig S3E online; Vassileva &
Matunis, 2004; Azuma et al, 2005).

Identification of putative polySUMO substrates
The fact that 99% of proteins identified in RNF4wt purification
from heat shock HeLa cells were enriched, in comparison with the
equivalent RNF4mut sample, suggests that the purification was
stringent and that more than 900 putative polySUMO conjugates
were identified. However, analysis of the predicted molecular
weight (MWPred) according to the amino-acid sequence of the
proteins in each gel slice (Fig 3A, right) shows that many proteins
in the lower five slices resolved close to their MWPred. These
proteins are unlikely to be modified by SUMO and hence have
been purified indirectly by association with genuine polySUMO
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Fig 1 | An E3 ligase inactive RNF4 fragment that binds to polySUMO.

(A) Domain layout of the SUMO-dependent ubiquitin ligase RNF4. RING

and SIMs are shown. Below, an RNF4 fragment from amino acids 32–133

(RNF4wt) and a SIM-mutated fragment (RNF4mut). Mutated residues are

shown in bold. (B) Sequence of the SIM peptide used to elute polySUMO

conjugates comprising SIM of the PIASX protein with three amino acids

added at the carboxyl-terminus. (C) Purity of the RNF4 fragments

was determined by SDS–PAGE. (D) Recombinant SUMO2 chains were

isolated with RNF4wt and RNF4mut, followed by elution with the SIM

peptide. Samples were subjected to immunoblotting with SUMO2

antibodies. IB, immunoblotting; mut, mutant; RNF4, RING-finger 4;

SDS–PAGE, SDS–polyacrylamide gel electrophoresis; SIM, small

ubiquitin-like modifier interaction motif; SUMO, small ubiquitin-like

modifier; wt, wild type.
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substrates. Conversely, most of the proteins in the upper four slices
resolve to molecular weights greater than their MWPred, suggesting
that most of the proteins in this region are post-translationally
modified.

In theory, all polySUMO conjugates will have an apparent
molecular weight (MWApp) consistent with conjugation to two or
more SUMOs, and therefore the difference between MWApp and
MWPred can be used to filter for putative polySUMO conjugates.
The MWApp of all 971 proteins specific to the RNF4wt purification
from heat-shock HeLa cells was calculated (see Methods;
supplementary data file 2 online), along with the difference
in molecular weight (DMW) between MWApp and MWPred.
Consistent with these observations, a large proportion of proteins
resolve in the gel to a molecular weight consistent with an
unmodified status, that is, DMW around 0 kDa (Fig 3B), and the

frequency distribution is clearly skewed towards high DMW
values (compared with equivalent data for a set of proteins not
considered to be SUMOylated—supplementary Fig S5A online).
By using these data, we can estimate the average number of
SUMOs per substrate protein molecule, that is, the SUMOylation
stoichiometry (see Methods), and by taking all proteins with DMW
423.7 kDa we can create a subgroup that is of an MWApp

characteristic of conjugation by at least two SUMO moieties
(the ‘2þ ’ subset). Several bioinformatic analyses suggest that this
method genuinely selects for SUMO conjugates. Significantly, the
‘2þ ’ subset is enriched for proteins containing SUMO conjuga-
tion consensus motifs (Fig 3C, left), previously described SUMO
substrates (Fig 3C, right) and putative SUMO2 substrates identified
by an independent proteomic study (Golebiowski et al, 2009;
supplementary Fig S5B,C online).
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Fig 2 | Preservation of SUMO conjugates in nuclear and cytoplasmic fractionation. (A) HeLa cells in suspension were heat-stressed at 43 1C for 1 h or

control-treated at 37 1C. In all, 10% of cells were lysed directly into Laemmli’s sample buffer (lanes 1 and 4), with the remainder fractionated into

cytoplasmic and nuclear extracts (lanes 2, 3, 5 and 6). The efficiency of fractionation and SUMO conjugates preservation was analysed by using

tubulin, lamin A/C and SUMO2 antibodies (lanes 1–6). Nuclear lysates were used for purification with RNF4wt or RNF4mut crosslinked to beads.

Eluates were analysed by immunoblot (lanes 7–10). Nuclear lysates represent 20% of the input for the pull-down experiments. (B) Silver-stained

SDS–PAGE of the RNF4-dependent pull-downs from nuclear lysates from control and heat-stressed HeLa cells. Cyt., cytoplasmic; Nuc., nuclear;

RNF4, RING-finger 4; SDS–PAGE, SDS–polyacrylamide gel electrophoresis; SUMO, small ubiquitin-like modifier.

Fig 3 | Identification of 339 putative polySUMO conjugates after heat shock. (A) Left: Coomassie-stained SDS–PAGE gel showing the protein eluted

from RNF4wt and RNF4mut purifications of polySUMO conjugates from HeLa cells grown under normal conditions (37 1C) or heat-stressed (43 1C)

for 30 min. MW markers are shown and apparent MW boundaries of the nine slices are shown on the right. Right: Frequency histograms for the

predicted MWs of all proteins found in each of the nine slices. Pink-shaded regions show the apparent MW regions of the slices. (B) Frequency

histogram of the difference in molecular weight (DMW) between the apparent and predicted MWs of the 971 proteins binding to RNF4wt but not to

RNF4mut. Coloured regions of the histogram indicate the DMW values consistent with unmodified proteins (grey) and those with single or several

copies of SUMO molecules (red). (C) Comparison of the frequency of known SUMO substrates and the cKxE/D SUMO conjugation consensus motifs

in the indicated data sets. This comparison shows data for 2,663 proteins identified from a crude HeLa extract, along with the entire list of proteins

identified in this study (971 proteins), as well as the subsets that have SUMO stoichiometry of 0 and 1 (‘0þ 1’; 632 proteins), or 2 or more (‘2þ ’;

339). Asterisks indicate lists filtered for redundancy. (D) Western blot analysis of RNF4 purifications, either mock or SENP1-treated, with indicated

antibodies. mut, mutant; MW, molecular weight; PML, polymyelocytic leukaemia; RNF4, RING-finger 4; SDS–PAGE, SDS–polyacrylamide gel

electrophoresis; SUMO, small ubiquitin-like modifier; wt, wild type.
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To verify the proteomic analysis, samples from RNF4
polySUMO purification were analysed by western blotting with
antibodies against identified putative substrates, before and after
treatment with recombinant Sentrin protease 1 (SENP1) to remove
any linked SUMO. In this way, we could verify the polySUMO
modification status of TRIM28 (tripartite motif-containing 28),
promyelocytic leukaemia (PML), SART1 (squamous cell carcinoma
antigen recognised by T cells) and UHRF1 (ubiquitin-like with
PHD and RING finger domains; Fig 3D).

Biological roles of polySUMO substrates
Ontological analysis of the polySUMO data obtained here (Fig 4A)
shows that the results of this study agree with the tandem affinity
purification (TAP)–SUMO2 heat shock proteome (Golebiowski
et al, 2009), in that many proteins are involved in messenger RNA
(mRNA) metabolism as well as in DNA structure, replication and
repair. Owing to the TAP–SUMO2 method purified SUMO
conjugates of all stoichiometries, it is suggested that proteins with
these functions not only undergo increased total SUMOylation in
response to heat shock, but are also targeted for polySUMOylation.
Interestingly, proteins of different functions were found to be
predominantly modified at specific SUMOylation stoichiometries
(Fig 4B). For example, proteins involved in chromatin structure
and transcription are almost exclusively modified by five or more
SUMO molecules. Proteins involved in DNA replication and
repair are also polySUMOylated, although they are represented in
the three, four and five plus stoichiometry groups (Fig 4B–D),
whereas mRNA splicing proteins are over-represented at all
SUMOylation stoichiometries (Fig 4B). As this method specifically
purifies polySUMO conjugates, it is suggested that many of these
proteins are members of large complexes of mRNA splicing factors
with different components conjugated to SUMO at different
stoichiometries.

DISCUSSION
In the 9 years since the discovery of polySUMOylation, few
substrates have been identified. Here, we use the polySUMO-
binding ability of RNF4 and the specific elution by a SIM-
containing peptide to purify endogenous polySUMOylated proteins
from cell extracts. This results in a highly purified material that
is suitable for analysis by high-resolution mass spectrometry.

So far, hypoxia-induced factor 1a (HIF1a; Matic et al, 2008),
PARP1 (Martin et al, 2009), TOP2 (Takahashi & Strunnikov, 2008),
proliferating cell nuclear antigen (PCNA; Windecker & Ulrich,
2008) and the PML protein (Tatham et al, 2008) have been
identified as polySUMO conjugates. In our analysis, all of these
proteins except HIF1a were found, and PCNA was identified but
not classified as a polySUMO substrate. These findings are not
unexpected, as polySUMOylated HIF1a was detected under
hypoxic conditions (Matic et al, 2008), and SUMOylation of

PCNA seems to be DNA-damage dependent (Parker et al, 2008). It
is interesting to note that not all polySUMOylated proteins
respond to heat shock in the same way. Although the modification
of PARP1 is increased by heat shock (supplementary Fig S4A
online; supplementary data set 2 online), the conjugation status of
PML did not change (supplementary Fig S4B online; supplemen-
tary data set 2 online). As PARP1 is the only protein now known to
become polySUMOylated on heat shock (Messner et al, 2009);
these findings suggest that this approach provides an accurate
representation of the modification state of polySUMOylated
proteins in vivo.

In addition to proteins that were nonspecifically associated
with other proteins (Fig 4C,D), there were many examples of
entire protein complexes being purified by RNF4, in which many
members appeared not to be SUMOylated (see supplementary
Fig S6 online). This reinforces the requirement for a robust data-
filtering strategy when a SUMO proteome is studied under
non-denaturing conditions, although it allows the study of protein
complex composition.

Proteins involved in mRNA transcription or transcription
regulation do not seem to become polySUMOylated on heat
shock, whereas proteins involved in checkpoint response and
DNA repair do (Fig 4). This is consistent with genetic studies in
yeast in which deletion of the ulp 2 gene encoding the protease
responsible for polySUMO chain editing results in a phenotype
that includes defects in recovery from DNA-damage-checkpoint-
induced cell-cycle arrest (Schwartz et al, 2007).

As SUMO–SIM interactions are conserved from yeast to
vertebrates, this method should be suitable for the isolation of
endogenous SUMO-modified species from any cell line or organism.

METHODS
Cloning, protein expression and purification. Wild-type
(RNF4wt) or SIM mutant (RNF4mut) of amino acids 32–132 of
RNF4 (Tatham et al, 2008) was cloned into pHis–TEV–30a.
Proteins were expressed in Escherichia coli Rosetta (DE3) cells,
purified using Ni-NTA agarose, followed by the His-tag cleavage
and Superdex 75 chromatography. The fragments were coupled to
NHS-activated Sepharose beads.
Recombinant polySUMO and polyubiquitin pull-down. Polymers
were incubated with RNF4 beads in 50 mM Tris (pH 7.5), 150 mM
NaCl, 1% NP40 and 0.5% deoxycholate at 4 1C for 1.5 h. Beads
were then washed five times with the same buffer with 250 mM
NaCl and eluted as indicated.
Cell fractionation. HeLa cells were grown in suspension in Eagle’s
minimum essential medium containing 2 mM L-glutamine, 10% fetal
calf serum and 50 U/ml penicillin and 50mg per ml streptomycin
at 37 1C to a density of 8–10� 105 cells per ml with stirring.

Cells were collected by centrifugation (500 g, 4 1C, 15 min)
and washed four times in ice-cold phosphate-buffered saline

Fig 4 | Proteins involved in DNA replication and repair are polySUMOylated in response to heat stress. (A) Panther biological process gene ontology

analysis of the entire data set and the ‘2þ ’ set, and comparison with TAP–SUMO2 substrates and copurified non-substrates from Golebiowski et al

(2009). (B) Same as in A, except the RNF4 purification data set is divided into six groups representing the different SUMOylation stoichiometries as

indicated, and considering only the indicated gene ontology terms. (C,D) Network analysis of proteins involved in DNA repair and checkpoint control.

Labels are gene names; node shapes indicate protein function: rhombus, enzyme; ellipse, transcriptional regulator; triangle, kinase; circle, other

function. Lines indicate direct interactions. Nodes are coloured according to SUMOylation stoichiometry. Networks are created using ‘Ingenuity

pathways analysis’ (www.ingenuity.com). mRNA, messenger RNA; SUMO, small ubiquitin-like modifier.
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containing 200 mM iodoacetamide. Next, the cells were incu-
bated on ice in buffer (10 mM HEPES, pH 7.9, 1.5 mM MgCl2,
10 mM KCl2, 0.07% NP40, complete protease inhibitor cocktail
tablets (Roche) and 200 mM iodoacetamide) for 15 min. Cells
were disrupted by dounce homogenization (40 ml dounce with
tight pestle) on ice. Nuclei were collected by centrifugation
(2,000 g, 4 1C, 5 min).
The nuclei pellet was resuspended in 50 mM Tris (pH 7.5),
150 mM NaCl, 1% NP40, 0.5% deoxycholate, 200 mM iodoace-
tamide and protease inhibitor tablets before sonication on ice
(6� 20 s with an 18% amplitude and a large tip Branson Digital
Sonifier). Nuclear extracts were centrifuged (100,000 g, 4 1C, 1 h).
SUMO-conjugate isolation. A volume of 375 mg of nuclear lysate
was incubated with 800 ml RNF4 beads at 4 1C on a rotor for 1.5 h.
The beads were washed five times with 50 mM Tris (pH 7.5),
250 mM NaCl, 1% NP40 and 0.5% deoxycholate, incubated with
1 mg/ml SIM peptide in the wash buffer as before and the
supernatant recovered. Eluted proteins were trichloroacetic acid
precipitated. The lanes containing RNF4 pull-downs were then
sliced into nine sections before undergoing in-gel tryptic digestion
and mass spectrometry analysis (for details on mass spectrometry
and data analysis see supplementary information online).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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