
Purines existed in primaeval seas and had a central role in 
prebiotic chemical evolution and the origin of life1. Upon 
the emergence of cells, intracellular purines evolved to be 
key participants in metabolic processes, and cell surface 
purinergic receptors evolved to respond to purines that 
had escaped from damaged cells2–4. Four of these recep-
tors became G protein-coupled adenosine receptors — 
also called P1 purinergic receptors. Eighteen other P2 
purinergic receptors evolved to bind ATP and/or other 
purine or pyrimidine nucleotides that are released from 
necrotic or apoptotic cells5 — six P2X purinergic receptor 
(P2XR) homotrimers, four P2XR heterotrimers and eight 
P2YR G protein-coupled receptors (GPCRs) (TABLE 1). 
When cells become apoptotic or are stressed by shear or 
changes in osmotic pressure, they release ATP through 
cell-surface membrane channels, principally pannexin 1 
(REFS 6,7). In addition, various mechanisms have evolved 
to enable the controlled release of ATP, ADP and other 
nucleotides from intact cells. These include the release 
of nucleotides in granules from nerve terminals8,  platelets9 
and mast cells10.

In this Review, we develop the idea that, following tis-
sue injury, purinergic signalling can be divided into three 
temporal phases (FIG. 1). First, there is an acute phase of 
purinergic signalling that lasts minutes to hours, dur-
ing which ATP is rapidly released into the extracellular 
space from damaged or stressed cells, accumulates to 
high levels and has chemotactic and excitatory effects 
on immune cells. Second, there is a subacute phase of 
purinergic signalling that lasts hours to days, in which 
there is a decrease in the extracellular ratio of ATP/
adenosine. The reduced ATP signalling and increased 
activation of A2A and A2B adenosine receptors (A2ARs 
and A2BRs, respectively) serves to limit the extent and 

duration of inflammation. Third, there is a chronic 
phase of purinergic signalling lasting days to weeks (or 
longer) that is associated with a low extracellular ratio 
of ATP/adenosine and with the initiation and progres-
sion of wound-healing processes that sometimes cause 
patho logi cal tissue remodelling. In some instances, in 
tissues that have high cell turnover such as in chronically 
inflamed tumours, both extracellular ATP and adenosine 
may be elevated for extended periods.

ATP released from stressed, apoptotic or necrotic 
cells promotes rapid inflammation by binding to excita-
tory ATP receptors; these comprise inotropic P2XR and 
metabotropic P2YR subtypes that amplify T cell recep-
tor (TCR) signalling in lymphocytes and promote 
 inflammasome activation in macrophages and den-
dritic cells (DCs)11–13. In the extracellular space, ATP 
is converted to ADP and AMP by enzymes belonging 
to three ectonucleotidase families: namely, alkaline 
phosphatases, ectonucleoside triphosphate diphospho-
hydrolases (ENTPDases) including CD39 (also known 
as NTPDase 1), and ectonucleotide pyrophosphatases/
phosphodiesterases (ENPPs). NAD+ and ADP-ribose, 
which is produced from NAD+ by CD38 (also known 
as ADPRC1), serve as additional sources of AMP owing 
to the enzymatic activity of ectonucleotide pyrophos-
phatase/phosphodiesterase 1 (ENPP1, also known as 
CD203a or PC1)14. Extracellular AMP is primarily con-
verted to adenosine by CD73 (also known as 5-NT)15. 
Adenosine signalling is terminated by the activity 
of adenosine deaminase (ADA), which converts adeno-
sine to inosine, which is a nucleoside that weakly acti-
vates rodent, but not human, A3Rs and has little direct 
effect on A1Rs, A2ARs or A2BRs16. Adenosine signalling 
can also be terminated by cellular uptake of adenosine 
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Ligand-gated channel type 
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G protein-coupled type of 
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A multiprotein complex in 
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upon cellular infection or stress 

and triggers the maturation of 
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Abstract | Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into 

the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling 
molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune 

responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 
signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. 
Here, we review how local purinergic signalling changes over time during tissue responses to injury 

or disease, and we discuss the potential of targeting purinergic signalling pathways for the 

immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.
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A family of membrane- 

spanning proteins consisting 

of pannexin 1, pannexin 2 

and pannexin 3. Pannexin 1 

is widely expressed and  

oligomerizes into a hexamer 

to form a single membrane 

channel.

through equilibrative nucleoside transporters (ENTs) or 
concentrative nucleoside transporters (CNTs)17,18, as well 
as through adenosine phosphorylation to AMP by intra-
cellular adenosine kinase. Following tissue injury, there 
is an induction of the ectoenzymes that degrade ATP, 
ADP and AMP to adenosine19. At the same time, hypoxia 
and damage-associated molecular patterns (DAMPs) 
released from injured cells trigger the upregulation 
of anti-inflammatory A2ARs and A2BRs on immune 
cells; this upregulation of spare receptors increases the 
potency of adenosine to limit the extent and duration 
of inflammation and to promote wound-healing pro-
cesses. Excluded from this discussion are the many 
effects of purinergic signalling in non-immune cells, 

which include the regu lation of physiological processes 
such as wakefulness, blood pressure, nerve growth and 
pain, as discussed  elsewhere (see REFS 20–22).

Purinergic receptors on immune cells
Overview of P2XR and P2YR signalling in immune 

cells. ATP, UTP and other nucleotides can be released 
from apoptotic cells through pannexin 1 channels that 
are activated by caspase-mediated cleavage of the pan-
nexin pore-associated carboxy-terminal autoinhibitory 
region23. ATP also can be released through additional 
cell-membrane channels, including other pannexins, 
connexins, maxichannels and P2X7R pores22. As these 
nucleo tides are chemoattractants, they have been 

Table 1 | Expression and functions of purinergic receptors on cells of the immune system

Type of purinergic 
receptor

Receptor name Ligand Immune cell expression Outcome of receptor 
signalling

Refs

Adenosine receptors  
(G protein coupling)

A1R (Gi and/or Go) Adenosine Neutrophils and 
immature DCs

Chemotaxis 97,181

A2AR (Gs and/or Golf) Adenosine Most immune cells 
and platelets

Anti-inflammatory responses 
in immune cells; prevents 
aggregation of platelets

68,182,183

A2BR (Gs and/or Gq) Adenosine Macrophages, DCs 
and mast cells

Promotes IL-6 and VEGF release 
by macrophages and DCs, and 
drives mast cell degranulation

29,98,184

A3R (Gi) Adenosine Neutrophils and mast cells Reduces neutrophil chemotaxis 
and stimulates mast cell 
degranulation

185,186

Inotropic receptors: 
P2XR*

P2X1R ATP T cells, mast cells and 
platelets

Activation of T cells, platelets, 
mast cells and monocytes

37,187–189

P2X2R ATP B cells IgE receptor shedding 190,191

P2X3R ATP Mast cells Cytokine release 192

P2X4R ATP T cells, microglial cells 
and mast cells

Activation of T cells, mast cells, 
microglial cells and monocytes

36,37,193, 
194

P2X5R ATP T cells Activation 195,196

(P2X6R heterotrimers) ATP T cells Activation 197–199

P2X7R ATP CD4+ T cells, CD8+ T cells, 
TReg cells, iNKT cells, 
macrophages and DCs

Activation of effector T cells, 
TReg cells, iNKT cells, monocytes, 
macrophages and DCs

25,37,54,66, 
200–202

Metabotropic 
receptors: P2YR‡

P2Y1R ADP Platelets Platelet aggregation 203

P2Y2R ATP = UTP§ Phagocytes, DCs, monocytes 
and lymphocytes

Chemotaxis and activation 25,37

P2Y4R UTP > ATP¶ Haematopoietic cells 
and microglia

Microglial pinocytosis 204,205

P2Y6R UDP >> UTP# Monocytes, macrophages, 
neutrophils and lymphocytes

Activation 205,206

P2Y11R ATP > UTP¶ and 
NAADP

Granulocytes Activation 207

P2Y12R ADP Platelets Platelet aggregation and 
monocyte activation

37,203

P2Y13R ADP >> ATP# RBCs and monocytes Reduces ATP release in RBCs; 
monocyte activation

37,208

P2Y14R UDP-glucose Neutrophils Neutrophil chemotaxis 26

DC, dendritic cell; IL-6, interleukin-6; iNKT cell, invariant natural killer T cell; NAADP, nicotinic acid adenine dinucleotide phosphate; P2XR, P2X purinergic 
receptor; P2YR, P2Y purinergic receptor; RBC, red blood cell; TReg cell, regulatory T cell; VEGF, vascular endothelial growth factor. *P2XRs are composed of 
homotrimers except for P2X6R, which cannot form homotrimers. Heterotrimer P2XRs that consist of two different subunits have been reported: P2X1/2R, P2X2/3R, 
P2X2/6R and P2X4/6R (reviewed in REF. 209). ‡Rodent P2Y1Rs also bind ATP; P2Y11Rs are absent in rodents. §= means the two compounds have equal potency. ¶A > B 
means compound A has greater affinity than compound B. #A >> B means compound A has a much greater affinity than B.
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ATP

Time after tissue injury

Minutes Hours Days Weeks/
months

Adenosine

ATP release:
• Nerves
• Mast cells
• Platelets (ADP)
• Apoptotic cells
• Necrotic cells
• Stressed cells (pannexin 

channels, connexin channels, 
maxichannels and P2X

7
R pores)

Excitatory P2 receptor activation 
(chemotaxis and activation):
• Phagocytes
• DCs
• Mast cells
• Platelets
• Lymphocytes (increased T

H
17 

cells and decreased T
Reg

 cells)

• Reduced ATP release and rapid 
dephosphorylation

• Accumulation of TReg cells expressing 
CD39 and CD73 (accelerated ATP 
dephosphorylation)

Inhibitory G
s
-coupled A2AR induction 

and activation
• Lymphocytes (decreased T

H
17 cells  

and increased TReg cells)
• Macrophages and/or DCs
• Platelets
• Mast cells
• NK cells
• B cells

Inhibitory G
s
-coupled A2BR induction 

and activation:
• Macrophages
• DCs

Moderate rates of ATP release and rapid 
dephosphorylation

Activation of Gs- and Gq-coupled A2BRs:
• Macrophages and/or DCs (wound 

healing, IL-6 release, fibrosis, T
H
17 

polarization, VEGF and angiogenesis)
• Pathological responses (fibrosis and 

heart failure)

Acute: initiation of inflammation Subacute: resolution of inflammation Chronic: fibrosis and angiogenesis

Endothelial nitric oxide 

synthase

(eNOS). A Ca2+–calmodulin-

dependent enzyme that 

catalyses the production of the 

vasodilator nitric oxide (NO) in 

endothelial cells.

referred to as ‘find me’ signals5 that attract phagocytes, 
activate platelets and stimulate local endothelial nitric oxide 

 synthase (eNOS)-dependent vasodilation. These events 
contribute to the acute inflammatory phase of puriner-
gic signalling following tissue injury. Most immune cells 
express several P2XRs and P2YRs. TABLE 1 summarizes 
the distribution and effects of purinergic receptor acti-
vation on individual immune cells. Inotropic P2XRs are 
usually composed of homotrimers but sometime 
are composed of heterotrimers (TABLE 1) that bind ATP 
with an EC50 of 0.5–1 μM, with the exception of P2X2R 
(10 μM) and P2X7R (100 μM). Following gating owing to 
ATP binding, these channels become permeable to Na+, 
K+ and Ca2+. P2X7Rs are unusual in that they have low 
affinity for ATP and hence are only activated in highly 
inflamed tissues. Moreover, P2X7Rs can form large pores 
that allow passage of molecules as large as 900 daltons, 
including ATP itself. Among the metabotropic P2YRs, 
P2Y1R, P2Y2R, P2Y4R and P2Y6R are coupled to Gq pro-
teins, and P2Y12R, P2Y13R and P2Y14R are coupled to 
Gi proteins. These Gq- and Gi-coupled receptors pro-
duce excitatory effects in immune cells by mobilizing 
calcium or reducing anti-inflammatory cAMP accumu-
lation. P2Y11Rs are unusual in that they are dually cou-
pled to Gq and Gs proteins, interact with P2Y1Rs and are 

absent in rodents24. Notable among the effects of P2YR 
signalling are chemotaxis and activation of phagocytes 
in response to P2Y2R

25 or P2Y14R
26 activation. In sum-

mary, ATP and other nucleotides are rapidly released 
from injured tissues and function through several P2 
purinergic  receptors to attract and activate immune cells.

Overview of adenosine signalling in immune cells. Of the 
four adenosine receptor subtypes (A1R, A2AR, A2BR 
and A3R), the Gs protein-coupled A2ARs and A2BRs 
are upregulated in response to activation of immune 
cells and respond to adenosine binding by generating 
cAMP, activating protein kinase A (PKA) and limiting 
inflammation during the subacute phase of inflamma-
tion following tissue injury. A2ARs are expressed on 
most immune cells, including T cells, invariant natural 
killer T (iNKT) cells, monocytes, macrophages, DCs, 
natural killer (NK) cells, platelets, mast cells, eosinophils 
and B cells (TABLE 1). Consistent with their generally anti- 
inflammatory properties, global deletion of A2ARs in 
mice was found to enhance the effects of stimuli that 
promote inflammation or tissue injury27.

In the immune system, A2BRs are primarily 
expressed by macrophages and DCs and, at lower levels, 
by lymphocytes and platelets. A2BRs have lower affinity 

Figure 1 | Three temporal phases of purinergic signalling following tissue injury. In response to tissue injury, there is 

an acute phase of ATP release from stressed or damaged cells that results in a high ratio of ATP/adenosine. ATP and other 
nucleotides activate P2 purinergic receptors that stimulate chemotaxis and activation of immune cells. A second subacute 
phase of inflammation is associated with reduced ATP release and the induction of ectonucleotidases that decrease the 

ATP/adenosine ratio. In addition, the induction of adenosine receptors on activated or hypoxic immune cells increases 
their sensitivity to adenosine. These events limit the extent and duration of the inflammatory response. A third chronic 
phase of inflammation following tissue injury is associated with a low ATP/adenosine ratio and persistent adenosine 

receptor activation on parenchymal cells and tissue-resident macrophages. The resultant activation of A2B 
adenosine receptors (A2BRs) produces persistent low-grade inflammation, fibrosis and angiogenesis. DC, dendritic 
cell; IL-6, interleukin-6; NK cell, natural killer cell; P2X7R, P2X7 purinergic receptor; TH17 cell, T helper 17 cell; TReg cell, 

regulatory T cell; VEGF, vascular endothelial growth factor.
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Phosphodiesterase 

isozyme 4

(PDE4). The predominant 

isoform of type 4 cAMP 

phosphodiesterase in 

immune cells.

for adenosine than A2ARs and are generally only weakly 
activated except in inflamed tissues, in which adenosine 
levels are elevated. The importance of A2BR signalling 
is increased in inflamed tissues because these recep-
tors are strongly upregulated in response to hypoxia 
and hypoxia- inducible factors (HIFs)28. In some cells, 
A2BRs have been found to both couple to Gs protein 
and the calcium- mobilizing Gq protein29. Gq protein acti-
vation contributes to A2BR-mediated wound-healing 
responses, such as angiogenesis30 and fibrosis31, by pro-
moting the production of vascular endothelial growth 
factor (VEGF) and interleukin-6 (IL-6); these medi ators 
are produced more by A2BR than A2AR activation. 
Hence, A2BR signalling contributes to the chronic phase 
of wound healing following tissue injury. Although acute 

A2BR activation is anti-inflammatory, IL-6 production 
in response to A2BR signalling can favour the polari-
zation of naive T cells towards a pro- inflammatory 
T helper 17 (TH17) cell pheno type32. This mechanism 
contributes to the persistent tissue remodelling and 
fibrosis that occurs in chronically inflamed tissues.

Purinergic regulation of thymic T cell development and 

of naive T cells. Immature thymocytes undergo selec-
tion in the thymus based on the signalling properties 
of their newly rearranged TCRs. Positive selection 
leads to the survival of thymocytes that express TCRs 
with a threshold affinity for MHC molecules, whereas 
negative selection causes apoptotic deletion of thymo-
cytes that express TCRs with a high affinity for MHC 
or self- antigens. The rapid cell turnover and high levels 
of apoptotic cell death that occur in the thymic medulla 
result in high extra cellular concentrations of ATP 
and adenosine33. High levels of ATP enhance thymo-
cyte apoptosis owing to excitatory P2X7R activation34. 
Expression of the IL-7 receptor subunit-α (IL-7Rα), 
which is needed for survival of thymic precursors, is 
reduced as a result of strong TCR activation, and this 
contributes to negative selection. TCR-dependent 
signalling and negative selection can be inhibited by 
activation of A2ARs that are upregulated during early 
thymocyte development and that inhibit the TCR sig-
nalling pathway. A2AR signalling is required for optimal 
progression of double-negative thymic precursors to 
single-positive thymocytes that have increased IL-7Rα 
expression35 (FIG. 2a). Naive T cells that survive selection 
in the thymus undergo TCR-dependent homeostatic 
proliferation in the periphery. Similarly to thymo-
cytes, IL-7Rα expression and survival of naive T cells is 
increased by A2AR activation35. The data suggest that 
P2X7R signalling enhances, and A2AR signalling inhib-
its, TCR-mediated negative selection in the thymus and 
deletion of naive T cells in the periphery.

Purinergic regulation of effector T cells. T cells are 
activated through their TCRs in response to cognate 
peptide– MHC complexes on antigen-presenting cells 
and co-stimulatory molecules such as CD80 and CD86. 
ATP enhances, whereas adenosine suppresses, TCR-
mediated responses (FIG. 2b). T cells themselves serve as a 
source of extracellular ATP as TCR stimulation induces 

the release of ATP36. Transcripts for all of the P2YRs, 
and for P2X1R and P2X4R can be detected in lympho-
cytes, but the most highly expressed transcript is P2Y12R 
(REF. 37). High expression of P2Y12Rs in lymphocytes may 
contribute to anti-inflammatory effects that have been 
observed in patients taking anti-platelet P2Y12R antag-
onists such as clopidogrel37. Removal of extracellular 
ATP or inhibition of P2Y12Rs inhibits Ca2+ entry, nuclear 
factor of activated T cells (NFAT) activation and IL-2 
synthesis. The excitatory actions of ATP are opposed by 
adenosine, which supresses T cell activation. Activation 
of TH1, TH2 or TH17 cells in the presence of adenosine 
inhibits their production of effector cytokines38. A2AR 
activation mainly counteracts TCR-mediated activa-
tion of immune cells by increasing intracellular levels 
of cAMP. This leads to PKA phosphorylation and acti-
vation of C-terminal SRC kinase (CSK), which inhibits 
LCK by phosphorylation of Y505 (REF. 39) and reduces 
downstream LCK-dependent activation of ZAP70, extra-
cellular signal-regulated kinase 1 (ERK1; also known as 
MAPK3)–JUN N-terminal kinase (JNK; also known 
as MAPK8) and protein kinase C (PKC)40,41. PKA acti-
vation also activates cAMP-responsive element- binding 
protein 1 (CREB), which contributes to inhibition of the 
major pro-inflammatory transcription factor nuclear 
factor-κB (NF-κB)42. In a similar manner to A2AR ago-
nists, inhibitors of phosphodiesterase isozyme 4 (PDE4) 
— which is the principal enzyme that degrades cAMP 
in immune cells — also elevate intracellular cAMP levels 
and lead to PKA activation, attenuating TCR signalling42, 
T cell proliferation and inflammatory cytokine produc-
tion. PDE4 inhibitors enhance adenosine signalling in 
most immune cells43 and have recently been showed to be 
effective for the treatment of psoriatic arthritis44.

In addition to its effects on CSK, PKA activation also 
reduces the expression of KCa3.1 potassium channels 
(also known as SK4) in human CD4+ T cells to reduce 
IL-2 secretion45 and signal transducer and activator 
of transcription 5 (STAT5) activation46. Adenosine-
induced suppression of IL-2 production limits T cell 
proliferation and responses to co-stimulatory signals 
because the reduction in IL-2 also reduces expression of 
the co-stimulatory molecules CD28 and CD2 (REF. 47). 
In addition, T cell activation triggers the induction of 
A2ARs and other negative feedback signals includ-
ing SH2 domain-containing inositol-5-phosphatase 1 
(SHIP1)48 and suppressor of cytokine signalling (SOCS) 
family proteins49. Adenosine has been found to inhibit 
human CD8+ T cell responses by reducing Ca2+ influx, 
cytokine production (IL-2, interferon-γ (IFNγ) and 
tumour necrosis factor (TNF)), cytotoxicity and prolif-
eration40,42,50. In summary, following tissue injury, ATP 
functions to augment effector T cell activation during 
acute inflammation by elevating Ca2+, whereas adeno-
sine suppresses subacute activation of effector T cells by 
activating Gs-coupled A2ARs.

Purinergic regulation of TReg cells. Mouse regulatory 
T (TReg) cells express high levels of CD39 and CD73, 
which are ectoenzymes that decrease the concentra-
tion of pro-inflammatory ATP while simultaneously 
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increasing the concentration of anti- inflammatory 
adeno sine in the local micro environ ment51. During 
acute inflammation, the activation of P2X7Rs on TReg cells 
by ATP inhibits their suppressive activity and viability52 
(FIG. 2c). Acute tissue injury causes the release not only 
of ATP but also of high amounts of IL-6. Exposure of 
TReg cells to IL-6 increases their rate of ATP synthesis and 
release. The resultant increase in P2X7R-mediated sig-
nalling favours T cell polarization into IL-17-secreting 
TH17 cells in vivo52,53. Moreover, pharmacological antag-
onism of P2XRs favours the polarization of naive CD4+ 
T cells into TReg cells52.

In mice, the P2X7R channel can be activated not 
only by high concentrations of extracellular ATP but 
also by extracellular NAD+, which is a substrate for ecto-
enzymes that catalyse ADP-ribosylation and activation 
of P2X7Rs54. As TReg cells express high levels of P2X7Rs, 
they are very sensitive to NAD+-induced cell death54. By 
contrast, activation of A2ARs increases the formation of 
TReg cells55. In addition, adenosine-mediated A2AR sig-
nalling is needed to maintain CD73 and programmed 
cell death protein 1 (PD1) expression on TReg cells; 
CD73-deletion or PD1 blockade before adoptive TReg cell 
transfer phenocopies the reduced immunosupressive 

Figure 2 | Purinergic signalling in T cells. a | In naive T cells, 
low-strength T cell receptor (TCR) activation stimulates 

proliferation but strong activation causes apoptosis owing to 

a reduction in the expression of interleukin-7 receptors 
(IL-7Rs) that are necessary for T cell survival. By dampening 
the TCR signalling cascade, A2A adenosine receptor (A2AR) 

engagement can enhance naive T cell survival by maintaining 
IL-7R expression. b | In effector T cells, extracellular ATP 
stimulates Ca2+ entry through P2X purinergic receptor (P2XR) 

channels and Ca2+ mobilization (P2YR) to facilitate Ca2+–

calmodulin (CAM)-dependent activation and nuclear 

translocation of nuclear factor of activated T cells (NFAT), 
which stimulates the production of IL-2, pannexin 1 channels 
and other NFAT targets. Autocrine ATP release helps to 
sustain P2 purinergic receptor signalling and NFAT activation. 
Extracellular adenosine and inhibitors of phosphodiesterase 
isozyme 4 (PDE4) elevate cAMP and activate protein 
kinase A (PKA), which activates C-terminal SRC kinase (CSK), 
a negative regulator of LCK. This attenuates the activation of 
transcription factors that are downstream of TCR activation, 

including NFAT, nuclear factor-κB (NF-κB) and AP-1. TCR 
activation increases A2ARs through NF-κB-dependent 

induction. c | In regulatory T cells, high expression of cell 
surface CD39 and CD73 rapidly converts locally produced 

pro-inflammatory ATP to anti-inflammatory adenosine. IL-6 
signalling enhances the autocrine production and release of 

ATP. High levels of ATP or NAD+ can stimulate apoptosis 

owing to pore formation by P2X7Rs. Adenosine activates 
A2ARs and increases the expression of CD39, CD73, 
programmed cell death protein 1 (PD1) and forkhead box P3 
(FOXP3). CREB, cAMP-responsive element-binding protein; 
CTLA4, cytotoxic T lymphocyte antigen 4; DAG, dystrophin-
associated glycoprotein; ERK, extracellular signal-regulated 
kinase; FOXO1, forkhead box O1; JAK, Janus kinase; JNK, JUN 
N-terminal kinase; PI3K, phosphoinositide 3-kinase; PKC, 

protein kinase C; PLCγ1, phospholipase Cγ1; RACK, receptor 

for activated C-kinase; STAT5, signal transducer and activator 
of transcription 5; TGFβ, transforming growth factor-β.
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activity that is caused by A2AR deletion56. TReg cells also 
secrete exosomes containing CD39 and CD73, and these 
exosomes have been found to suppress effector T cell 
proliferation and IL-2 secretion57.

In humans, but not mice, CD73 is expressed on 
most B cells. CD39 expression accounts for strong 
immuno supressive activity by human mesenchymal 
stromal cells58. CD39 expression also identifies subsets 
of human CD4+ T cells that are either potent TReg cells or 
that can convert to TReg cells under pathological condi-
tions59. Adenosine produced as a result of the enzymatic 
activity of CD39 and CD73 has been implicated in the 
progressive immuno suppression that occurs in patients 
with AIDS60. Numbers of CD39+ TReg cells are increased 
following HIV infection61–63, and genetic  studies have 
shown that a CD39 gene polymorphism that is associ-
ated with reduced levels of CD39 expression slows 
 progression to AIDS in patients infected with HIV60.

In summary, ATP-mediated signalling reduces 
the viability of TReg cells and favours the formation of 
TH17 cells. Adenosine signalling increases numbers 
of TReg cells, maintains their expression of CD73 and PD1, 
and supresses the activation of DCs and effector T cells.

Purinergic regulation of iNKT cells. iNKT cells are 
charac terized by the expression of an invariant TCR 
α-chain (Vα14–Jα18 in mice and Vα24–Jα18 in humans) 
paired with a restricted set of TCR Vβ chains (Vβ2, 
Vβ27 or Vβ28 in mice and Vβ11 in humans). These 

cells are rapidly activated in infected or injured tissues 
in response to stimulation of their invariant TCR by 
CD1d-restricted lipid antigens or in response to IL-12 
and IL-18 (REFS 64,65). iNKT cells also express excita-
tory P2XRs and P2YRs66 (FIG. 3). Once activated, iNKT 
cells propagate an inflammatory cascade that can exacer-
bate tissue injury67–69. CD1d-restricted lipid antigens are 
produced by various pathogens and by damaged host 
tissues70. Upon stimulation by lipid antigens, most iNKT 
cells rapidly produce IFNγ, which functions to stimulate 
IFNγ-inducible chemokines (CXC-chemokine ligand 9 
(CXCL9), CXCL10 and CXCL11) and IL-17 that are 
responsible for chemotaxis of other inflammatory cells, 
including neutrophils71,72. In the mouse liver, concana-
valin A induces injury that is mediated by iNKT cell 
activation. Deletion of CD39 was unexpectedly found 
to protect the liver from concanavalin A-induced hepa-
titis66. This was attributed to ATP-dependent pore for-
mation and iNKT cell apoptosis and may occur only as 
a result of severe inflammation.

As is the case in conventional T cells, A2AR is 
induced in iNKT cells in response to NF-κB activation73. 
Stimulation of A2ARs on iNKT cells limits iNKT cell 
activation and decreases their production of IFNγ while 
simultaneously increasing their production of trans-
forming growth factor-β (TGFβ) and IL-10 (REF. 73). 
Hence, inflammation caused by iNKT cell activation 
following the acute phase of tissue injury is substan-
tially reduced by activation of A2ARs on iNKT cells67. 

Figure 3 | Purinergic signalling in iNKT cells. Sterile tissue injury resulting from tissue ischaemia or tissue transplantation 
results in the release of damage-associated molecular patterns (DAMPs), such as ATP and high mobility group box 1 
(HMGB1), that enhance the production in antigen-presenting cells (APCs) of CD1d-restricted lipid antigens and 

co-stimulatory cytokines (interleukin-12 (IL-12) and IL-18). Lipid antigens, IL-12, IL-18 and ATP stimulate invariant natural 
killer T (iNKT) cells to produce a mixture of pro-inflammatory (interferon-γ (IFNγ)) and anti-inflammatory (IL-4 and IL-13) 

cytokines. IFNγ stimulates the production of IFNγ-inducible cytokines (CXC-chemokine ligand 9 (CXCL9), CXCL10 and 

CXCL11) that are chemotactic to neutrophils. iNKT cell activation causes the induction of A2A adenosine receptors 
(A2ARs) and CD39 to enhance adenosine signalling through A2ARs. A2AR activation inhibits IFNγ production and 

stimulates IL-4 and IL-13 production, accelerates the conversion of ATP to adenosine and inhibits tissue inflammation 

and injury. ; P2X7R, P2X7 purinergic receptor; TCR, T cell receptor; TLR, Toll-like receptor.
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Preconditioning mice with the CD1d-restricted lipid 
antigen α-galactosylceramide (αGalCer) was found to 
protect the liver from ischaemia–reperfusion injury 
by increasing the expression of A2ARs on iNKT cells 

and by enhancing their production of IL-13. Blocking 
A2ARs with selective antagonists reversed these 
 protective effects74.

Stimulation of A2ARs on iNKT cells has been found 
to have a protective effect in sickle cell disease, in which 
iNKT cells have a major role in causing tissue inflamma-
tion and injury during vaso-occlusive events75. The adop-
tive transfer of iNKT cells worsened pulmonary function 
in NY1DD mice deficient in recombination-activating 
protein 1 (RAG1): a model of sickle cell disease in mice 
lacking T cells. Treatment of NY1DD Rag1–/– mice with 
A2AR agonists prevented adoptively transferred iNKT 
cells from causing pulmonary inflammation in this 
model75. Similar findings have been reported in human 
studies; iNKT cells collected from the blood of patients 
with sickle cell disease during painful vaso-occlusive 
crises showed elevated levels of NF-κB activation and 
cytokine production that could be decreased by infusion 
of an A2AR agonist, regadenoson76.

In summary, an important mechanism by which 
adenosine inhibits tissue damage during ischaemia– 
reperfusion injury is by signalling through A2ARs on 
iNKT cells. As a consequence, A2AR agonists and anti-
bodies that deplete iNKT cells have potential utility 
for treating ischaemia–reperfusion injury that occurs 
in different clinical settings, including in myocardial 
 infarction, tissue transplantation and sickle cell disease.

Monocytes, macrophages, DCs and neutrophils. During 
the acute phase of inflammation following tissue injury, 
ATP and UTP released from apoptotic cells signal 
through P2 purinergic receptors to recruit monocytes, 
DCs and neutrophils23,77. All monocyte and macrophage 
cell lines have been found to express P2XRs and P2YRs. 
In monocytes, the most abundant P2XR transcripts are 
P2X4R, followed by transcripts for P2X7R and P2X1R

37. 
These transcripts are expressed at much higher levels in 
monocytes than in lymphocytes, suggesting that they 
may have an important role in monocyte chemo taxis and 
activation. In highly inflamed tissues, ATP that is released 
from stressed or damaged cells binds to low affinity 
P2X7Rs on macrophages, activates the inflamma some 
and stimulates secretion of IL-1β, which is required for 
optimal polarization of IFNγ-producing CD8+ T cells78. 
A2BR expression on myeloid cells increases in response 
to IFNγ and limits expression of IL-1β, as well as MHC 
class II and TNF. A2BR signalling also induces pro-
duction of pro-fibrotic IL-6 and IL-8, especially under 
hypoxic conditions, through mitogen-activated protein 
kinase (MAPK) and AP-1 (REFS 79,80).

With regards to P2YRs in monocytes, transcripts 
for P2Y13R and P2Y2R are most abundant, followed by 
transcript for P2Y11R. Monocytes that enter injured tis-
sues can polarize into pro-inflammatory (M1) macro-
phages  or tolerogenic or pro-angiogenic (M2) 
macrophages (FIG. 4a). The tolerogenic M2 pheno type 
is produced in response to adenosine and is charac-
terized by low expression of pro-inflammatory medi-
ators, such as TNF and IL-12, and high expression of 
tolerogenic markers, such as IL-10, arginase 1 and 
VEGF81–84. Adenosine inhibits macrophage production 

Figure 4 | Purinergic signalling in monocytes and macrophages. a | In monocytes, 

ATP and UTP released from inflamed tissues are chemotactic to monocytes, activate 

nuclear factor-κB (NF-κB) and favour monocyte polarization into pro-inflammatory (M1) 
macrophages. Adenosine signalling through A2A adenosine receptors (A2ARs) and 
A2BRs activates nuclear receptor subfamily 4 group A (NR4A) transcription factors that 

inhibit NF-κB activation and favour monocyte polarization into anti-inflammatory (M2) 
macrophages. A2AR and A2BR signalling increase levels of cAMP and Ca2+, which, along 

with hypoxia, increases angiogenesis by induction of vascular endothelial growth factor 
(VEGF). Protein kinase A (PKA) and cAMP-responsive element-binding protein 
(CREB)-dependent activation of CCAAT/enhancer-binding protein-β (C/EBPβ) increases 

anti-inflammatory interleukin-10 (IL-10) production. b | In macrophages, activation of 

P2X7 purinergic receptors (P2X7Rs) by ATP helps to activate the NLRP3 (NOD-, LRR- and 
pyrin domain-containing 3) inflammasome and caspase 1 to trigger the proteolytic 

maturation of IL-1β and other cytokines. Engulfment of apoptotic cells by macrophages 
stimulates the production of cytokines (CXCL1 and CXCL2) that are chemotactic to 

neutrophils. Chemokine production is regulated by inhibitory A2ARs and stimulatory 
A3Rs. DAMP, damage-associated molecular pattern; STAT1, signal transducer and 
activator of transcription 1; TLR, Toll-like receptor; TNF, tumour necrosis factor; TRIF, TIR 
domain-containing adaptor protein inducing IFNβ.
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of pro- inflammatory cytokines and increases anti- 
inflammatory IL-10 in response to lipopoly saccharide 
or Tat (an HIV protein)85. A2AR activation in con-
junction with antibiotics produces a significant sur-
vival benefit in mice infected with live Escherichia coli 
or Staphylococcus aureus because A2AR signalling 
suppresses the cytokine storm that occurs in response 
to rapid bacterial killing. In mice, both A2ARs and 
A2BRs contribute to adenosine regulation of perito-
neal macrophages, whereas A2BR-mediated signalling 
predominates in RAW 264.7 cells and mouse bone 
marrow- derived macrophages. Inflammation increases 
expression of A2ARs to limit inflammatory responses. 
The promoter region of A2AR contains binding sites for 
NF-κB, STAT1 and peroxisome proliferator- activated 
receptor-γ (PPARγ), and activation of these transcrip-
tion factors induces A2AR expression86–88. Human 
A2AR expression is also modified by microRNA-214 
(miR-214), miR-15 and miR-16 (REF. 89).

During the subacute phase following tissue injury 
(FIG. 1), apoptotic cells are engulfed by macrophages, 
and adenosine is produced in sufficient quantities to 
activate both A2ARs and A3Rs. A2AR signalling acti-
vates Gs proteins and suppresses apoptotic cell-induced 
formation of the neutrophil migration factors CXCL1 
(also known as KC) and CXCL2 (also known as MIP2)90 
(FIG. 4b). This is countered by activation of Gi protein- 
coupled A3Rs. As a result, the balance in the activation 
of A2ARs and A3Rs determines the amount of neutro-
phil chemoattractants formed. As the expression of 
A2ARs increases and A3Rs decreases over time during 
phagocytosis of apoptotic cells, adenosine gradually 
becomes more suppressive of the pro-inflammatory 
signals produced as a result of macrophage engulfment 
of apoptotic cells90.

In both mice and humans, adenosine inhibits DC 
maturation and their production of effector cytokines 
needed for TH1 cell differentiation (IL-12 and TNF), 

and increases their production of pro-angiogenic 
VEGF, IL-10 and cytokines that contribute to TH17 cell 
polarization (TGFβ and IL-6)32,91–93. DCs are targets 
for immune suppression by TReg cells that attract DCs 
by activating exchange protein directly activated by 
cAMP 1 (EPAC1)–repressor/activator protein 1 homo-
logue (RAP1)-dependent pathways94. Clusters of DCs 
and TReg cells degrade ATP to adenosine through CD39 
and CD73, and A2AR activation stimulates secretion 
of inhibitory cytokines by DCs. Immature human DCs 
express A1Rs and A3Rs that promote their migration 
towards adenosine in inflamed tissues. DC matura-
tion is associated with decreased expression of A1Rs 
and A3Rs, and increased expression of A2ARs95–97. 
Adenosine signalling promotes DC polarization into 
a tolerogenic pheno type that is characterized by the 
expression of arginase 1, arginase 2 and indoleamine 

2,3-dioxygenase (IDO)98. DCs also express A2BRs that 
are induced by hypoxia and/or HIF-1α99–102. Because 
adenosine generally has a suppressive role in DC mat-
uration and activation, adenosine deaminase (ADA) 
deficiency, which causes high systemic adeno sine 
levels, increases tolerogenic and angiogenic DCs98. 
Interestingly, increased ADA expression can increase 
immunogenicity of human DCs by degrading adeno-
sine and by promoting the formation of stable immuno-
logical synapses103–105. ADA on the surface of human 
DCs interacts with the ADA-binding protein CD26 (also 
known as DPP4) on the surface of T cells. When this 
occurs, up to threefold less antigen is needed to achieve 
T cell priming105. Adenosine-mediated differentiation 
of DCs into angio genic or tolerogenic phenotypes has 
been shown to be functionally immuno suppressive. 
As an example, adeno sine treatment of DCs loaded 
with αGalCer before adoptive cell transfer prevents 
ischaemia– reperfusion-induced kidney injury. Such 
tolerized DCs were found to increase serum levels of 
IL-10 and to decrease IFNγ91. It has been suggested 
that high concentrations of adenosine that are detected 
in aqueous pollen extracts may be responsible for 
TH2 cell- promoting effects of pollen on human DCs106. 
Treatment of DCs with adenosine also promotes solid 
tumour growth and neovascularization98,107. Bacteria 
also exploit immuno suppressive  adenosine  signalling 
to reduce DC and T cell activation100.

Neutrophils function to kill pathogens but can also 
produce damage to the host, especially in the setting 
of sterile inflammation that occurs following tissue 
transplantation or ischaemia–reperfusion injury. As 
summarized in TABLE 1 and FIG. 5, ATP, UTP, UDP and 
UDP-glucose released from injured tissues are chemo-
tactic by engaging P2Y2R, P2Y6R and P2Y14R on neutro-
phils. Chemotaxis is also stimulated by A3R activation 
and is reduced in the presence of selective A3AR agonists 
that may disrupt the adenosine chemotactic gradient or 
by antagonists that block A3R signalling. Pharmaceutical 
approaches that target these receptors might be useful 
to control acute lung injury due to excessive neutro-
phil influx in sepsis108. In addition to direct effects of 
adenosine on neutrophils, A2AR activation produces 
indirect inhibitory effects on neutrophil chemo taxis by 

Figure 5 | Purinergic signalling in neutrophils. In 

neutrophils, ATP, UPT and other nucleotides released from 

inflamed tissues are directly chemotactic and stimulate the 

production of chemotactic cytokines. Adenosine signals 
through A2A adenosine receptors (A2ARs) to inhibit 

production of cytokines, inhibit superoxide production by 
NADPH oxidase and decrease the expression of adhesion 
molecules such as α4β1 integrin. IL-17, interleukin-17; 
PKA, protein kinase A; TNF, tumour necrosis factor.
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reducing the production of chemotactic factors such 
as TNF, IL-17 (REFS 109,110), CXCL1, CXCL2 and/or 
CXCL3 (REF. 111). Activation of A2ARs on neutrophils 
also causes cAMP-dependent inhibition of oxidative 
activity112 and inhibits expression of α4β1 integrin 
(also known as VLA4) that mediates their adhesion to 
endothelial cells113.

In summary, purines released from apoptotic cells 
have been found to have a central role in stimulat-
ing phagocyte chemotaxis and activation by enga ging 
P2XRs and P2YRs. Adenosine inhibits phagocyte chemo-
taxis and activation through both direct and indirect 
effects that are mediated by A2ARs and A2BRs. Targeting 
P2X, P2Y and adenosine receptors may be useful for 
redu cing excessive inflammation that can occur as a 
result of ischaemia–reperfusion injury, cytokine storm in 
sepsis and autoimmunity. A2BR blockade to reduce IL-6 
production may be useful for the treatment of renal114, 
 cardiac115, penile116 and  pulmonary31 fibrotic diseases.

Tissue protection by adenosine
In the sections above, we have summarized some of the 
key ways in which purinergic signalling affects immune 
cell function. Below, we discuss how purinergic signal-
ling shapes the immune responses that occur in tissues 
in the context of ischaemia, autoimmunity and cancer.

Adenosine signalling in the ischaemic heart. Ischaemic 
preconditioning (IPC) is a protective phenomenon in 
which a brief episode of ischaemia renders the myo-
cardium (and other tissues) resistant to subsequent 
ischaemic insults. IPC consists of two phases, an acute 
phase (early IPC) that develops immediately but wanes 
within 1–2 h, and a delayed phase (late IPC) that appears 
after 12–24 h and lasts for several days. Adenosine has 
a key role in IPC, and all four adenosine receptors have 
been implicated. Activation of A1R is a mediator of 
both early and late IPC117. Early IPC mediated by A1R 
activation is blocked by glybenclamide, an inhibitor of 
ATP-sensitive K+ channels117. The role of A2BR in IPC 
is controversial; it seems to be important for mediat-
ing late states of IPC that depend on the induction of 
stress- responsive genes but, at least in some animal 
models, is not involved in early IPC118. A2AR activation 
on bone marrow-derived cells, particularly iNKT cells, 
is responsible for some of the infarct-sparing and anti- 
inflammatory effects of A2AR agonists administered at 
the time of reperfusion after coronary occlusion119. The 
infarct- sparing effect of A2AR activation is associated 
with inhib ition of CD4+ T cells (probably iNKT cells) 
(FIG. 3) in the reperfused heart120. A cardio protective 
effect of activating A3R in rodents may be due to mast 
cell stimulation with release of ATP, metabolism of ATP 
to adenosine and secondary activation of A2ARs on 
bone marrow- derived cells121. A2AR activation holds 
promise as a therapy to reduce infarct size after myo-
cardial infarction, as A2AR agonists can be administered 
during stenting following angioplasty of infarcted coro-
nary arteries and limit injury after myocardial infarc-
tion. The AMISTAD II trial was conducted to determine 
whether intravenous adenosine administered to patients 

reduced infarct sizes following acute myocardial infarc-
tion. Adenosine failed to significantly reduce total infarct 
size in the AMISTAD II trial, but in a subset of patients, 
adenosine infusion was found to significantly reduce 
infarct size normalized to area at risk, which is a more 
precise measure of myocardial injury122. These data sug-
gest that adenosine or A2AR agonists administered just 
before stenting have the potential to reduce myocardial 
infarct size.

Remodelling of the heart occurs after myocardial 
infarction, leading to fibrosis, dysfunction and ven-
tricular tachycardia. Adenosine, through A2BR, has 
been implicated in promoting these adverse outcomes. 
Treatment of rats with an A2BR blocker beginning 
1 week after myocardial infarction resulted in improved 
cardiac function and decreased susceptibility to ventricu-
lar tachycardia115. The use of A2BR antagonists is a prom-
ising strategy for preventing adverse tissue remodelling 
after tissue ischaemia.

Adenosine signalling in the ischaemic kidney. Adenosine 
holds promise for protecting the kidneys during renal 
ischaemia or renal transplantation. CD73-deficient mice 
progressively develop renal failure that is associ ated with 
autoimmune inflammatory reactions that are charac-
terized by increased production of pro- inflammatory 
cytokines, IgG deposition and immune cell infiltration 
in the kidneys. These findings suggest that adenosine 
can protect the kidney by preventing the develop-
ment of autoimmune and inflammatory reactions123. 
All four adenosine receptors have been implicated in 
renal protection. Activation of A1R stimulated phos-
phoinositide 3-kinase (PI3K) and PKC signalling that 
significantly reduced necrosis and apoptosis in renal 
tissue after ischaemia124–126. In both acute and chronic 
forms of kidney diseases (for example, diabetic nephro-
pathy), A2AR signalling in macrophages, dendritic 
cells and iNKT cells attenuates renal injury56,91,127–130. 
Mechanistically, A2AR activation enhances IL-10 pro-
duction, inhibits macrophage infiltration, suppresses the 
production of pro-inflammatory cytokines by T cells and 
myeloid cells and increases TReg cell expression of PD1 
to provide tissue protection56,91,130. Acute A2BR signal-
ling can also contribute to tissue protection following 
acute kidney injury owing to ischaemia by suppressing 
TNF release131. A2BR activation on resident renal cells, 
but not on bone  marrow-derived cells, also reduces 
renal inflammation132,133.

Adenosine signalling in the inflamed lung. Adenosine 
influences alveolar function and tissue inflammation in 
lung diseases. During subacute lung injury, adenosine 
targets A2ARs on immune cells and A2BR and A3R 
on both haematopoietic and non-haematopoietic cells 
to suppress lung inflammation and reduce pulmonary 
oedema and tissue damage134–136. During ischaemia, 
A2AR signalling in lung-resident cells, neutrophils 
and CD4+ T cells strongly reduces oedema and micro-
vascu lar permeability and suppresses the production of 
pro- inflammatory cytokines and chemokines, such as 
TNF, IL-17 and CXCL1, thereby improving pulmonary 
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function137,138. A2AR stimulation may be of use for pre-
venting the development of acute chest syndrome in 
sickle cell disease75 and for reducing inflammation and 
organ  rejection following lung transplantation.

Chronic pulmonary inflammatory states, such as 
asthma and chronic obstructive pulmonary disease 
produce activation of A2BR signalling that enhances 
eosinophilic disease severity by increasing TH2-type 
cytokine production and eosinophil recruitment and 
degranulation139,140. Stimulation of A2BRs on human 
mast cells stimulates secretion of IL-4 that enhances IgE 
synthesis by B cells to enhance allergic inflammation141. 
A2BR activation also stimulates the production of IL-6 
by myeloid cells and facilitates IL-6-dependent pulmo-
nary fibrosis142,143. In summary, A2AR agonists have 
potential for the treatment of acute lung inflammation 
that occurs in response to lung transplantation or acute 
chest syndrome. A2BR antagonists have potential for the 
treatment of asthma and pulmonary fibrosis.

Transplant rejection and autoimmunity
ATP signalling generally enhances rejection of trans-
planted tissues and autoimmune responses. ATP release 
is increased by the anaphylatoxin C3a that is generated 
as a result of transplant rejection11. Blockade of P2X7Rs 
was found to diminish TH1- and TH17-type cytokine 
production in response to T cell activation and to 
inhibit the rejection of allografts144. Conversely, Cd39–/– 
TReg cells that are impaired in their ability to metabolize 
ATP failed to promote tolerance to allo geneic skin grafts 
despite expressing high levels of CD25 (also known 
as IL-2Rα) and cytotoxic T lymphocyte antigen  4 
(CTLA4)51. Oxidized ATP, which is a non-selective 
inhibitor of the ATP receptors, reduced proliferation 
and effector function of T cells145. Oxidized ATP also 
reduced T cell-mediated autoimmune type 1 dia betes 
and experimental autoimmune encephalomyelitis 
(EAE) in mice145. Hence, P2 purinergic receptor antag-
onists may be useful for reducing transplant rejection 
and for the treatment of autoimmune diseases.

A2AR signalling has been found to inhibit auto-
immune responses in many disease models. In allo-
geneic mixed lymphocyte reactions, A2AR stimulation 
expanded TReg cell populations146 and enhanced their 
expression of CD39, CD73 and CTLA4 (REF. 146). 
A2AR activation on lymphoid, non-lymphoid and 
non- haematopoietic cells all significantly contributed 
to reducing autoimmune and inflammatory reactions 
in colitis and inflammatory bowel disease models; 
therefore, reducing tissue damage, weight loss and gut 
permeability147–149. The transfer of wild-type TReg cells 
prevents colitis induced by pathogenic T cells, whereas 
TReg cells from mice deficient in A2AR (Adora2a–/– 
mice) do not prevent disease148. Adoptive cell transfer of 
TReg cells from wild-type mice, but not from Adora2a–/– 
mice, also protected kidneys from ischaemia– 
reperfusion injury56. In a similar T cell transfer model 
of graft-versus-host disease (GVHD), A2AR stimulation 
increased mouse survival, decreased production of 
pro-inflammatory cytokines (IL-6, TNF and IFNγ), 
increased production of anti- inflammatory cytokines 

(TGFβ and IL-10) and increased TReg cell numbers in 
the periphery150. In a model of experimental glomerulo-
nephritis, which is induced with glomeru lar basement 
membrane-specific antibodies, and in a model of lupus, 
A2AR activation protected kidneys by suppressing 
T cell infiltration and by  favouring  anti-inflammatory 
IL-4 and IL-10 production83,151.

Although A2AR signalling is generally consid-
ered to be anti-inflammatory, activation of A2ARs 
in the  choroid plexus enhances lymphocyte entry 
into the brain and promotes EAE152. In another study, 
A2AR activation during the T cell expansion phase 
of EAE enhanced TH17 cell responses owing to acti-
vation of γδ T cells153–155. Consequently, the onset of 
EAE was slowed in Adora2a–/– mice, and A2AR block-
ade was protective152,156. However, selective A2AR dele-
tion from haematopoietic cells enhanced the severity 
of EAE156. These findings suggest that, contrary to the 
anti- inflammatory effects of A2AR activation that have 
been noted in peripheral tissues, A2AR agonists should 
be used cautiously in cases of central nervous system 
(CNS) inflammation. The effects of A2BR signalling 
on autoimmune responses also are mixed. Although 
acutely anti- inflammatory, A2BR signalling enhances 
the expression of IL-6 and TH17-type cytokines. Hence, 
EAE is alleviated by A2BR deletion or blockade157.

In general, A2AR agonists (except in the CNS) and 
P2 purinergic receptor antagonists are potentially useful 
for the treatment of autoimmune diseases. In the case 
of A2BR, antagonists may be useful for suppressing 
 long-term inflammatory responses.

Purinergic signalling in cancer
In the inflamed and hypoxic environment of solid 
tumours, both ATP and adenosine may remain ele-
vated for extended periods of time. As a result, ATP and 
adenosine signal through ATP and adenosine receptors 
on tumour cells and tumour-associated immune cells, 
including macrophages and T cells (FIG. 6). A2AR signal-
ling reduces the cytotoxic activity of CD8+ T cells and 
NK cells158–160 while increasing the numbers of immuno-
suppressive and pro-angiogenic cells — that is, TReg cells 
and myeloid-derived  suppressor cells (MDSCs) — that 
facilitate tumour growth161. Reducing adeno sine pro-
duction by deleting or blocking CD73 has been found in 
some cases to activate tumour- associated T cells, reduce 
tumour growth and invasiveness, and increase the 
effectiveness of antitumour vaccines158,162–164. However, 
B16-F10 melanoma growth and metastatic spreading 
was found to be insensitive to CD73 deletion165. The 
expression of CD39 and CD73 on the surface of cells in 
the tumour microenvironment is not limited to TRegcells. 
In mice, these enzymes are expressed by several types of 
cancer cells166–170 (in fibrosarcoma, colon, triple negative 
breast, melanoma, brain, mastocytoma and lymphoma), 
by the exosomes produced by these cells, as well as by 
epithelial cells, endothelial venules and multipotent 
mesenchymal stromal cells. CD73 expression on  triple 
negative breast cancer cells is associated with poor 
clinical outcomes and increased resistance to anthra-
cycline chemotherapy171. Similarly to CD73 inhibition, 
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adenosine formation also is reduced by increasing oxy-
gen delivery to ischaemic tissues. Supplemental oxygen-
ation was found to reduce hypoxia- induced adenosine 
production in lung tumours, activate NK cells and 
T cells and reduce lung colonization by tumours159.

A2AR blockade in tumours. A2AR deletion or block-
ade was found to slow or eliminate tumour growth and 
activate tumour-infiltrating T cells172. Similar findings in 
several syngeneic tumour models have stimulated great 
interest in targeting A2ARs for cancer immunother-
apy161. Macrophages, DCs and other myeloid cells also 
are targets of A2AR-mediated immunosuppression in 
tumours81,158,159. Selective deletion of A2ARs on myeloid 
cells was found to inhibit solid tumour growth and lung 
colonization by tumour cells and markedly reduce IL-10 
production by tumour-associated DCs, macrophages 
and MDSCs, while indirectly increasing antigen-specific 
CD8+ T cell and NK cell activation81.

Despite the generally immunosuppressive effects of 
adenosine, A2AR blockade or deletion enhances tumour 
growth in some instances. For example, selective deletion 
of A2ARs from T cells markedly increased the growth of 
melanomas173. Although A2AR deletion acutely increases 
TCR signal strength and T cell activation, it also causes 
T cell exhaustion and suppresses the expression of IL-7R 
that is needed for T cell survival173 (FIG. 2a). Exhausted 
cells collected from tumours have impaired IFNγ pro-
duction upon restimulation (C. C. and J. L., unpublished 
observations). T cells lacking A2ARs resemble T cells 
with high-avidity TCRs for the melanoma- expressed 
antigen transient receptor protein 2 (TRP2, also known as 
TRPC2), in that they only transiently inhibit melanoma 

growth before becoming exhausted174. By contrast, T cells 
with low-avidity TCRs do not become exhausted174,175. 
Despite their exhausted state, adoptively transferred 
A2AR-deficient T cells are more effective than wild-
type cells at producing a transient decrease in tumour 
growth. This suggests that A2AR deletion increases acute 
cyto toxi city, but this initial beneficial effect can be com-
promised by long-term T cell apoptosis and exhaustion. 
Therefore, A2AR blockade to stimulate high TCR signal 
intensity has the potential to produce beneficial thera-
peutic outcomes but may require careful dose optimi-
zation to control for activation-induced exhaustion and 
cell death. Optimal therapy may depend on engineering 
T cells to maintain their cytotoxicity and ability to survive 
during strong activation.

A2BRs in tumours. Adenosine binding to A2BRs found 
on most tumour cells enhances their metastatic capa-
city176. Hence, blockade of tumour A2BRs can blunt 
metastases. A2BR signalling also contributes to immuno-
suppression in tumours. In a model of bladder cancer, 
inhibition of tumour growth by the non-selective adeno-
sine receptor antagonist theophylline was mediated by 
A2BR blockade but not by A2AR blockade107.

P2 purinergic receptors in tumours. Solid tumours have 
been found to contain high levels of ATP that engages 
P2 purinergic receptors on most immune cells, including 
P2X7Rs on macrophages and DCs that drive secretion 
of IL-1β, which is required for polarization of IFNγ-
producing CD8+ T cells78. In P2X7R-deficient mice, 
tumour growth and metastatic spreading are accelerated, 
intratumoural IL-1β and VEGF release are drastically 

Figure 6 | Purinergic signalling in the tumour microenvironment. The solid tumour microenvironment is persistently 

inflamed and hypoxic and has high levels of ATP and adenosine. Most tumour cell express high levels of P2X7 purinergic 

receptors (P2X7Rs), which stimulate cell proliferation, and of A2B adenosine receptors (A2BRs) that stimulate cell dispersal 

and metastasis. Myeloid lineage cells such as macrophages and dendritic cells are influenced by ATP binding to P2X7Rs 

to adopt a pro-inflammatory (M1) phenotype. Myeloid cells are influenced by adenosine binding to A2ARs and A2BRs to 
adopt an anti-inflammatory (M2) phenotype that inhibits immune killing of tumours. A2BR signalling also enhances 
tumour angiogenesis and fibrosis. Cytotoxic CD8+ T cell proliferation and killing ability in response to T cell receptor (TCR) 
activation is enhanced by P2X1R, P2X4R and P2Y12R signalling and inhibited by A2AR signalling. CAM, calmodulin; 
CSK, C-terminal SRC kinase; IL-6, interleukin-6; NFAT, nuclear factor of activated T cells; NF-κB, nuclear factor-κB; 

VEGF, vascular endothelial growth factor.
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reduced, and inflammatory cell infiltration is abro-
gated. DCs from P2X7R-deficient mice are unrespon-
sive to stimulation with tumour cells, and chemotaxis 
of P2X7R-deficient cells is impaired177. However, block-
ade of P2X7Rs on tumour cells inhibits their growth178. 
Hence, P2X7R activation has opposing effects to directly 
promote tumour growth and to enhance immune killing 
of tumour cells. Non-small cell lung cancers harbour-
ing chromosomal rearrangements of ALK (anaplastic 
lymphoma kinase) are treated with ALK inhibitors, 
including crizotinib179. The expression by tumour cells 
of Gq protein-coupled P2YRs (P2Y1R, P2Y2R and P2Y6R) 
confers resistance to ALK inhibitors, in part through a 
PKC-dependent mechanism180. These findings suggest 
that certain P2YR inhibitors may overcome resistance to 
ALK-dependent non-small cell lung cancers. However, it 
is also possible that such compounds will reduce rejec-
tion of  immunogenic tumours by reducing the activity 
of immune cells.

Perspective
In this Review, we have discussed the prominent role 
that purines have in shaping the evolution of immune 
cell responses to injury, infection, autoimmunity and 
cancer. ATP and other nucleotides are rapidly released 
into the extracellular space in response to tissue injury 
and are generally chemotactic and activating to immune 
cells. Extracellular adenosine levels rise more slowly and 
act on upregulated A2ARs and A2BRs on immune cells 
to limit the extent and duration of inflammation. Drugs 
that target purinergic receptors have great potential as 
thera peutic agents to treat inflammation, autoimmun-
ity or cancer. At present, only a few drugs that target 
purinergic receptors have been approved, but many 
more are in clinical development. P2X7R antagonists 
are being evaluated in preclinical models of autoimmune 
diseases144,145 and tissue transplantation11. Clopidogrel 
and other P2Y12R antagonists that are clinically used 
to block platelet aggregation may have additional anti- 
inflammatory uses by blocking P2Y12Rs on leukocytes. 
A2BR blockers seem to have acute anti-inflammatory 
effects but are potentially useful for the long-term 
 treatment of fibrotic diseases and heart failure.

Adenosine has been found to have an important role 
in limiting ischaemia–reperfusion injury by suppressing 
the activation of iNKT cells. A2AR agonists inhibit the 
activation of iNKT cell as well as other immune cells 
and have potential for treating ischaemia–reperfusion 
injury, such as that seen in myocardial infarction and 
tissue transplantation. A2AR agonists also have promise 
for the treatment of inflammatory flares in auto immune 
diseases. Similarly to A2AR agonists, therapeutic anti-
bodies that selectively deplete iNKT cells may be useful 
to prevent tissue inflammation in response to vaso- 
occlusive episodes or organ transplantation. A2AR 

agonists also are potentially useful for the treatment of 
chronic inflammatory diseases. For long-term therapy, it 
may be necessary to learn how to effectively apply inter-
mittent A2AR agonist treatment to avoid desensitization 
while maintaining therapeutic efficacy.

Growing evidence indicates that A2AR and A2BR 
signalling in tumours contributes to the highly immuno-
suppressive tumour microenvironment. Several pharma-
ceutical companies are evaluating blockers of CD73 or 
A2ARs as exciting new cancer immunotherapeutic 
agents. This Review touched on three interesting recent 
developments regarding this approach. First, it is evi-
dent that the deletion or blockade of A2ARs on T cells 
activates these cells. However, activation-induced T cell 
exhaustion or death has been observed in some instances 
and underscores the point that adenosine receptor block-
ade and possibly other modes of T cell activation have 
the potential to kill T cells and consequently suppress the 
long-term immune response. This will be an important 
concept to consider as combinations of approaches to 
strongly activate tumour-associated T cells are investi-
gated. Second, emerging evidence suggests a surprisingly 
important role for antigen-presenting cells as targets of 
adenosine receptor blockade in cancer. Myeloid selective 
deletion of A2ARs has been found in some mouse cancer 
models to be more effective at reducing tumour growth 
than global or lymphoid-selective A2AR deletion. It 
seems that the indirect activation of T cells through 
blockade of A2AR signalling in antigen-presenting 
cells may be more effective in stimulating antitumour 
immune responses that the direct activation of T cells. 
Third, and related to the second point, is the somewhat 
surprising observation that A2BR blockade is very 
effective at slowing tumour growth. Given the fact that 
there is much higher expression of A2BRs by myeloid 
cells than by lymphoid cells, this is consistent with the 
idea that antigen-presenting cells are underappreciated 
cellu lar targets of adenosine receptor blockade for can-
cer immunotherapy. One other point about the target-
ing of A2ARs versus A2BRs for immunotherapy relates 
to their relative affinities for adenosine. Although the 
functional potency of adenosine varies among different 
cells owing to variable numbers of spare receptors, in 
general adenosine activates A2AR responses at 10–100 
times lower concentrations than are necessary to activate 
A2BR responses. As adenosine levels are high in solid 
tumours, lower levels of antagonist should be required 
to competitively inhibit adenosine binding to A2BRs 
than to A2ARs without the need to use excessively high 
concentrations that may produce adverse systemic side 
effects. As most studies of adenosine receptor blockers 
for cancer immunotherapy have focused on A2AR selec-
tive compounds, it will be of interest to further investi-
gate selective A2BR blockers or compounds that block 
both A2ARs and A2BRs.
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