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The activation of purinergic receptors by nucleotides and/or nucleosides plays an

important role in the control of vascular function, including modulation of vascular smooth

muscle excitability, and vascular reactivity. Accordingly, purinergic receptor actions,

acting as either ion channels (P2X) or G protein-coupled receptors (GCPRs) (P1, P2Y),

target diverse downstream effectors, and substrates to regulate vascular smooth muscle

function and vascular reactivity. Both vasorelaxant and vasoconstrictive effects have

been shown to be mediated by different purinergic receptors in a vascular bed- and

species-specific manner. Purinergic signaling has been shown to play a key role in

altering vascular smooth muscle excitability and vascular reactivity following acute and

short-term elevations in extracellular glucose (e.g., hyperglycemia). Moreover, there is

evidence that vascular smooth muscle excitability and vascular reactivity is severely

impaired during diabetes and that this is mediated, at least in part, by activation

of purinergic receptors. Thus, purinergic receptors present themselves as important

candidates mediating vascular reactivity in hyperglycemia, with potentially important

clinical and therapeutic potential. In this review, we provide a narrative summarizing

our current understanding of the expression, function, and signaling of purinergic

receptors specifically in vascular smooth muscle cells and discuss their role in vascular

complications following hyperglycemia and diabetes.

Keywords: purinergic receptors, diabetes, ion channels, myogenic tone, vascular reactivity, P2Y11

INTRODUCTION

Nucleotides can act as extracellular signaling molecules engaging plasma membrane bound
purinergic receptors in different tissues (1). In endothelial cells, these receptors mediate nitric
oxide production and relaxation (2). In vascular smooth muscle cells, purinergic receptors
primarily mediate vasoconstrictive actions (3–7), although there are some examples in which
they can also mediate vasorelaxation (8–10). This dual short-term control by purinergic receptors
contributes to the regulation of vascular reactivity and myogenic tone. Purinergic receptors
are also involved in the long-term development of trophic events by participating in cell
proliferation, differentiation, migration, and death, all of which are associated with development
of vascular diseases (11). Nucleotides are released from endothelial cells due to shear stress,
hypoxia, and low pH, which together with neural release of adenosine triphosphate (ATP)
and uridine triphosphate (UTP) acting on smooth muscle cells, contribute to the regulation
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of blood flow in the vascular system. Besides the granular
ATP secretion by platelets and nerve terminals through
vesicular exocytosis, non-vesicular release of nucleotides
occurs in virtually all cells (12). Such release occurs upon
agonist, chemical, or mechanical stimulation, appearing to
involve a variety of anionic pore-forming membrane proteins,
such as pannexins, connexins, P2X7 receptors, or ATP-
binding cassette transporters (13). Extracellular breakdown
of ATP and UTP is also necessary for purinergic signaling
in the vasculature and is mediated by ectonucleotidases,
including ectonucleoside triphosphate diphosphohydrolase (E-
NTPDases), ectonucleotide pyrophosphatase/phosphodiesterase
(E-NPPS), alkaline phosphatase, and ecto-5

′

-nucleotidose
(14). The combined action of purinergic receptors together
with purinergic transporters and converting enzymes create a
complex signaling network that has been argued to play a central
role in different pathological conditions, including diabetic
hyperglycemia (15).

Vascular function gradually decline with age manifesting as
biochemical and structural changes in blood vessel function
that compromises vascular health (16). Diabetes is a complex
chronic metabolic/cardiovascular disorder with multiple
pathophysiological abnormalities and a recognized cause of
accelerated vascular aging (17). Elevated blood glucose levels
(e.g., hyperglycemia) is a defining characteristic of diabetes
whether produced by insulin-deficiency (type 1 diabetes) or
insulin-resistance (type 2 diabetes) (18, 19). Both hyperglycemia
and diabetes promote vascular complications that increase the
risk of suffering from hypertension, stroke, coronary disease,
and organ failure (20, 21). Hyperglycemia and diabetes are
also associated with decreased cognitive function, retinopathy,
and nephropathy (22). Hyperglycemia-induced vascular
complications are due in part to altered vascular reactivity (23).
In addition to endothelial dysfunction, which results in impaired
vascular regulation, endothelium-independent mechanisms,
including altered vascular smooth muscle cell excitability, are
emerging as critical in the development, and progression of
vascular complications in diabetic hyperglycemia (24–27). It has
to be noted that both reduced and enhanced vasoconstriction
have been described in both human and animal models of
diabetes (28–32). Intriguingly, purinergic signaling has been
observed to be altered in endothelial and vascular smooth
muscle from both experimental animal models and humans with
type-2 diabetes (33–35). Due to the involvement of purinergic
receptors in regulating vascular tone, they may represent
potential targets for the treatment of vascular complications
during diabetic hyperglycemia. The contributions of purinergic
signaling to endothelial cell function in health and disease has
been extensively examined in recent studies (1, 2, 36–38). Here,
we focus on how purinergic receptors regulate vascular smooth
muscle function in health, in response to hyperglycemia, and
during diabetes.

Functional expression of ion channels, which may be
modulated by purinergic signaling (39–41), regulate vascular
smooth muscle excitability and therefore vascular reactivity and
myogenic tone (42). Vascular reactivity is the response of blood
vessels to constrict or dilate in response to a given stimulus

while myogenic tone refers to a sustained state of smooth muscle
contraction. The expression and function of different types of K+

channels as well as the L-type Ca2+ channel CaV1.2 are essential
for modulation of vascular reactivity and myogenic tone (42),
and their functional expression is altered in response to elevated
glucose and diabetes (25, 27, 42, 43). Changes in vascular smooth
muscle ion channels’ functional expression during hyperglycemia
and diabetes can be underlined by activation of purinergic
signaling. Accordingly, recent exciting findings have revealed a
novel mechanism involving purinergic signaling in the regulation
of L-type Ca2+ channels in vascular smooth muscle upon acute
hyperglycemia exposure and during diabetes. This mechanism
may contribute to modulate vascular smooth muscle excitation-
contraction and excitation-transcription coupling. The findings
revealed an elegant signaling complex that is engaged in response
to hyperglycemia and diabetes and may have important clinical
and therapeutic implications. In this review, we summarize
current knowledge about the expression and function of
purinergic receptors in vascular smooth muscle. Our main goals
are to discuss prior literature and exciting findings describing
the effect of hyperglycemia and diabetes on purinergic signaling
and how it alters vascular smooth muscle function and vascular
reactivity during this pathological condition/stimulus.

EXPRESSION AND FUNCTION OF
PURINERGIC RECEPTORS IN VASCULAR
SMOOTH MUSCLE

It is now well-established that purinergic signaling plays a
pivotal role in the control of vascular smooth muscle function
and corresponding regulation of myogenic tone and vascular
reactivity (44, 45). The release of ATP, UTP, and/or its breakdown
products from either endothelial cells, epithelial cells, platelets
or sympathetic, and sensory-motor nerves, can induce either
vasoconstrictor and vasodilatory effects through the activation
of purinergic receptors in vascular smooth muscle cell (1,
46). Indeed, the endothelium itself could release as much as
300 nM ATP to the extracellular milieu (47), which may activate
purinergic signaling in adjacent vascular smooth muscle cells.
In addition, autocrine nucleotide release from vascular smooth
muscle cells during hyperglycemia has been associated with
changes in Ca2+ signaling, activation of transcription factors,
and modulation of cell excitability, which seems to be mediated
via engagement of one or more purinergic receptors (48, 49).
Furthermore, in a rat model of streptozotocin (STZ)-induced
diabetes (50), zebrafish (51), and retinal cultures (52) exposed to
elevated extracellular glucose, and both type 1 (53) and type 2
diabetic patients (53–55), purine blood and/or extracellular levels
have been shown to be elevated, which could be responsible for
increased purinergic receptor signaling.

The first evidence for purines having a physiological effects
in the cardiovascular system was reported more than 90 years
ago (56). Two different families of purinergic receptors were
subsequently identified and classified according to their primary
agonist: (1) adenosine conforming the P1 family and (2)
ATP/UTP corresponding to the P2 family (57). Four P1 GPCR
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subtypes (A1, A2A, A2B, and A3), 7 P2X ion channel receptor
subtypes (P2X1−7), and 8 P2Y GPCR subtypes (P2Y1, P2Y2,
P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) are recognized
(58, 59). Different purinergic receptors have been identified in
vascular smooth muscle cells of different vascular beds and
species, including P2X1, P2X2, P2X4, P2X5, P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11, P2Y12, P1A1, P1A2, and P1A3 (1). These purinergic
receptors have been shown to mediate both vasoconstrictor and
vasodilatory effect in a species- and vascular bed-dependent
manner, as well as having a role in vascular smooth muscle cells
differentiation and proliferation (4, 48, 49, 60). In the following
section, we will describe each family and receptor subtype
and their involvement in the regulation of the vascular system
highlighting their role in hyperglycemia and diabetes. Table 1
summarizes the expression, physiological agonist, physiological
effect and involvement in pathophysiology of different purinergic
receptors in smooth muscle cells from different vascular beds.

P2X Receptors in Vascular Smooth Muscle
Cells
P2X receptors are cation permeable ligand-gated ion channels
(90). Their activation by ATP leads to a rapid response involving
Ca2+ andNa2+ entry directly through the P2X channel pore (91).
The subsequent membrane depolarization of vascular smooth
muscle due to activation of P2X channels contribute to calcium
influx via voltage-gated L-type Ca2+ channels. The source of
ATP for activation of P2X channels may come from sympathetic
nerves in the adventitia as a co-transmitter with noradrenaline
and neuropeptide Y, but also from contracting smooth muscle or
damaged cells to induce vasoconstriction (1, 13, 92, 93)

The contractile actions of ATP released from perivascular
sympathetic nerves in smooth muscle cells was confirmed to
involve principally homomeric P2X1 receptors (3). In this study,
the involvement of P2X1 receptors was corroborated using P2X1

knockout mice. P2X1 receptors appear in close proximity to
sympathetic nerve varicosities where they form clusters that
seem to be associated with lipid rafts (94, 95). Depolarizations
mediated by neural release of ATP engaging P2X1 receptors are
known as excitatory junction potentials, which can summate
to produce vasoconstriction involving L-type Ca2+ channel
activation (96–98). This process is vessel-dependent, as rat
mesenteric artery vasoconstriction is entirely mediated via the
receptor pore (97). Noradrenaline, which is co-released with
ATP by sympathetic nerves, induces longer depolarizations,
and contractions as it involves α-adrenoceptor coupling to
Gq proteins. This elicits Ca2+ release from internal stores via
inositol 1,4,5-trisphosphate (IP3), and this combined rise in
cytoplasmic Ca2+, together with Ca2+ sensitization induces
contraction (99). The vasoconstrictive contribution of ATP and
noradrenaline is also vessel-dependent, with ATP mediating 10%
of the peak response in rat tail artery (100), 20–60% in rabbit
central ear artery (101) and 100% in rabbit mesenteric artery
(102). Thus, sympathetic nerve-mediated vasoconstriction and
the relative contribution of noradrenaline and ATP is influenced
by many factors. In rat intrapulmonary arteries, ATP released by
non-adrenergic non-cholinergic nerves (NANC) can also elicit

excitatory junction potential (103). This is in contrast to most
blood vessels in which ATP released from NANC nerves induces
endothelium-dependent vasorelaxation (104, 105).

Uridine adenosine tetraphosphate (Up4A) is an endothelium-
derived vasoconstricting factor that when released by different
stimuli engages P2X1 receptors to promote contraction of rat
aortic vascular smooth muscle cells (4), and perhaps cells in other
vascular beds. This contraction was attenuated by L-type Ca2+

channel antagonists and Rho-kinase inhibitors (4), suggesting
a crosstalk between P2X1 receptor, L-type Ca2+ channels, and
Rho-kinase signaling that regulates vascular reactivity.

Other P2X receptors have been recently identified in vascular
smooth muscle cells. For example, heteromeric P2X1/P2X4

receptors have been shown to mediate vasoconstriction of rat
cerebral arteries (63). Heteromeric P2X1/P2X4 receptors are also
expressed in human omental arteries (64) and rat mesenteric,
femoral, pulmonary, coronary, and renal arteries (65, 66, 106).
The functional role of these purinergic receptors in these vascular
beds as well as their role in health and disease, however, remains
to be elucidated. P2X5 receptors are also expressed in rat small
mesenteric small arteries with no functional role reported to
date (67).

P2Y Receptors in Vascular Smooth Muscle
Cells
P2Y receptors are GPCRs with ligand selectivity (107). ATP is
the primary physiological P2Y11 agonist. P2Y2 and P2Y4 are
activated by ATP but also by UTP. Adenosine diphosphate
(ADP) activates P2Y1, P2Y12, and P2Y13. Finally, P2Y6 and
P2Y14 are activated by uridine diphosphate (UDP) and UDP-
glucose, respectively. In addition, the G protein subtype of
each receptor defines the specificity of the intracellular signal
elicited (107). For example, P2Y1, P2Y2, P2Y4, and P2Y6 couple
primarily with Gq, P2Y12, P2Y13, and P2Y14 couple with Gi/o

and P2Y11 couple to both Gs and Gq/11 in vascular smooth
muscle cells (59, 78, 108). Given the number of different P2Y
receptor subtypes, the variety of functional signaling cascades
engaged, the biased agonism of GPCR activation and the relative
lack of subtype-specific agonists and inhibitors, research into the
(patho)physiological role of these receptors has been challenging
and remains poorly understood.

P2Y1 receptors are mainly expressed in endothelial cells
mediating vasodilation (109). Although P2Y1 expression has
been detected in vascular smooth muscle cells from human
mammary arteries (68) and in the rat intrapulmonary artery at
low levels, they seem to play no role in the response to ATP in this
tissues (10). In endothelium-denuded human chorionic arteries,
P2Y1 expression has been shown to be higher (69) and to mediate
vasoconstriction (70). Interestingly, this study demonstrates a
micro-regionalized distribution of P2Y1 receptors into lipid
rafts, which when disrupted, abrogated P2Y1 receptor-mediated
vasoconstriction. Interestingly, differential expression of P2Y1

was observed along the human placental vascular tree, with a
decline in receptor expression in the vascular smooth muscle
layer as the tree approaches the capillary network (69). A
concomitant reduction in agonist-mediated vasoconstriction and
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TABLE 1 | Summary of the different purinergic receptors expressed in smooth muscle cells discussed in this review.

Purinergic

receptor

Arterial bed expression

(species)

Agonist Smooth muscle

cell effect

Ion channel/

GPCR type

Involvement in

vascular disease

References

P2X1 Mesenteric (mouse, rat),

aorta, renal (rat)

ATP, Up4A,

α,β-meATP

Vasoconstriction Ion channel Obesity, diabetes (3, 4, 61, 62)

P2X1/P2X4 Cerebral mesenteric,

femoral, pulmonary,

coronary and renal (rat),

omental (human)

ATP Vasoconstriction Ion channel (63–66)

P2X5 Mesenteric (rat) No functional role

reported

Ion channel (67)

P2Y1 Chorionic and mammary

(human), intrapulmonary

(rat)

ATP, ADP Vasodilation Gq (10, 68–70)

P2Y2 Coronary (mouse, human),

pulmonary (rat)

ATP, UTP Vasoconstriction Gq (6, 71, 72)

P2Y4 Cerebral, mesenteric (rat) ATP, UTP Vasoconstriction Gq Diabetes (60, 73, 74)

P2Y6 Aorta, mesenteric, basilar,

coronary (mouse)

UDP,

UDP-glucose

Vasoconstriction Gq Hypertension,

hyperglycemia

(3, 6, 48, 75–77)

P2Y11 Pulmonary (rat), adipose

(human), cerebral and

mesenteric (mouse)

ATP, UTP Vasoconstriction Gq/11/Gs Hyperglycemia (49, 78, 79)

P2Y12 Mammary, pericardial fat

arteries (human), aorta

(mouse)

ADP Vasoconstriction Gi/o Atherosclerosis (80–83)

P1A1 Aorta (mouse) Adenosine Vasoconstriction Gi (84, 85)

P1A2A Coronary (mouse) Adenosine,

Up4A

Vasodilation Gs (9, 86, 87)

P1A2B Chorionic (human) Adenosine Vasoconstriction,

Vasodilation

Gs (86, 88)

P1A3 Aorta (mouse) Adenosine No functional role

reported

Gi (89)

a shift in vascular response to vasodilation was observed as the
size of the vessels decreased. Robust P2Y1 expression was also
found in canine coronary vascular smooth muscle cells (109).
In this study, P2Y1 activity was found to promote agonist-
induced vasodilation of coronary arteries via an endothelium-
dependent mechanism in in vitro and in vivo settings. However,
these receptors did not seem to play a role in pressure-flow
autoregulation, thus revealing distinct mechanisms by which
P2Y1 can control vascular reactivity.

P2Y2 receptors are expressed in smooth muscle cells of
coronary arteries in different species and their activation by ATP
or UTP has been shown to promote vasoconstriction (6, 71).
In small pulmonary veins, ATP-induced vasoconstriction was
associated with the stimulation of P2Y2 receptors in vascular
smooth muscle cells (72). This effect was linked to the activation
of PLC-β and the generation of intracellular Ca2+ oscillations
mediated by cyclic Ca2+ release events via IP3 receptor
activation. In vascular smooth muscle cells, P2Y2 receptors also
have trophic roles, stimulating DNA synthesis, proliferation, and
migration of human and rat aortic vascular smooth muscle cells,
which are key events in vascular remodeling (1).

P2Y4, which are selectively activated by pyrimidines, are
present in smooth muscle cells of cerebral arteries where their
activation leads to vasoconstriction (73). The mechanism

by which P2Y4 are activated and mediate vasoconstriction
in intraparenchymal cerebral arterioles is proposed to
be mechanically linked instead of through the release of
endogenous nucleotides, and likely involves activation of TRP
channels, inhibition of K+ channels, or direct activation of
L-type Ca2+ channels (60). P2Y4 receptors have also been
shown to mediate proliferation of rat aortic smooth muscle
cells (110).

Different studies in rodents have highlighted the role of
P2Y6 receptor in vascular smooth muscle cells as mediator of
contraction in aorta, mesenteric, and basilar arteries (3, 75, 76).
In mouse large diameter segments of the coronary artery, P2Y6

activation promotes contraction of vascular smooth muscle in
response to UDP, whereas in smaller diameter segments, its
activation causes vasodilation via an endothelium-dependent
mechanism (6). P2Y6 is the most expressed P2Y receptor in
resistance arteries and contributes to the maintenance of the
myogenic tone through an autocrine/paracrine activation loop
(7). Interestingly this action is independent of intracellular
Ca2+ increase through the Gq/PLCβ/IP3 pathway and is
proposed to involve phosphorylation of mitogen-activated
protein kinases P38/P42–44/c-Jun N-terminal and the Rho-
kinase Ca2+ sensitizing pathway (111). These mitogen-activated
protein kinases are activated by different external stressors such
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as heat, UV irradiation, osmotic shock, or cell stretch (112–114).
Therefore, P2Y6-mediated phosphorylation and activation of
these kinases could represent a novel stress response mechanism.
Kauffenstein et al., argued that cell stretching caused by a rise
in intraluminal pressure induces the release of nucleotides that
stimulate P2Y6 and promote smooth muscle cell contraction
(autocrine/paracrine activation loop). However, other studies
have suggested that the P2Y6 regulation of myogenic tone, at
least in parenchymal arterioles, is not mediated by extracellular
nucleotides, but rather by direct stretch-induced activation of
the receptor (60). Yet, the mechanisms by which P2Y6 “sense”
mechanical stretch remain to be elucidated. The importance of
P2Y6 in regulating blood pressure has been recently highlighted
by P2Y6 knockout mice that displayed attenuated angiotensin II
(AngII) induced hypertension and vascular remodeling in mice
(77). Intriguingly, this study also revealed heterodimer formation
between angiotensin type 1 receptors (AT1R) and P2Y6 and an
age-related increase of this heterodimerization (77), which could
contribute to age-associated high blood pressure (115). P2Y6

activation by UDP has also been shown to act as a growth factor
stimulating mitogenesis in vascular smooth muscle cells (116).

P2Y11 is primarily stimulated by ATP, although it can also
be stimulated by ADP, but not pyrimidines (59, 78, 117). This
receptor has the unique property of coupling to Gq/11 and Gs

proteins (78). Consequently, activation of P2Y11 can stimulate
PLCβ/protein kinase C (PKC) and adenylyl cyclase (AC)/protein
kinase A (PKA) signaling (78). However, its role in the vascular
system has so far remained unclear. In cardiomyocytes, P2Y11 has
been shown to mediate positive ionotropic effects via activation
of PLC and cyclic adenosine monophosphate (cAMP) signaling,
and its function seems to be impaired in a desmin-deficient
mouse model of cardiomyopathy that produces congestive heart
failure (118). Furthermore, a polymorphism (Ala-87-Thr) in
P2Y11 has been associated to increased risk of acute myocardial
infarction and C-reactive protein blood levels (119). In vascular
smooth muscle cells from rat pulmonary arteries, a Ca2+-
dependent chloride current was activated by ATP through a
P2Y receptor that was suggested to resemble a P2Y11 receptor
(79). In colonic smooth muscle, P2Y11 receptors are involved in
both fast and slow relaxations through KCa channels conforming
parasympathetic inhibition of the gut (120). However, its role
in the vasculature has remained unclear. A recent study linked
P2Y11 to glucose-mediated regulation of vascular smooth muscle
excitability (further discussed below) (49).

The role of ADP-selective P2Y12 in platelet aggregation is
well-recognized, being the target of the antithrombotic drug
clopidogrel (121). Clopidogrel has also been shown to improve
endothelial dysfunction in AngII-induced hypertensive rats
by improving endothelial-mediated relaxation (122). However,
this effect does not seem to be directly mediated by P2Y12

receptors expressed in the endothelium. P2Y12 has also been
shown to be expressed in vascular smooth muscle cells and
mediate contraction in human internal mammary arteries (80).
In these experiments, clopidogrel did not reduced ADP-induced
contraction, which was deemed to be due to the low penetration
and high instability of this drug. A modified version of
clopidogrel with increased half-life (AZD6140) has been shown

to block P2Y12-mediated contractions in mice aorta and human
internal mammary arteries and pericardial fat arteries (81).
Recent evidence also suggests an increase in the expression of
this receptor in vascular smooth muscle cells in atherosclerosis,
and in playing a role in migration and potentiating atherogenesis
(82, 83).

P1A Receptors in Vascular Smooth Muscle
Cells
P1 receptors are GPCRs that respond to adenosine upon
hydrolysis of ATP (123). All P1 receptor subtypes expression
(P1A1, P1A2A, P1A2B, and P1A3) have been described in
smooth muscle cells where they mediate either vasoconstriction
or vasorelaxation in a species- and vascular bed-specific form
(45). P1 receptors A2A and A2B are coupled to AC through
the activation of Gs proteins where they mediate relaxation,
whereas A1 and A3 are coupled to Gi proteins and mediate
vasoconstriction (124).

P1A1 receptors mediate aortic vascular smooth muscle
cell contraction through the PLC pathway and its activation
also reduces vascular smooth muscle relaxation mediated by
P1A2B and P1A2A receptors (84). Activation of adenosine
receptors leads to the metabolism of arachidonic acid via
the PLC second messenger diacylglycerol (DAG). Studies

utilizing P1A1 knockout (P1A−/−
1 ) mice demonstrated that

arachidonic acid metabolites can activate PKCα and the
ERK1/2 pathway in aortic vascular smooth muscle leading to
vasoconstriction (5). Furthermore, PKCα activation via P1A1

receptors can lead to the inhibition of large-conductance
Ca2+-activated K+ (BKCa) channel activity (125), which can
further contribute to contraction of vascular smooth muscle
cells. P1A1-deficient mice have also been shown to present
impaired autoregulation of the renal vascular resistance by
removal of the P1A1-dependent vasoconstrictor tone (126),
suggesting the involvement of the purinergic system in pressure-
induced resistance changes. P1A3 receptor has been shown
to mediate aortic vasoconstriction through an endothelium-
dependent mechanism that is associated with reactive oxygen
species (ROS) generation via Nox2 (89). However, the role that
vascular smooth muscle P1A3 play in the control of the myogenic
tone has not yet been fully determined.

The activation of P1A2A/B receptors is generally thought
to mediate vasodilation in the coronary circulation in an
endothelium-dependent and -independent manner via activation
of the Gs/AC/cAMP/PKA signaling pathway (86). In the
coronary circulation, P1A2A-mediated vasorelaxation is achieved
via modulation of both endothelial and smooth muscle cells (9,
86) and involves ATP-sensitive K+ (KATP) channels (127). Up4A
has been shown to mediate coronary smooth muscle relaxation
through P1A2A-induced H2O2 production and subsequent
activation of BKCa and voltage-gated K+ (KV) channels leading
to vasodilation (87). A contractile role of P1A2B in chorionic
vascular smooth muscle cells has also been demonstrated (88).
Here, activation of the P1A2B is coupled to the synthesis of an
arachidonate metabolite, likely thromboxane A2, which might
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activate a thromboxane receptor as the final effector of the
adenosine contractile response.

VASCULAR SMOOTH MUSCLE
PURINERGIC SIGNALING IN
HYPERGLYCEMIA AND DIABETES

The vascular system is severely impaired in response to
hyperglycemia, affecting both endothelial, and vascular smooth
muscle cells. Mechanisms mediating endothelial dysfunction
during hyperglycemia have been extensively examined (19, 25,
28, 128–130), and therefore will not be further considered
here. In diabetes, the distribution and location of purinergic
receptors is altered and can also be shifted between endothelial
and smooth muscle cells, which can affect vascular reactivity
(69). In addition, hyperglycemia can alter vascular smooth
muscle function and vascular reactivity, at least in part, through
engagement of purinergic signaling (33, 49, 131). Indeed,
elevations in extracellular glucose have been shown to induce
a paracrine and/or autocrine release of nucleotides that could
engage purinergic receptors to modulate vascular function
(48, 49, 52). Purinergic receptors, but also nucleotide and
nucleoside converting enzymes and transporters, are affected in
the hyperglycemic vascular system (33). Surprisingly, the role
of purinergic receptors in modulating vascular smooth muscle
excitability in response to hyperglycemia and during diabetes has
not been extensively examined. This open new opportunities for
future research on how changes in the functional expression of
purinergic receptors in vascular smooth muscle could impact
myogenic tone and vascular reactivity during hyperglycemic and
diabetic states.

The sympathetic system, through the release of ATP, is
responsible for the activation of P2X1 receptors to induce
vasoconstriction. Interestingly, accumulating data from animal
and human studies suggest an overactivity of the sympathetic
system as a defining factor in the development and maintenance
of diabetes (132–134). In a type 2 animal model of diabetes
[Goto-Kakizaki (GK) rats], Up4A-induced contraction of renal
artery rings was shown to be increased due to the activation of
the cyclooxygenase (COX)/thromboxane (Tx) receptor pathway
(61). Similar observations were found in type 2 diabetic Otsuka
Long-Evans Tokushima Fatty (OLETF) rats (135). In these
OLETF rats, enhanced contraction was further increased with
aging and suppressed by COX inhibition (135). Interestingly,
increased Up4A concentration was detected in circulating plasma
levels of human juvenile hypertensives (136). Furthermore,
in mesenteric resistance arteries of diet-induced obesity rats,
sympathetic nerve-mediated vasoconstriction is augmented,
and involves upregulation of purinergic P2X1 signaling (62).
Taken together, these studies suggest a potential role for
P2X1 in vascular complications during hyperglycemia, obesity,
and diabetes.

The role of P2Y1 in modulating vascular smooth muscle
function in response to hyperglycemia and diabetes is unclear.
Interestingly, however, a study employing P2Y1 knockout

(P2Y−/−
1 ) mice, which present increased blood glucose levels

(10mM compared to 8mM in wild type animals), showed that
this receptor plays a physiological role in the maintenance of
glucose homeostasis by regulating insulin secretion (137, 138).
Although this mechanism is not directly involved in smooth
muscle cell regulation of contractility, it highlights the need of
subtype-specific purinergic receptor modulators for therapeutic
use in order to avoid side-effects.

In mesenteric arteries from GK rats, the expression of
P2Y4 was found to be decreased compared with control
groups, and P2Y2/4-mediated contractions were shown to be
increased (74). The diabetes-related enhancement of ATP-
mediated vasoconstriction was due to P2Y receptor-dependent
activation of the cPLA(2)/COX pathway. However, the cellular
type (endothelial cell vs. smoothmuscle cell) responsible for these
effects was not identified in this study.

A role for P2Y6 receptors in modulating Ca2+ signaling and
activation of the transcription factor NFATc3 during chronic
elevations in extracellular glucose has been described (48). NFAT
has been linked to vascular development during embryogenesis
(139) and to cause enhanced vascular excitability in hypertension
(140). Nilsson et al., demonstrated that high glucose promoted
both nuclear translocation of NFATc3 and decreased its export
from the nucleus via a P2Y6-dependent increase in intracellular
Ca2+concentration (48). In this study, elevations in glucose
(11.5–20 mmol/L) led to a global rise in intracellular calcium
concentration through an autocrine/paracrine activation of P2Y6

receptors and subsequent activation of calcineurin, combined
with inhibition of glycogen synthase kinase 3 (GSK3-b), and c-
Jun N-terminal kinase (JNK). This combined action leads to
an increase in NFAT nuclear accumulation and transcriptional
activity, presenting this transcription factor as a P2Y6-dependent
metabolic sensor in the vascular wall with relevance for vascular
dysfunction in diabetes. Interestingly, NFAT3c activation has
been shown to downregulate Kv channels (140) and BKCa

channels (141), which indirectly increases L-type Ca2+ channel
function leading to enhanced excitability of smooth muscle cells.
Therefore, the activation of P2Y6 receptors following exposure
to elevated levels of glucose could contribute to the activation
of a molecular cascade leading to enhanced vascular contractility
in diabetes.

In aorta of a mouse model of streptozotocin (STZ)-induced
diabetes, P1A1 receptor-mediated signaling is modified without
changes in overall protein expression (85). This study shows
that P1A1 receptor-mediated vasoconstriction was decreased,
and P1A2A receptor-mediated vasodilation impaired in diabetic
mice compared to control mice. The differences were attributed
to changes in receptor sensitivity. The authors showed no
differences in vascular reactivity in mesenteric arteries of diabetic
mice, revealing the differences in tissue specific signaling. In
addition, adenosine and adenosine receptors have important
non-vascular regulatory roles on glucose homeostasis and lipid
metabolism and therefore in the development of diabetes that
can contribute to vascular complications observed during this
pathological condition (142).

Recently, new data examining how acute hyperglycemia alters
vascular smooth muscle excitability have revealed an unexpected
role for a Gs-coupled purinergic receptor that fits the profile of
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P2Y11 (49). Activation of this purinergic receptor in response
to hyperglycemic conditions has been shown to modulate
intracellular Ca2+ signaling and vascular reactivity (49). Given
the unforeseen discovery of this P2Y11 in mediating the glucose
effects in vascular smooth muscle as well as the novel signaling
pathway described, we provide an extended discussion on this
subject. Indeed, this study has great significance as it completely
dissects the molecular events that link high glucose with changes
in vascular reactivity in ex vivo and in vivo experiments utilizing
both animal and human tissue.

P2Y11 and cAMP/AC Signaling in
Hyperglycemia
P2Y11 receptors were first cloned from human samples and
thereafter in other species (59, 78). In a recent study,
immunoreactive bands of expected and similar molecular weight
for P2Y11 were detected in side-by-side samples of human
adipose artery and mouse mesenteric artery lysates (49). Because
the ubiquitous expression P2Y11 in many cell types, including
endothelial cells, expression of P2Y11 was confirmed in freshly
isolated human adipose, and mouse mesenteric vascular smooth
muscle cells using immunofluorescence imaging. Although the
gene for P2Y11 has not been found within the expected region of
the mouse genome, a number of recent rodent annotations has
been made (e.g., XM_008766009.2 and XM_0130655917.2) and a
growing number of functional studies based on pharmacological
data suggest at least the presence of a P2Y11-like receptor
in rodents (78). Nevertheless, while further studies should be
undertaken to confirm the P2Y11-like receptor in rodent tissue,
data suggested the presence of a P2Y11/P2Y11-like receptors in
human and murine vascular smooth muscle, respectively.

Interest for a role for P2Y11 in glucose-induced changes in
vascular smooth muscle Ca2+ homeostasis was fostered after
the unexpected finding that elevated glucose could stimulate L-
type Ca2+ channel activity leading to increased intracellular Ca2+

and vasoconstriction of mouse cerebral arteries via a mechanism
requiring PKA (143, 144). P2Y11 is the only P2Y receptor
subtype that couples to Gs proteins (145), which can stimulate
AC activation to promote cAMP synthesis and PKA activity
[Figure 1, (78, 146)]. Indeed, using innovative Förster resonance
energy transfer (FRET) based cAMP biosensors expressed in
human-derived tsA-201 cells, it was found that application
of the highly selective P2Y11 agonist NF546 (147) increased
cAMP synthesis (49). This NF546-induced cAMP response was
blocked in cells treated with the selective P2Y11 inhibitor NF340
(147), but not with selective P2Y1 and P2Y6 inhibitors (49).
In unpassaged human and mouse vascular smooth muscle cells
expressing the same biosensor as above, similar NF546-induced
cAMP responses were observed (49). Moreover, stimulating
cells with an elevated glucose concentration (e.g., 15–20mM
D-glucose) that is comparable to that observed in diabetic
patients and animal models (28, 143, 144, 148–150), cAMP
synthesis of about the same magnitude as that observed with
application of NF546 was observed. This response was not
further amplified by the simultaneous application of both stimuli
(49), suggesting that they may be acting via activation of the

same signaling pathway. In addition, glucose-induced cAMP
synthesis required glucose transport and metabolization as
experiments in the presence of the membrane impermeable
mannitol or non-metabolizable L-glucose failed to promote
cAMP production (49). Importantly, the glucose and NF546
induced cAMP synthesis (as an independent stimulus or in
combination) in human and mouse vascular smooth muscle cells
was blocked if cells were first pre-treated with NF340. These
findings provided robust data for the involvement of human
P2Y11 and mouse P2Y11-like receptors in elevated glucose-
induced cAMP synthesis.

The classic model for the production of cAMP by GsPCRs,
including P2Y11/P2Y11-like receptors, suggest the involvement
of intermediate regulatory enzymes such as AC [Figure 1, (151,
152)]. Nine membrane-bound AC isoforms have been described
(153). Of these isoforms, AC3, AC5, and AC6 are the most
abundantly expressed in vascular smooth muscle (154–156), and
changes in their expression and/or function have been linked to
vascular complications during diabetic hyperglycemia (157–159).
AC3 and AC6 have been associated with vasodilatory pathways
via regulation of K+ channels (155, 156). Moreover, a reduction
in AC6 expression has been correlated with decreased vascular
smooth muscle relaxation during diabetic hyperglycemia (158).
Intriguingly a recent study revealed that AC5 was necessary
for glucose-induced cAMP synthesis (160). Indeed, cAMP
production in response to elevated glucose was completely
prevented in vascular smooth muscle from AC5 knockout
(AC5−/−), but not wild type or heterozygous (AC5−/+) mice.
The lack of glucose-induced cAMP synthesis in AC5−/− cells was
comparable to results observed in wild type cells treated with the
P2Y11 inhibitor NF340 (160). Thus, it is tempting to speculate
that glucose-induced activation of P2Y11/P2Y11-like receptor
leading to cAMP synthesis proceeds via engagement of AC5. This
exciting possibility should be examined in future investigations.

P2Y11, L-type Ca2+ Channel CaV1.2, and
Myogenic Tone in Hyperglycemia
Evidence linking hyperglycemia to changes in vascular smooth
muscle intracellular Ca2+ dates back decades (161–163). Yet,
the association between hyperglycemia, Ca2+ homeostasis and
purinergic signaling was only reported about 13 years ago
(48), and a more comprehensive mechanism is just surfacing
[Figure 1, (49, 143, 144, 160, 164)]. In this emerging mechanism
(and as stated above), glucose is transported into the cell
likely via one or more glucose transporters. Indeed, vascular
smooth muscle cells express insulin-independent (e.g., Glut1)
and insulin-dependent (e.g., Glut4) glucose transporters (165–
167). While there is evidence for a role for both pathways, pe-
treatment with indinavir, which is consider a selective Glut4
inhibitor (168, 169), prevented glucose-mediated potentiation
of L-type Ca2+ channels in isolated cerebral vascular smooth
muscle cells (49). Once inside the cell, glucose is metabolized
(49, 149). This promotes the release of nucleotides (48, 49,
52, 144, 170, 171), perhaps via pannexins, connexins, P2X7

receptors, or ATP-binding cassette transporters (13). These
nucleotides activate P2Y11 receptors to stimulate the activity of
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FIGURE 1 | Proposed model for regulation of vascular contractility by P2Y11-dependent regulation of L-type Ca2+ channels during hyperglycemia and diabetes.

During hyperglycemic conditions, glucose is transported into the cells via a glucose transporter (GLUT). Inside the cell, glucose is metabolized resulting in the

production of nucleotides (NUC), such as ATP and UTP. These NUC are released to the extracellular space where they activate purinergic receptors coupled to Gs

proteins (i.e., P2Y11 ). Activation of P2Y11 promotes AC5 activity and localized cAMP production. This cAMP microdomain can enable a pool of PKA that is intimately

associated with L-type Ca2+ channels to increase CaV1.2 phosphorylation at S1928, which will potentiate channel activity. Hyperactive L-type Ca2+ channels result in

increased global [Ca2+]i and contraction of vascular smooth muscle. Dotted line is to reflect potential close association between proteins. This figure was created

using Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.

coupled Gs proteins and subsequently AC to generate cAMP
(Figure 1). Data suggest that the AC5 isoform underlies the
glucose-induced cAMP synthesis (160), although more studies
are needed to conclusively link P2Y11 with AC5. Glucose-
induced production of cAMP then activates one of its effector
proteins, in this case PKA, to stimulate L-type Ca2+ channel
activity (Figure 1) (143, 144, 164). The increase in L-type
Ca2+ channel activity is mediated by an elevation in the
phosphorylation state of residue serine 1928 (S1928) in the
pore-forming CaV1.2 α1c subunit (49, 144). This results in
an increase in global intracellular Ca2+ in vascular smooth
muscle cells to promote contraction and vasoconstriction
(Figure 1). Glucose-induced vasoconstriction is observed in
both in ex vivo and in vivo preparations (49, 144, 160),
thus underscoring the significance of the activation of this
signaling pathway.

Support for this mechanism is robust. First, glucose-induced
L-type Ca2+ channel potentiation was prevented if glucose
transport into vascular smooth muscle cells was blocked with
the glucose transporter inhibitor indinavir (144). Second, the
role of extracellular nucleotides was confirmed in experiments in
which the ectonucleotidase apyrase prevented glucose-induced
S1928 phosphorylation, L-type Ca2+ channel stimulation, and
vasoconstriction (49). Moreover, experiments under continuous
perfusion or static bath conditions corroborated the importance
of extracellular nucleotides in potentiating L-type Ca2+ channel
activity upon elevated glucose. Third, genetically depleting
AC5 (e.g. AC5−/−) or pre-treating cells/tissue with the P2Y11

receptor inhibitor NF340 blocked glucose-induced L-type Ca2+

channel stimulation, global increases in intracellular Ca2+, and
vasoconstriction (49, 160). Fourth, cell/arteries pre-treated with

a PKA inhibitor (144) or from a S1928A mouse in which the
phosphorylation of this amino acid residue is prevented (144,
172) failed to show S1928 phosphorylation, L-type Ca2+ channel
potentiation, and vasoconstriction in response to elevated
glucose or the P2Y11 agonist NF546. Based on these data, it
is tempting to speculate that P2Y11, AC5, PKA, and CaV1.2
are part of a signaling complex that facilitate its activation
in response to elevations in extracellular glucose. Consistent
with this possibility, super-resolution microscopy, and proximity
ligation assay experiments have confirmed close association
between subpopulations of these proteins, including CaV1.2 and
PKA (49, 144), CaV1.2 and AC5 (160), and CaV1.2 and P2Y11

(49). Further studies will be required to assess the interaction
between all members of the signaling complex and not just their
link to CaV1.2.

A key question raised by the prior observations is
what is the mechanism(s) for assembly of a potential
P2Y11/AC5/PKA/CaV1.2 signaling complex? It is well-known
that compartmentalization of proteins is facilitated scaffold
proteins such as AKAPs (151). The AKAP 5 isoform (AKAP5;
murine AKAP150 and human AKAP79) is known to interact
with AC5, PKA, and CaV1.2 (173–178). Thus, AKAP5 could
mediate AC5-mediated localized cAMP signaling and PKA
compartmentalization to specifically stimulate vascular L-type
Ca2+ channels upon elevated glucose. Evidence in support of
this notion is provided by data indicating that genetic depletion
of AKAP5 increases the distance between pools of CaV1.2 and
PKA and blocked S1928 phosphorylation, L-type Ca2+ channel
potentiation, and vasoconstriction upon elevated glucose (144).
Whether AKAP5 interacts with AC5 and P2Y11 in vascular
smooth muscle, however, is unknown and should be investigated
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in future studies. These studies may confirm the formation of a
unique signaling complex with broad implications in health and
disease not only in vascular smooth muscle, but other excitable
and non-excitable cells.

VASCULAR PURINERGIC SIGNALING AND
THERAPEUTIC

Drugs affecting purinoreceptor signaling have been tested
in clinical trials for treating diabetic vascular complications.
BVT-115959 (Cambridge Biotechnology), a selective P1A2A

agonist reached Phase II clinical trial for the treatment of
neuropathic pain in diabetic patients with positive results (179).
Unfortunately, the drug was discontinued as the company
terminated its small molecule research program. Sonedenoson,
a P1A2A agonist, later found to be tissue plasminogen activator-
dependent, entered a phase II clinical trial as a topical gel for the
treatment of diabetic ulcers (180). Again, this trial was terminated
due to poor enrollment. Polydeoxyribonucleotide (PDRN) has
also been used for treating poorly vascularized foot ulcers by
increasing neovascularization and angiogenesis and thought to
be mediated through the activation of P1A2A receptors (181).
Although the effect of these drugs seems to be endothelium-
dependent they present purinergic receptor modulation as a valid
clinical strategy that could be extrapolated to vascular smooth
muscle cells.

It is necessary to highlight current limitations for the
use of purinergic modulators as therapeutic options and
further research directions required. There is a lack of
specific agonists/antagonists able to correctly distinguish
between different purinergic subtypes. Investigations into
basic mechanisms can overcome this issue by employing
more generic modulators combined with the use of genetically
manipulated systems or animal models, but in order to translate
basic findings into therapeutic approaches there is an urgent
need for better, more specific drugs. Furthermore, given the
heterogeneity in tissue expression of purinergic receptors and
the different functions carried in different cellular types (e.g.,
vascular smooth muscle cells vs. endothelial cells), basic research
unraveling molecular cascades elicited by purinergic receptors
will facilitate the development of more targeted and cell-specific
therapeutic approaches.

CONCLUSIONS

Purinergic signaling is a key modulator of vascular function
and reactivity. In this review we have examined the expression,
physiological role and their involvement in vascular physiology,
and pathology. We focused on how purinergic receptors and
downstream mediators are responsible for regulating vascular

smooth muscle cell excitability. Furthermore, we have provided
different examples in which this finely tuned purinergic
system can be modified following hyperglycemia and diabetes.
The pathophysiological roles of purinergic signaling in blood
vessels are therefore clear. Given the availability of purinergic
antagonists in clinical trials for different disorders, they represent
promising therapeutic targets. However, it should be noted that
given the ubiquity in expression of purinergic receptors, the
selectivity of therapeutic strategies will be challenging. A major
effort should be put into further understanding the interactions
of purinergic signaling with other established signaling systems
as well as in the development of inhibitors of extracellular ATP
breakdown and transport in combination with more specific
purinergic receptor agonists and antagonists.

Substantial efforts are being directed into understanding
the mechanisms underlying enhanced vascular smooth
muscle excitability during diabetes. In particular, the role
of hyperglycemia in modifying the smooth muscle contractile
state is the subject of intense investigation. Recent studies
provided a direct link between high glucose and activation of
P2Y11 leading to changes in vascular smooth muscle excitability
via engagement of L-type Ca2+ channels (Figure 1). These
studies have uncovered a detailed model of the molecular events
that lead to altered vascular smooth muscle excitability and how
this signaling response to elevations in extracellular glucose is
compartmentalized. The clinical implications of this signaling
complex are significant as they shed light on a mechanism
underlying altered vascular reactivity during hyperglycemia and
perhaps diabetes, providing novel targets that could be exploited
for improving treatment of diabetic vasculopathy.
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