
REVIEWARTICLE

Purinergic signalling and immune cells

Geoffrey Burnstock & Jean-Marie Boeynaems

Received: 4 September 2013 /Accepted: 12 September 2013 /Published online: 29 October 2014
# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract This review article provides a historical perspective
on the role of purinergic signalling in the regulation of various
subsets of immune cells from early discoveries to current
understanding. It is now recognised that adenosine 5′-triphos-
phate (ATP) and other nucleotides are released from cells
following stress or injury. They can act on virtually all subsets
of immune cells through a spectrum of P2X ligand-gated ion
channels and G protein-coupled P2Y receptors. Furthermore,
ATP is rapidly degraded into adenosine by ectonucleotidases
such as CD39 and CD73, and adenosine exerts additional
regulatory effects through its own receptors. The resulting
effect ranges from stimulation to tolerance depending on the
amount and time courses of nucleotides released, and the
balance between ATP and adenosine. This review identifies
the various receptors involved in the different subsets of
immune cells and their effects on the function of these cells.
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Introduction

Although nucleotides, such as adenosine 5′-triphosphate (ATP)
and uridine 5′-triphosphate (UTP), are mainly intracellular, they
are released into the extracellular fluids by variousmechanisms.
One of them is cell damage and death: both necrotic and
apoptotic cells release ATP and other nucleotides that thus
constitute “danger signals” or damage associated molecular
pattern [1–3]. In the absence of cell death, they are also released
in response to various types of stress: mechanical stimulation
(stretch, shear stress) [4], hypoxia or pathogen invasion [5, 6].
Specific mechanisms of release include: exocytosis of secretory
granules, vesicular transport [7, 8] and membrane channels,
such as ATP-binding cassette transporters, pannexins [9–11]
and connexins [12]. In particular, nucleotides are released by
exocytosis during platelet aggregation and synaptic transmis-
sion. For many years, cells of the immune system were not
considered to be innervated, but there is increasing recognition
that nerves can influence the immune system and the field of
neuroimmunology is growing rapidly [13–15].

Once in the extracellular fluids, nucleotides are rapidly
degraded by a variety of ectonucleotidases [16], such as the
ENTPDases, like CD39 that degrades ATP into adenosine 5′-
diphosphate (ADP) and ADP into adenosine monophosphate
(AMP) and CD73/5′-nucleotidase that converts AMP into
adenosine. Receptors for extracellular nucleotides and their
degradation products such as adenosine have been progres-
sively characterized. Subdivision of purinergic receptors be-
tween P1 (adenosine) and P2 (ATP, ADP) was proposed by
Burnstock in 1978 [17]. A further subdivision of P2 receptors
between P2Y and P2X was made in 1985 [18]. It is now well
established that signalling by extracellular nucleotides is me-
diated by these two families of receptors, the molecular struc-
ture of which has been characterized: P2Y receptors are

metabotropic G protein-coupled while P2X receptors are olig-
omeric ion channels.

Numerous reviews on various aspects of purinergic signal-
ling in the immune system are available (Table 1). In the history
and development of knowledge about purinergic signalling,
early workers focussed on adenosine, while those concerned
with ATP rarely referred to adenosine. This is obviously an
inadequate approach since the effects of ATP and adenosine, its
breakdown product that is rapidly produced by
ectonucleotidases, are intimately related. In this review,
purinergic signalling in immune cells will be covered in a
comprehensive and historical way, following the increase in
knowledge from the early discoveries to current understanding.
The review will consider the major subsets of immune cells
and, for each of them, address the mechanisms of nucleotides
release and adenosine generation, as well as the repertoire of
functional P1 and P2 receptors that they express.

Purinergic signalling in the main subsets of immune cells

Polymorphonuclear leukocytes

Neutrophils

P1 receptors Ectoenzymes that hydrolyse ATP have been
observed on guinea pig polymorphonuclear leukocytes
[19–21 ] . I n pa r t i cu l a r , bo th CD39 and CD73
ectonucleotidases are present on neutrophil membranes [22].
Furthermore, neutrophils express mRNA for A1, A2A, A2B

and A3 receptors [23], but the mRNA for A2A and A3 recep-
tors are the most abundant [24]. Adenosine was shown to be a
physiological modulator inhibiting the generation of superox-
ide (O2

−) anion by neutrophils via A2 receptors [25–29]. Not
surprisingly, dipyridamole, which prevents the uptake of
adenosine, thereby increasing extracellular levels, inhibits
O2

− generation by neutrophils [30]. Adenosine also inhibited
the degranulation induced by the chemotactic peptide N-for-
myl-methionyl-leucyl-phenylalanine (fMLP) [28], phagocy-
tosis [31] and the bactericidal function of neutrophils [32]. It
was proposed that the inhibitory actions of adenosine on
neutrophils were due to calcium entry blockade [33–35].
Adenosine inhibited neutrophil respiratory bursts in associa-
tion with an increase in cyclic AMP (cAMP) and reduction in
[Ca2+]i [36, 37]. Occupancy of A2A receptors by adenosine
inhibits fMLP-induced neutrophil activation via cAMP and
protein kinase A regulated events [38]. Caffeine intake results
in increase in cAMP accumulation and decrease in O2

− anion
production in human neutrophils, mediated by A2A receptors
[39]. Activation of A2A receptors also inhibited the expression
and release of various cytokines and chemokines after lipo-
polysaccharide (LPS) stimulation of neutrophils [40]. But
other studies showed that both the A2B and the A3 receptors

Table 1 Reviews on the role of purinergic signalling in the immune
system

General reviews on purinergic signalling in the immune system [474,
537–543]

Immune regulation by extracellular nucleotides [544–551]

Immune regulation by adenosine [552–563]

Ectonucleotidases and immune responses [426, 564–566]

Purinergic signalling in neutrophils [567–569]

Purinergic signalling in eosinophils [570]

Purinergic signalling in mast cells [571, 572]

Purinergic signalling in monocytes [573]

Purinergic signalling in macrophages [574]

Purinergic signalling in microglia [344, 575, 576]

Purinergic signalling in dendritic cells [577, 578]

Purinergic signalling in lymphocytes [579–586]

P2X7 receptors and immune cells [383, 503, 587–589]

P2X7 receptors, macrophage function and bacteria [590–594]
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can also play a role in these inhibitory actions. Tumour ne-
crosis factor-α (TNF-α) production by neutrophils following
renal ischemia-reperfusion was increased in A2B-deficient
mice [41]. Activation of A2B receptors also inhibited fMLP-
induced O2

− production [42]. The A3 receptor is also involved
in the inhibition of O2

− production [43] and of degranulation
[44]. Adenosine downregulated ligand-stimulated leukotriene
B4 biosynthesis in neutrophil suspensions [45], but it potenti-
ated neutrophil cyclooxygenase-2 via A2A receptors [46].

In contrast, there are discrepant reports concerning the action
of adenosine on neutrophil chemotaxis. It was claimed in
1982 that adenosine had no effect on the chemotaxis of
neutrophils, although it did enhance the inhibition of

chemotaxis by 3-deaza-(±)aristeromycin [47]. However, it
was reported later that adenosine promotes neutrophil chemo-
taxis [48], perhaps via A1 receptors [49]. It was shown recent-
ly that the recruitment of neutrophils and other leukocytes in
the lung during influenza infection is reduced in A1-deficient
mice [50]. In contrast, LPS-induced recruitment of neutrophils
in the lung was increased in A2A-deficient mice and experi-
ments with chimeric mice revealed that this involves a direct
inhibitory effect of the A2A receptor in myeloid cells [51].
Similar results were obtained in A2B-deficient mice [52].
Interestingly, in A2A-deficient mice, neutrophils were in-
creased in the alveolar space [51], whereas they were in-
creased in the interstitium of A2B-deficient mice [52]. Chen
et al. [24] showed that adenosine stimulates neutrophil migra-
tion and amplifies the action of chemotactic signals through
A3 receptors that are recruited to the leading edge (see Fig. 1).
In A3-deficient mice, the recruitment of neutrophils was re-
duced in the lung during sepsis [53] and in the colon after
induction of colitis by dextran sulphate [54]. Interestingly
neutrophil chemotaxis requires excitatory signals at the front
and inhibitory signals at the back of cells. This inhibitory
signal at the back might be mediated by adenosine acting on
A2A receptors [55] (Fig. 1).

There is evidence that adenosine can modulate the interac-
tion of neutrophils with pathogens. A3 receptors aggregate in
highly polarised immunomodulatory microdomains of human
neutrophil membranes. They promote the formation of
filipodia-like projections (cytonemes) that can extend up to
100 μm to tether pathogens. Exposure to bacteria or an A3

agonist stimulates the formation of these projections and
bacterial phagocytosis, whereas an A3 antagonist inhibits
cytoneme formation [56].

Neutrophil adherence to endothelium was enhanced via A1

receptors and inhibited via A2 receptors [57, 58]. It is now
believed that adenosine generated from ATP by CD39 and
CD73 on the vascular surface functions as an anti-adhesive
signal for neutrophil binding to microvascular endothelia
through activation of neutrophil adenosine A2A and A2B recep-
tors [59]. Activation of A2A receptors also inhibits expression
of α4/β1 integrin on human neutrophils [60]. Human neutro-
phils activated by fMLP increased the number of cell surfaceβ2

integrins on endothelial cells and induced the shedding of L-
selectin. These effects were inhibited by adenosine, most likely
via the A2A receptor [61]. A2 receptor activation inhibited
neutrophil injury to coronary endothelium [62]. Adenosine also
acts on endothelial receptors, thereby promoting vascular bar-
rier function, providing a mechanism to dampen vascular leak
syndrome during neutrophil–endothelial interactions [63] and
regulating neutrophil chemotaxis [64]. Exposure of human
endothelial cells to hypoxia/re-oxygenation caused increased
neutrophil adhesion, an effect prevented by adenosine [65].
Adenosine also reduced the stimulatory effect of neutrophils

Fig. 1 Proposed model of neutrophil chemotaxis. As previously report-
ed, stimulation of chemoattractant receptors induces local release of ATP
through PANX1 channels at the site that first encounters the
chemoattractant. Autocrine feedback via P2Y2 receptors amplifies the
chemotactic signal and triggers cell polarization, whereby cells assume an
elongated shape, and PANX1, CD39 (NTPDase1) and A3 adenosine
receptors accumulate at the leading edge. In the current study, we found
that A2A receptors are translocated from the leading edge toward the back
of polarized neutrophils and that inhibitory signaling via A2A receptor-
dependent cAMP accumulation inhibits excitatory chemotactic signalling
by blocking FPR-dependent ERK and p38 MAPK activation globally
with the exception of the leading edge. ALP alkaline phosphatase, ADO
adenosine, PIP3 phosphatidylinositol (3,4,5)-triphosphate. (Reproduced
from [55], with permission from the American Society for Biochemistry
and Molecular Biology)
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on tissue factor-dependent coagulant activity of endothelial
cells as a result of the inhibition of neutrophil adhesion to
endothelial cells mediated by A2 receptors [66].

Adenosine might also play a role in the regulation of
neutrophil number. Synergistic effects of granulocyte
colony-stimulating factor and dipyridamole increased neutro-
phil production in mice [67]. Both effects were inhibited by
adenosine deaminase (ADA). Theophylline has an immuno-
modulatory action on neutrophil apoptosis via A2A receptor
antagonism [68].

The expression of adenosine receptors on neutrophils can
be modulated in pathological conditions and following vari-
ous interventions. A2A receptors on freshly isolated human
neutrophils are upregulated after stimulation by LPS or
TNF-α, and this may represent a feedback mechanism to
control inflammation [69]. A2B receptor activity in neutrophils
is reduced in patients with systemic sclerosis [70]. A 4.6-fold
decrease in adenosine-mediated inhibition of neutrophils from
patients with septic shock was reported [71]. Hypertonic
saline upregulates A3 receptor expression on activated neutro-
phils and increases acute lung injury after sepsis [72].
Alterations in the functional expression of both A2A and A3

receptors in human neutrophils treated with pulsing electro-
magnetic fields have been reported [73, 74].

P2 receptors ATP induces an increase in [Ca2+]i in human [75]
and mouse [76] neutrophils. ATP and UTP, acting via P2U (i.e.
P2Y2 and/or P2Y4) receptors, coupled to the inositol 1,4,5-
trisphosphate pathway and increased [Ca2+]i [37]. This was
associated with a priming of neutrophils for enhanced O2

−

generation when stimulated by other agonists [37, 77, 78].
The release of Ca2+ from thapsigargin-sensitive intracel-
lular stores is essential for this nucleotide-induced prim-
ing in human neutrophils [79], indicating mediation via
P2Y receptors. Enhanced O2

− responses of rat neutro-
phils stimulated by formyl chemotactic peptide were
evoked by ATP and ADP, whereas adenosine and
AMP were inhibitory [80–82]. ATP and UTP also stim-
ulated granule secretion from human neutrophils [83,
84] and potentiated the secretion induced by chemotac-
tic peptides [78]. They also induced neutrophil aggrega-
tion [78, 85].

Human neutrophils release ATP from the leading edge of
the cell surface to amplify chemotaxic signals and direct cell
orientation by feedback via P2Y2 receptors (Fig. 1) [24, 55,
86]. The importance of this mechanism in pathology is dem-
onstrated by studies showing that the infiltration of neutro-
phils in the smoke-injured lung [87] and in the liver damaged
by toxic agents [88] is decreased in P2Y2 knockout (

−/−) mice.
Chen et al. [24] also showed that neutrophil ectonucleotidases
hydrolyze ATP to adenosine, which, via A3 receptors, also
promoted cell migration (Fig. 1). In agreement with this
concept, both P2Y2 and A3 receptors control the recruitment

of neutrophils to the lungs in a mouse model of sepsis [53].
Neutrophil chemotaxis requires excitatory signals at the front
and inhibitory signals at the back of cells that regulate cell
migration. P2Y2 receptors, as well as A3 receptors, were
shown to contribute to excitatory signals at the front, while
adenosine acting on A2A receptors contributed to the inhibi-
tory signal at the back [55] (Fig. 1).

The P2Y14 receptor was shown to be functionally
expressed on human neutrophils [89], and uridine-
diphosphate (UDP)-sugars promoted Rho-mediated signalling
and chemotaxis in human neutrophils [90], which was
blocked by a P2Y14 antagonist [91].

Neutrophil apoptosis induced by ATP was inhibited by
P2Y11 receptor activation, and it was suggested that targeting
of P2Y11 receptors could retain the immune functions of
neutrophils and reduce the injurious effects of increased neu-
trophil longevity during inflammation [92]. A later paper
showed that P2Y11 receptors mediate ATP-enhanced chemo-
tactic responses of rat neutrophils [93].

RT-PCR and Northern blot analysis revealed the presence
of P2X7 receptors on neutrophils and 2′ (3′)-O-(4-
benzoylbenzoyl) ATP (BzATP), a potent P2X7 receptor ago-
nist, stimulated production of O2

− [23, 94]. A role of P2X7 in
protection against neutrophil apoptosis has been reported [95,
96]. Neutrophil accumulation in the skin during croton oil-
induced irritant contact dermatitis was reduced in P2X7-defi-
cient mice [97]. However, it was claimed more recently that
human neutrophils do not express P2X7 receptors [98]. In an
RT-PCR study of human neutrophils, mRNA for P2X1 was
strongly expressed, while mRNA for P2X4 and P2X5 was
weakly expressed and P2X7 mRNA was not detected

Fig. 2 P2 receptors expressed by human eosinophils. a P2Y receptors. b
P2X receptors. (Reproduced from [110], with permission from Elsevier)
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[99]. P2X1 receptors mediate neutrophil chemotaxis via
Rho kinase activation [100]. A study using P2X1 recep-
tor knockout mice led to the conclusion that P2X1

receptors play a protective role in endotoxaemia by
negatively regulating systemic neutrophil activation,
thereby limiting the oxidative response, coagulation,
and organ damage [101].

Eosinophils

P1 receptors A3 receptors were identified on human eosino-
phils and their activation led to increased [Ca2+]i [102].
However, the role of adenosine and A3 receptor signalling
on this cell type remains controversial with both pro- and anti-
inflammatory activities of adenosine being reported.
Adenosine was shown to potentiate the production of O2

−

by guinea pig pulmonary eosinophils [103]. However, an
inhibition of degranulation and O2

− anion release from human
eosinophils was observed later and shown to be mediated by
A3 receptors [104]. In human eosinophils, adenosine inhibits
chemotaxis via the A3 receptor [105, 106], whereas a stimu-
latory effect has been observed in eosinophils of ADA-
deficient mice [107].

P2 receptors Nucleotides were shown to stimulate human
eosinophils, and it was suggested that since ATP is released
from autonomic nerves and activated platelets, it could mod-
ulate the migration and other activities of eosinophils in vivo
[76]. Thrombin-stimulated platelets secrete ATP, a chemotac-
tic factor that attracts eosinophils [108]. ATP was shown to be
a potent activator of eosinophils, suggesting a role for ATP in
the pathogenesis of eosinophilic inflammation as an activator
of pro-inflammatory effector functions [109]. Expression of
P2Y1, P2Y2, P2Y4, P2Y6, P2Y11 and P2X1, P2X4, P2X5 and
P2X7 receptor mRNA has been observed in human eosino-
phils (see Fig. 2) [99, 110]. It was also shown in this paper that
purinoceptors mediate increase in [Ca2+]i and the production
of reactive oxygen intermediates. The functional characteriza-
tion of P2Y and P2X receptors on human eosinophils was
undertaken, and it was shown that UTP and ATP had a greater
stimulatory effect on the production of reactive oxygen me-
tabolites, actin polymerization and chemotaxis than the selec-
tive P2X receptor agonists α,β-methylene ATP and BzATP,
suggesting a predominant role of P2Y receptors [111].
However, P2Yand P2X agonists had similar effects regarding
intracellular calcium transients and the adhesion molecule
CD11b. In a study of human eosinophils, ATP was shown to
trigger secretion of eosinophil cationic protein, probably via
P2Y2 receptors, while ATP induced interleukin (IL)-8, proba-
bly via P2Y6, P2X1 and P2X7 receptors [112]. Autocrine
release of ATP and P2 receptors, presumably P2Y2, were
shown to play a pivotal role in human eosinophil degranulation
and production of pro-inflammatory cytokines in response to

the endogenous danger signal, crystalline uric acid [113].
Human eosinophils respond also to ADP via P2Y12 receptors
to elicit eosinophil secretion of peroxidase [114]. The use of
knockout mice has allowed us to demonstrate the crucial role of
P2Y2 receptors in the accumulation of eosinophils in the lungs
during allergic inflammation. This involves both a direct che-
motactic effect of ATP mediated by the eosinophil P2Y2 recep-
tor [115] and an indirect effect on endothelial cells, where ATP
via P2Y2 stimulates the expression of VCAM-1 that mediates
eosinophil adherence and infiltration, and its soluble form that
is chemotactic for eosinophils [116].

Basophils

P1 receptors It was reported that human basophils have a
receptor for adenosine that mediates inhibition of immuno-
globulin (Ig)E-mediated histamine release [117, 118]. In later
papers, it was shown that the inhibitory effect of adenosine is
mediated by an A2 receptor and cAMP increase [119–121].

P2 receptors Activation of permeabilised rat basophilic leu-
kaemia cells (RBL-2H3) by adenosine-5′-O-(3-thio)triphos-
phate led to secretion of allergic and inflammatory mediators
[122]. In a recent paper, it was shown that degranulation and
histamine release from human basophils, associated with type
1 allergy, was evoked by UTP and particularly UDP, suggest-
ing mediation by P2Y2 and/or P2Y4 and P2Y6 receptors
[123].

Mast cells

P1 receptors Potentiation of A23187 calcium ionophore-
induced mast cell release of histamine by adenosine was
initially reported [124]. Anti-IgE-induced release of histamine
from mast cells was also enhanced by adenosine [125–130],
as was β-hexosaminidase release from bone marrow-derived
mast cells [131]. Histamine release from human adenoidal
mast cells induced by concanavalin A or acetylcholine was
also enhanced by adenosine [132]. Although other mecha-
nisms have been proposed [133, 134], the potentiation of
histamine release by adenosine appears to be mediated by
A3 receptors, since it was mimicked by selective A3 agonists
[135, 136] and abolished in A3-deficient mice [137].
Furthermore, it was shown that the increase of cutaneous
vascular permeability and extravasation of plasma proteins
in response to adenosine was abolished in mast cell-deficient
mice as well as in A3-deficient mice [138]. Similarly,
adenosine-induced bronchoconstriction was attenuated in
mast cell-deficient and A3-deficient mice [139].

The response of human lung mast cells to adenosine was
biphasic: low concentrations of adenosine potentiated release
of histamine, while high concentrations elicited inhibition
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[140]. Adenosine also inhibited IgE-dependent degranulation
of human skin mast cells via A2A receptors [141]. Both A2A

and A2B receptors were identified on mouse bone marrow-
derived mast cells [142]. Using knockout mice, it was dem-
onstrated that the inhibition of mast cell degranulation by
adenosine in mediated by the A2B receptor, while the com-
bined action of A2B and A2A receptors is responsible for the
inhibition of cytokine production [143]. However, the role of
adenosine receptors in mast cell regulation is more complex,
since the stimulatory effect of adenosine on the release of
angiogenic factors such as vascular endothelial growth factor
(VEGF) was shown to involve a cooperation between A2B and
A3 receptors [144, 145]. Furthermore, in umbilical cord
blood-derived mast cells, IL-4 increased the potentiating ef-
fect of adenosine on degranulation via an upregulation of A2B

receptors, whereas these receptors were shown previously to
be inhibitory in murine mast cells [146].

P2 receptors ATP was reported early to evoke calcium-
dependent histamine release with degranulation of rat mast
cells [147–152]. It was suggested that the source of ATP may
be innervating nerve fibres [153, 154], as discussed below. A
correlation was shown between the ATP levels in rat perito-
neal mast cells and histamine released by the anaphylactic
reaction and compound 48/80 [155, 156]. ATP was shown to
induce cytokine expression and apoptosis via P2X7 receptors
on murine mast cells [157], supporting the earlier recognition
of ATP-induced pore formation in rat peritoneal mast cells
[158]. Interestingly, colitis was improved in mast cell-
deficient mice as well as in those mice reconstituted with
P2X7

−/− mast cells, showing the role of mast cell activation
by ATP via the P2X7 receptor in intestinal inflammation
[159]. ATP-induced cytokine and chemokine expression
could also be mediated by P2X1 and P2X3 receptors on
murine mast cells [160]. Functional expression of P2X1,
P2X4 and P2X7 receptors in human lung mast cells was
presented [161]. Mast cells are a major source of protein
arginine deiminase, and it was shown that ATP induced pro-
tein arginine deiminase 2-dependent citrullination in mast
cells via P2X7 receptors [162].

G protein-coupled P2Y receptors were also shown to me-
diate mast cell activation [163, 164]. UDP-glucose acting via
P2Y14 receptors was shown to be a mediator of mast cell
degranulation and considered as a potential therapeutic target
for allergic conditions [165]. In a recent paper, all P2Y
receptor subtypes were shown to be expressed in vari-
able levels by human LAD2 mast cells [166]. Although
P2Y4 and P2Y11 receptors were highly expressed, they
did not appear to play a major role in degranulation,
whereas P2Y14 receptors did.

Autonomic nerves as well as sensory-motor nerves inner-
vate immune cells and release ATP as a cotransmitter in close
vicinity of immune cells [167]. Indeed in accordance with the
definition of the autonomic neuroeffector junction, close con-
tact of nerve varicosities with effector cells in effect consti-
tutes innervation, albeit of a transient nature [168, 169]. Mast
cells were the first claimed to be innervated [170]. Antidromic
stimulation of sensory nerves increased degranulation of mast
cells in the skin, and this effect was mimicked by ATP [171].
Close opposition of nerve varicosities containing small and
large vesicles and mast cells in the mucosa of intestine was
shown with electron microscopy [154, 172] and also in cere-
bral blood vessels [173] (Fig. 3). Synovial mast cell activity
that contributes to inflammation in joints was shown to be
influenced by both unmyelinated afferent and sympathetic
efferent nerves [174]. Sympathetic and trigeminal sensory
nerve fibres influence rat dural mast cells and have been
shown to play a role in the pathophysiology of vascular
headache [175]. Functional interactions between sensory
nerves and mast cells of the dura mater have been described
in both normal and in inflammatory conditions [176]. Vagus

Fig. 3 a Close apposition between rat mast cell protease 1 immunoreac-
tive and calcitonin gene-related peptide immunoreactive nerve fibres
observed by confocal microscopy. b Ultrathin section of rabbit middle
cerebral artery showing granular cells (G) separated by a distance of less
than 200 nm. V varicosities; arrowheads basement membranes. Magni-
fication, ×29374. (a Reproduced from [176] and b from [173], with
permission from Elsevier)
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nerve stimulation modulates histamine content in mast cells in
the rat jejunal mucosa [177]. From a study of co-cultures of
nerves and mast cells, it was concluded that ATP released
from activated mast cells was an important mediator to acti-
vate nerves [178, 179]. While substance P released from
nerves activated mast cells, ATP released from mast cells in
response to anti-IgE antibody activated superior cervical gan-
glia neurons. Few investigations have been carried out about
the influence of nerves on non-mast cell immune cells, but
evidence has been presented that nerve fibres form close
relationships with other immune cells, such as eosinophils
[180], macrophages [181], and T and B lymphocytes
[182–184].

Section summary

Adenosine and ATP have opposite effects on O2
− generation

and other functions of neutrophils: adenosine has an inhibitory
effect, mediated mainly by A2A and A2B receptors, while ATP
has a potentiating effect. On the other hand, ATP and adeno-
sine cooperate to amplify the migration of neutrophils induced
by chemotactic signals: this involves a stimulatory effect

mediated by P2Y2 and A3 receptors expressed at the front of
the neutrophils and an inhibitory effect of A2A receptors
expressed at the back of the cells.

ATP via P2Y2 receptors also plays an important role in the
migration of eosinophils and their accumulation in the lungs
during allergic inflammation. Adenosine exerts a dual effect
on mast cell degranulation: stimulation through A3 receptors
and inhibition via A2A and A2B receptors.

Monocytes, macrophages and microglia

Monocytes

P1 receptors Adenosine was initially reported to inhibit the
production of the second complement component (C2) of
human monocytes [185], and this effect was later shown to
be mediated by A2 receptors [186]. Subsequently, it was also
shown that A1 receptors were expressed on cultured human
monocytes and rheumatoid synovial fluid mononuclear
phagocytes [187]. Enhancement of Fcγ receptor-mediated
phagocytosis was induced via A1 receptors, while A2 recep-
tors mediated reduction of Fcγ phagocytosis in cultured

Fig. 4 Hypothetical sequence of events leading to P2X7 receptor and
pannexin 1 (panx-1)-mediated inflammasome activation. Pathogen-asso-
ciated molecular patterns (PAMPs) bind to Toll-like receptors (TLRs) and
drive interleukin (IL)-1β gene expression and accumulation of the pro-
cytokine. Extracellular ATP binds to the P2X7 receptor and triggers K+

efflux and panx-1 activation. The functional significance of K+ efflux is
unknown, although it might facilitate or even precipitate inflammasome
activation. Likewise, the mechanism of panx-1 activation by the P2X7

receptor is unknown. Panx-1 in turn activates the inflammasome. Data
suggest that the ion-carrying activity of panx-1 is unnecessary for
inflammasome activation. The activated inflammasome then cleaves

pro-IL-1β. Thus, stimulation of the inflammasome by extracellular ATP
can be split into two steps: (a) recruitment and activation of panx-1 by the
P2X7 receptor and (b) activation of the inflammasome by panx-1. Colour
coding: white PAMP, red TLR, green NALP3 inflammasome, orange
protein–protein interaction domains, further subdivided into orange

square, ASC apoptosis-associated speck-like protein containing a cas-
pase-recruitment domain and orange octagon, pyrin domain; yellow
FIIND domain, light blue caspase domain (Casp-1), dark blue biologi-
cally active IL-1β and IL-1β propiece, violet P2X7 receptor, light green
panx-1. (Reproduced from [210], with permission from Elsevier)
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monocytes. TNF-α production in human monocytes was
inhibited by P1 receptor agonists [188]. Both A2A and A2B

receptors were shown to be involved in the inhibition of
TNF-α production [189]. Activation of A2A receptors also
inhibited IL-12 and stimulated IL-10 production by human
monocytes [190, 191]. These actions may contribute to sup-
pression of Th1 responses. However, the effect of P1 receptor
agonists on cytokine release from human mononuclear cells
was shown to depend on the specific Toll-like receptor (TLR)
subtype used for stimulation: the A2A agonist CGS21680
inhibited TLR4-mediated TNF-α release, but potentiated
TLR3- and TLR5-mediated IL-6 release [192]. Activation of
A2A receptors also inhibited LPS-induced IL-18 production,
expression of adhesion molecules and production of TNF-α,
in human monocytes [193, 194]. Activation of A1 receptors
promoted multinucleated giant cell formation by human
monocytes [195]. Adenosine analogues were shown to pro-
duce apoptosis of human mononuclear cells via A2A and A3

receptors [196].

P2 receptors ATP and ADP were initially shown to increase
[Ca2+]i in monocytes and to regulate the activity of adhesion
receptors CD11b/CD18 [197]. ATP and ADP activated human
promonocytic U-937 cells apparently via different P2 receptor
subtypes [198]. mRNA for P2X7 and P2Y2 receptors was
shown to be expressed by human THP-1 monocytic cells
and monocytes, and the presence of these receptors was
supported by pharmacological data [199–201]. P2X7 receptor
expression in THP-1 monocytes was positively modulated by
pro-inflammatory stimuli and negatively modulated by
cAMP, a classic anti-inflammatory second messenger [202].
P2X7 receptors mediated ATP-induced IL-1β release from
human and canine monocytes [203–205], an effect requiring
priming by LPS [206]. This mechanism plays a major role in
the physiological control of IL-1β secretion by monocytes.
Indeed microbial components acting on different pathogen-
sensing receptors, as well as the danger signals uric acid and
C3a, induced the activation of human monocytes and their
secretion of IL-1β and IL-18 through a process involving, as
an initial event, the release of ATP [207–209]. This was
followed by the autocrine stimulation of P2X7 receptors and
inflammasome activation [210] (Fig. 4). Indeed, IL-1β secre-
tion was inhibited by apyrase as well as by P2X7 antagonists.
Additional evidence in favour of the involvement of P2X7was
the observation that the P2X7 receptor polymorphism
Glu496Ala, which is associated with a loss of function, im-
paired ATP-induced IL-1β release from human monocytes
[211].

ATP was initially described as a chemoattractant for mono-
cytes [212, 213]. More recently apoptotic thymocytes were
found to release nucleotides leading to the recruitment of
monocytes [3]. This release is mediated by pannexin 1 chan-
nels, as demonstrated by the use of pharmacological inhibitors

and small interfering RNA (siRNA), and involves the activa-
tion of pannexin 1 by caspases [9]. Monocyte recruitment by
apoptotic cells supernatants, demonstrated inter alia in the
murine air-pouch model, was decreased in P2Y2

−/− mice,
leading to impaired clearance of the apoptotic cells. These
data clearly identify ATP as a find-me signal acting through
the P2Y2 receptor that recruits monocytes in order to clear
apoptotic cells.

Other effects of extracellular nucleotides on monocytes
include increased surface expression of Mac-1 integrin
[214], secretion of IL-8 that might involve P2Y2 and P2Y6

receptors [215, 216], inhibition of soluble HLA-G secretion
[217], secretion of VEGF [218] and modulation of phagocy-
tosis [219]. These last 3 effects involve P2X7 receptors. In
human monocytes, ATP was reported to increase cAMP via
the P2Y11 receptor, and thereby to inhibit proinflammatory
cytokines production and to increase the release of IL-10
[213].

Macrophages

P1 receptors Chemotaxis and lysosomal secretion were
shown to be inhibited by adenosine and analogues in the
mouse macrophage cell line RAW 264 or murine peritoneal
macrophages [220, 221]. Adenosine was reported to inhibit
TNF-α expression, induced by LPS in the mouse macrophage
cell lines J774.1 [222] and RAW264.7 [223], whereas it
potentiated nitric oxide synthase (NOS) expression induced
by LPS in RAW 264.7 mouse macrophages [224, 225].
Interferon (IFN)-γ upregulated A2B receptor expression in
macrophages [226], while TNF-α or LPS induced A2A ex-
pression via nuclear factor-κB, as part of a feedback mecha-
nism for macrophage deactivation [227, 228]. TNF-α release
from macrophages was inhibited by adenosine via A2A and
A2B receptors [229–232] and IL-10 production was augment-
ed by adenosine acting through A2B [233] or A2A [234, 235]
receptors. Interestingly, it was shown that pro-inflammatory
macrophages (M1 cells that release TNF-α) have a low ex-
pression of ecto-nucleotidases and rate of ATP hydrolysis as
compared to anti-inflammatory macrophages (M2 cells that
release IL-10) [236]. A2A receptors also upregulated the ex-
pression of peroxisome proliferator-activated receptors [237]
and hypoxia-inducible factor 1 [238]; this could contribute to
the anti-inflammatory and tissue-protecting action of adeno-
sine. A2A receptors mediated upregulation of vascular endo-
thelial growth factor expression in murine [239] and human
[240] macrophages. On the other hand, activation of A3 re-
ceptors stimulates matrix metalloproteinase-9 secretion by
macrophages [241], and glucocorticoids promote survival of
macrophages through stimulation of A3 receptors [242].

P2 receptors Early reports showed that ATP permeabilised
the plasma membrane to fluorescent dyes [243, 244],
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promoted cation fluxes [245–247], increased [Ca2+]i, induced
a respiratory burst and O2

− generation [248, 249], inhibited
phagocytosis [250] and induced cytotoxicity [251] and cell
lysis [252] in a variety of macrophage populations. ATP was
also shown to stimulate phosphoinositides hydrolysis and
eicosanoid synthesis in mouse peritoneal macrophages
[253]. Oxidized ATP (oxATP) was shown to irreversibly
inhibit the permeabilization of the plasma membrane, but
not the fast mobilization of Ca2+ induced by ATP in macro-
phages, supporting the expression of P2X7, then called P2Z,
receptors in the J774 macrophage cell line [254]. P2X7 recep-
tors were also shown to be expressed by BAC1.2F5 mouse
macrophages, mediating both pore-forming and phospholi-
pase (PL)-D activity [255], and in human monocyte-derived
macrophages [256, 257].

Later studies demonstrated the involvement of the P2X7

receptor in several responses of macrophages to danger, in
particular the proinflammatory response mediated by IL-1β
secretion, bacterial killing and the associated macrophage
death. ATP was shown to promote the maturation and release
of IL-1β from macrophages [258, 259], via P2X7 receptors
[260, 261]. ATP-induced secretion of IL-1β was abolished in
macrophages from P2X7-deficient mice and involved
inflammasome assembly and caspase-1 activation
[262–264]. Activation of the inflammasome and release of
IL-1β in macrophages dying through autophagy [265] or
stimulated by serum amyloid A [266] involved the release of
ATP and the activation of P2X7. P2X7

−/− mice showed in-
creased survival after lung adenoviral infection, resulting from
a decreased production of IL-1β by macrophages [264].
These mice were also protected against smoke-induced lung
inflammation and emphysema, as a result of decreased acti-
vation of lung macrophages [267].

P2X7-mediated ATP-induced killing of mycobacteria by
human macrophages was initially reported in 1997 [268].
This seminal observation was later confirmed in numerous
studies. Mycobacterial killing involved phagosome–lysosome
fusion [269] that was induced by the rise of Ca2+ and the
activation of PLD resulting from P2X7 activation [270]. It was
decreased in macrophages from P2X7

−/−mice [271]. Infection
by mycobacteria upregulated the expression of P2X7 and its
activation by ATP not only enhanced intracellular bacterial
killing but also induced the apoptosis of macrophages [272] or
autophagy [273]. This dual response was missing in macro-
phages from P2X7

−/− mice [271]. ATP-induced bacterial kill-
ing was abrogated in macrophages from individuals homozy-
gous for a loss of function P2X7 polymorphism [274] and
reduced by 50 % in heterozygous subjects [275]. Additional
polymorphisms leading to similar consequences were de-
scribed later [276]. Furthermore, the pattern of gene expres-
sion in response to ATP was different in patients with tuber-
culosis and controls, suggesting that a defective function of
P2X7 might lead to the development of tuberculosis [277].

Infection by parasites, such as Leishmania amazonensis [278,
279] and Toxoplasma gondii [280, 281], also increased the
expression of P2X7 that mediated a dual response of parasite
killing and macrophage apoptosis.

The P2X7 receptor is also involved in various additional
responses of macrophages. ATP released by LPS increased
NOS expression and NO production in RAW 264.7 macro-
phages via P2X7 receptors [282–288]. The P2X7 receptor was
also associated with the generation of reactive oxygen species
(ROS) [289–291] and leukotriene B4 [279, 292]. Activation of
P2X7 receptors on macrophages induces the activation and
release of tissue factor and thus favours thrombosis [293,
294]. Phagocytosis of nonopsonised beads and heat-killed
bacteria was increased by P2X7 over-expression, showing that
it can behave as a scavenger receptor, but this effect was
inhibited by ATP [219, 295]. Loss of function polymorphisms
of P2X7 and P2X4 receptors were associated with reduced
phagocytosis and were overrepresented in patients with mac-
ular degeneration [296]. P2X7 receptors play a role in the
generation of macrophage-derived giant cells, a hallmark of
chronic inflammation [297]. Spontaneous cell fusion was
indeed described in macrophage cultures expressing high
levels of the P2X7 receptors [298]. Furthermore, the formation
of multinucleated giant cells was inhibited by P2X7 antago-
nists and in macrophages from P2X7-deficient mice [299,
300].

Despite the dominant role of P2X7 in macrophages,
evidence has accumulated to support the role of addi-
tional receptors. Multiple P2X and P2Y receptor sub-
types were identified in mouse J774, spleen and perito-
neal macrophages [301]. In an extensive study, mRNA
for P2X1, P2X4, P2X5, P2X7, P2Y2, P2Y4, P2Y6, P2Y11,
P2Y13 and P2Y14 receptors were all expressed by human
alveolar macrophages [302]. It was suggested that other
P2X receptor subtypes, in addition to P2X7 receptors,
were involved in the ATP-mediated current in human
macrophages [303]. In particular it was shown that a
small slowly-desensitising ATP-induced current was
abolished in P2X4

−/− mice [304]. This P2X4 response
might contribute to the P2X7-induced cell death that
was reduced by siRNA against P2X4 [305, 306]. It has
been reported that HIV binding to macrophages stimu-
lates the release of ATP and that P2X1 is necessary for
the entry of HIV in macrophages [307]. P2Y receptors
are also expressed and functional. Low concentrations of
ATP were shown to activate PLC and IL-6 transcription
[308]. Studies of P2Y2 and P2Y4 receptor knockout mice
led to the conclusion that P2Y2 receptors are the domi-
nant P2Y receptor subtype in mouse peritoneal macro-
phages [309]. Nucleotides, released by apoptotic cells,
through pannexin 1 [310], act as ‘find-me’ signals to
promote P2Y2-dependent recruitment of phagocytic mac-
rophages (as well as monocytes and dendritic cells
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(DCs)) and this recruitment is reduced in P2Y2-deficient
mice [3]. The chemoattractant effect of C5a on macro-
phages was amplified by the release of ATP and the
autocrine stimulation of P2Y2 and also P2Y12 receptors
[311]. P2Y2 receptors also mediate potentiation of pros-
taglandin E2 release involved in the induction of NOS
[312, 313] and stimulate the production of monocyte
chemoattractant protein-1 (MCP-1)/chemokine (C-C motif)
ligand 2 (CCL2) [314]. Furthermore LPS potentiated
nucleotide-induced inflammatory gene expression via upreg-
ulation of P2Y2 receptors [315]. P2Y6 receptor expression

also increased following macrophage activation [309].
Indeed the amount of IL-6 and macrophage inflammatory
protein-2 released in response to LPS was significantly en-
hanced in the presence of UDP, and this effect was lost in the
macrophages of P2Y6 knockout mice [316]. Activation of
P2Y6 receptors increased the clearance of Escherichia coli

and improved survival to peritonitis through the release of
MCP-1 and enhancement of macrophage chemotaxis [317].
The P2Y11 receptor was also reported to be functional in
macrophages [318]. These authors observed that ATP released
from LPS-activated macrophages by vesicular exocytosis

Fig. 5 Independence of P2Y12 receptor-mediated migration and P2Y6

receptor-mediated phagocytosis in microglia. a Release/leakage of ade-
nine nucleotides/nucleosides and uridine nucleotides from injured neu-
rons. When neurons or cells are injured or dead, high concentrations of
ATP (∼mM) and UTP at a concentration of less than 10 % are leaked.
Compared with ATP/ADP/adenosine, UTP/UDP should be transient and
localized signals. b Changes in P2Y12 and P2Y6 receptors in microglia
according to their activation stages. Insert shows pharmacological char-
acterization of P2Y6 receptor. UDP is a selective agonist to the P2Y6

receptor, and thus, it does not stimulate P2Y12, P2X4, A1, or A2A recep-
tors. Similarly, the P2Y6 receptor is a very selective receptor for UDP, and
therefore, is not activated by ATP, ADP, or adenosine (Ado). Resting
microglia express no or only faint P2Y6 receptors; whereas, they express

P2Y12 receptors adequately. When microglia are activated, they increase
P2Y6 receptors; whereas, they decrease P2Y12 receptors. Only when
activated microglia meet UDP at the injured sites do they sense UDP as
an eat-me signal. c Microglial migration and phagocytosis are controlled
by distinct P2 receptors. When microglia sense ATP/ADP by P2Y12

receptors, they extrude their processes, followed by migration toward
the injured sites. These microglial motilities are not affected by UDP/
P2Y6 receptors. When activated, microglia upregulate P2Y6 receptors,
and if they sense the eat-me signal UDP, they start to phagocytose the
dead cells or debris. The phagocytic responses are not affected by the
activation of P2Y12 receptors nor by other P2 or P1 receptors.
(Reproduced from [344], with permission from Springer)
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activated the P2Y11 receptor, leading to a M1 polarisation
characterized by an increased production of IL-12 [318].

Microglia

P1 receptors The first evidence of a role of adenosine and its
receptors in microglia was derived from the observation of
effects of propentophylline, a neuroprotective xanthine deriv-
ative that increases the extracellular concentration of adeno-
sine by inhibiting its transport into cells [319]. Propentofylline
was shown to inhibit the production of ROS by microglial
cells [320, 321], their uptake of amyloid precursor protein
[322, 323] and their proliferation and release of TNF-α [324].
Further studies showed that microglia express all subtypes of
adenosine receptors. Enhanced activation of microglia associ-
ated with worsened demyelination and axonal damage was
observed in A1 receptor knockout mice subjected to experi-
mental allergic encephalomyelitis [325]. ATP-triggered mi-
gration of microglia was inhibited in A1

−/− as well as
CD39−/− mice [326]. The A3 receptor is also involved in
microglial process extension and migration [327]. On the
other hand, ATP acted as a repellent for LPS-treated microglia
and induced process retraction; these actions were associated
with the upregulation of A2A receptors [328]. A2A receptor
knockout mice also displayed enhanced microglial activation
in a model of experimental autoimmune encephalomyelitis
(EAE) [329].

P2 receptors It was initially reported that ATP, but not ADP,
induced an inward current in microglia [330], associated with
an increase in cytosolic Ca2+ [331]. Further pharmacological
studies suggested that these responses were mediated by P2Y
receptors [332, 333]. It was later shown that the ATP effect on
Ca2+ influx was mimicked by BzATP and inhibited by oxATP,
supporting the role of the P2z or P2X7 receptor [334]. This
receptor was shown to mediate the secretion of IL-1β induced
by ATP or by LPS via the release of ATP [335], and to induce
microglia cell death [336] as well as microglia-mediated inju-
ry of neurons [337]. The P2X7 receptor was also shown to be
involved in microglial activation by amyloid β [338]. After
nerve injury, the P2X4 receptor was upregulated in the spinal
cord and selectively expressed in microglia [339]. The tactile
allodynia induced by nerve injury was suppressed by anti-
sense oligodeoxynucleotides silencing P2X4 receptors.
Knockdown of the P2X4 receptor by siRNA inhibited migra-
tion of microglia [340].

Following brain injury, microglia extrude processes and
migrate toward sites of tissue damage. Polarisation, process
extension and chemotaxis did not occur in P2Y12-deficient
mice, while baseline motility was normal [341]. Furthermore,
in living P2Y12-deficient mice, branch extension toward sites
of cortical damage was decreased. Microglial activation leads
to the downregulation of P2Y12 receptors and the upregulation

of P2Y6 receptors [342, 343]. Activation of P2Y6 receptors by
UDP stimulates phagocytosis and the uptake of microspheres.
In vivo an upregulation of P2Y6 was observed following
administration of kainic that damages neurons, leading to
microglia activation. Taken together these findings show that
ADP, acting through P2Y12, is a find-me signal for microglia,
whereas UDP, acting on P2Y6, behaves as an eat-me signal
[344] (Fig. 5).

Section summary

ATP released from apoptotic cells constitutes a find-me signal
that attracts monocytes/macrophages, an action mediated by
the P2Y2 receptor. It stimulates bacterial killing and macro-
phage apoptosis thereby contributing to decrease the bacterial
and parasite burden: this action is mediated by the P2X7

receptor. ATP also exerts a proinflammatory effect through
the secretion of IL1-β, which is mediated by the P2X7 recep-
tor and NLRP3 inflammasome.

In contrast, adenosine exerts an inhibitory effect on
monocytes/macrophages mediated by A2A and A2B receptors.

Multiple P1 and P2 receptors have been shown to play a
role in microglia. The P2X7 receptor is involved in IL-1β
secretion and cell death. P2Y12, P2X4, A1 and A3 receptors
stimulate process extension and migration, whereas the A2A

receptor is inhibitory. On the other hand the P2Y6 receptor is
upregulated in activated microglia and triggers microglial
phagocytosis.

Dendritic cells

P1 receptors

CD39 and CD73 ectonucleotidases [345] as well as A1, A2A

and A3 but not A2B receptors [346] are expressed by human
monocyte-derived DCs. In immature DCs, adenosine induced
calcium transients but no increase in cAMP. This resulted in
actin polymerization, chemotaxis [346] and increased expres-
sion of co-stimulatory molecules [347]. Maturation of DCs by
LPS resulted in downregulation of A1 and A3 receptor
mRNA, whereas A2A receptors were still expressed [346]. In
these mature DCs, adenosine increased cAMP and inhibited
IL-12 and TNF-α production, whereas it enhanced IL-10
secretion [346, 347]. These results show that adenosine can
act as a chemotaxin for immature human DCs and induce their
semi-maturation, characterized by a reduced capacity to in-
duce a Th1 polarisation of CD4+ T lymphocytes [347].
Adenosine via cAMP also decreased the capacity of human
DCs to prime CD8+ T cells [348].

In murine monocyte-derived DCs, adenosine also impaired
maturation and inhibited the production of IL-12, leading to
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tolerance: this effect was mediated by the A2B receptor instead
of the A2A receptor active in human cells [349–351]. IL-27 is a
cytokine produced by DCs that suppresses Th1 and Th17
responses and limits inflammation in several experimental
models. The suppressive action of IL-27 was mediated at least
in part by the induction of CD39 in DCs and the resulting
accumulation of adenosine [352]. However, the observation
that adenosine could also promote the development of murine
Th17 cells, via the A2B receptor- mediated production of IL-6,
added an additional complexity [353]. The A2B receptor was
upregulated in EAE and A2B knockout mice developed less
severe EAE than wild-type mice [354]. In human
plasmacytoid DCs, adenosine plays a dual role by initially
recruiting immature cells to sites of inflammation, an effect
mediated by A1 receptors, and by subsequently inhibiting the
production of IL-6 and IFN-α, via the A2A receptor [355].

The physiological importance of the inhibitory effect of
adenosine on DCs is supported by observations on the role of
ADA. Indeed the high ADA activity of DCs might help to
maintain them in an active state [356]. ADA has been shown
to be upregulated in DCs from non-obese diabetic (NOD)
mice leading to their spontaneous activation and autoimmune
Tcell activation [357]. Paradoxically DCs fromCD39−/−mice
exhibited impaired antigen-presenting capacity and ability to
induce a Th2 response [358, 359]. This resulted in decreased
allergic contact hypersensitivity [358] and allergic airway
inflammation [359]. This was explained not by a defect in
adenosine formation but by an increased accumulation of ATP
leading to the desensitization of P2Y receptors (see below).

Finally it must be mentioned that inosine has been
reported to induce DCs chemotaxis independently from
adenosine receptors [360]. On the other hand AMP was
shown to mimic the inhibitory effects of adenosine on
DCs, and these effects were maintained in CD73-
deficient mice and could not be explained by adenosine
contamination of AMP [361]. The mechanisms of these
effects remain unknown.

P2 receptors

Human DCs express mRNA for almost all known P2 recep-
tors [345, 362–364] and extracellular nucleotides exert multi-
ple effects on them ranging from chemotaxis to control of
cytokine release and induction of cell death. P2Y but not P2X
agonists are potent chemotactic stimuli for immature but not
mature DCs [364]. Chemotaxis was associated with a rise in
intracellular Ca2+ and actin polymerization and involved the
activation of Gi. Allergen challenge was shown to cause acute
accumulation of ATP in the airways of asthmatic subjects and
mice with experimentally induced asthma that resulted in the
recruitment of DCs [1]. That recruitment was mediated by
the P2Y2 receptor. Indeed, in vitro the ATP-induced mi-
gration of P2Y2-deficient DCs was strongly decreased as

compared to DCs from wild-type mice [115]. The attrac-
tion of DCs to the lungs in a model of allergic inflam-
mation induced by ovalbumin was also decreased in
P2Y2

−/− mice [115]. Decreased attraction of DCs to the
airways might also explain the higher mortality of P2Y2

−/−

mice with lung infection by pneumonia virus of mice, as a
consequence of lowered immune response and viral clear-
ance [365]. Interestingly, the formation of ATP gradients
at a site of inflammation can also inhibit transiently the
migration of human DCs, via the P2Y11 receptor, and
thereby prolong the time of encounter with antigens
[366]. Conversely, antagonism of the P2Y11 receptor might
improve the migration of antigen-loaded DCs to the lymph
nodes. In addition to these direct effects on migration,
ATP modulated the expression of chemokine receptors,
with an induction of CXCR4 and a reduction of CCR5
[367], and inhibited the release of CCL2 and CCL3
chemokines [368].

Nucleotides were also shown to modulate the matura-
tion of DCs. Schnurr et al. [369] initially reported that
ATP stimulates the expression of CD83 and the secretion
of IL-12 by human monocyte-derived DCs. This action
was shown to be mediated by the P2Y11 receptor and a
rise in cAMP [370]. However, la Sala et al. [371] con-
firmed that ATP stimulates the maturation of DCs but
observed an inhibitory effect on the release of IL-12
stimulated by LPS, leading to an impaired ability to
initiate Th1 responses. These apparent discrepancies
were resolved by the demonstration that ATP, via
P2Y11, increased IL-12p40 but inhibited the production
of IL-12p70 [372]. Furthermore ATP synergized with
LPS and sCD40L to stimulate IL-10 production. This
led to the conclusion that ATP, via the P2Y11 receptor,
induces a semi-maturation of DCs, characterized by an
increased expression of co-stimulatory molecules and a
decreased production of bioactive IL-12, leading to
increased Th2 responses or tolerance. Additional studies
showed that ATP via the P2Y11 receptor produced
an impressive upregulation of the expression of
thrombospondin-1 and indoleamine 2,3-dioxygenase that
could play a major role in tolerance [373]. A systematic
study of the effect of ATP on gene expression in DCs
revealed a P2Y11-mediated stimulatory effect on the
expression of VEGF-A, that has immunosuppressive
effects in addition to its angiogenic action [374], and
amphiregulin, that can exert an angiogenic and tumori-
genic action [375].

Other P2Y receptors were found to be expressed on
monocyte-derived DCs. ATP can modulate the function of
DCs directly via a cAMP increase mediated by P2Y11

receptors and indirectly via its degradation into ADP,
which acts on P2Y1 receptors; these distinct mechanisms
combine to inhibit inflammatory cytokine production,
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particularly IL-12, but have a differential effect on IL-10
[376]. P2Y12 receptors are also expressed by murine DCs
and their activation increased antigen endocytosis with
subsequent enhancement of T cell activation [377]. UDP,
but not UTP, stimulated the release of CXC-chemokine 8
from mature human DCs, via P2Y6 receptors [378]. UTP
and UDP also acted on murine DCs to mobilize intracel-
lular Ca2+ and to induce cytokine production [379].
Human immature monocyte-derived DCs express P2Y14

receptors that mediate an increase in [Ca2+]i in response
to agonists [380]. In plasmacytoid DCs, UTP, UDP and
UDP-glucose were shown to inhibit IFN-α production
[381].

Like in macrophages, ATP induced in DCs the
NLRP3/ASC inflammasome signalling complexes that
drive proteolytic maturation and secretion of the proin-
flammatory cytokines IL-1β and IL-18 [382, 383]. This
action was mediated by the P2X7 receptor, which is
functionally expressed on DCs [384]. P2X7 receptors
were shown to be present in microvesicles shed from
DCs together with IL-1β and caspase-1 and caspase-3
[385]. P2X7-deficient DCs fail to release IL-1β in
response to LPS and ATP [386]. This might explain the
resistance to allergic contact dermatitis observed in
P2X7-deficient mice [386]. Additional P2X7-mediated
effects of ATP on DCs include shedding of CD23
[387], release of tissue factor-bearing microparticles
[388] and apoptosis [389, 390].

In the intestine ATP released from commensal bacteria
induced the differentiation of Th17 CD4+ cells via the activa-
tion of lamina propria CD11c+ antigen-presenting cells, ap-
parently via a P2X receptor [391]. The number of Th17 cells
was increased in mice deficient in ENTPDase7, which is
preferentially expressed on epithelial cells of the small intes-
tine [392].

Section summary

ATP can exert multiple actions on DCs, mediated by distinct
receptors: chemotaxis mediated mainly by the P2Y2 receptor;
semi-maturation, characterized by increased expression of co-
stimulatory molecules and inhibition by IL-12, which is me-
diated by the P2Y11 receptor and associated with a Th2
response or tolerance; induction of NLRP3/ASC
inflammasome signalling complexes, mediated by the P2X7

receptor, that leads to secretion of IL-1β and a proinflamma-
tory effect; and enhanced antigen endocytosis mediated by the
P2Y12 receptor.

Adenosine acting on the A2A or A2B receptor exerts com-
plex effects on DCs: as ATP it impairs Th1 polarisation and
favours Th2 and/or tolerance, but it can also favour Th17 cell
development.

Lymphocytes

T and B lymphocytes

P1 receptors Adenosine was reported to cause an increase in
cAMP in lymphocytes as well as in thymocytes [393–396]
and to have powerful inhibitory effects on lymphocyte prolif-
eration [397] and the immune response in humans, particular-
ly those who have inherited deficiency of ADA [398]. The
destruction of tumour cells by mouse lymphocytes was shown
to be inhibited by adenosine, and this effect was potentiated by
an inhibitor of ADA [399]. It was suggested that this effect of
adenosine may contribute to the lack of immune response
associated with ADA deficiency.

ATPase, ADPase, 5′-nucleotidase and ADA have been
shown to be present on human lymphocytes [400–403].
Although it was claimed that adenosine release results from
the intracellular degradation of ATP to adenosine, later studies
showed that extracellular adenosine is generated following the
release of ATP and its extracellular breakdown [404, 405].
Human B lymphocytes showed high degrading activity, while
T lymphocytes were reported to be unable to degrade extra-
cellular nucleotides [404]. However, ecto-ATPase activity was
reported on cytolytic T lymphocytes [406], and E-NTPDase
activity was upregulated within 15 min of T cell stimulation
[407]. Furthermore, a subset of T regulatory (Treg) cells
expresses CD39 and CD73 ectonucleotidases (see below).
However it was suggested that CD39 is not the exclusive
switch of the immune system to trigger immunosuppression,
and that an alternative adenosine-generating axis is operating
[408]. This axis involves the enzymes CD38 (a nicotinamide
adenine dinucleotide (NAD+) nucleosidase) and CD303a (an
ecto nucleotide pyrophosphatase).

A2A receptors were shown to be expressed on T lympho-
cytes [409–411]. A2B receptors were also shown to be
expressed on human T lymphocytes, and it was suggested
that they play a role in lymphocyte deactivation by adenosine
[412]. In another study, it was suggested that A2A receptors
vary in their expression on T cell functional subsets and may
regulate cytokine production in activated T lymphocytes
[413]. There was lower expression of A2A receptors on B
cells. A3 receptor mRNA and protein were shown to be
expressed in both resting and activated human lympho-
cytes and under activating conditions they are upregu-
lated [414]. Stimulation of A1 and A3 receptors were
reported to block the inhibitory action mediated by A2A

receptors [415]. Exposure to adenosine prior to antigen-
ic stimulation also induced a desensitization of cAMP
accumulation leading to a stronger response to antigenic
stimulation [416].

Conclusive evidence for the major role of A2A receptor in
the regulation of T lymphocytes came out of the study of A2A-
deficient mice. cAMP accumulation in response to adenosine
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was decreased in T cells from A2A
+/− mice and almost

abolished in those of A2A
−/− mice [417]. In CD4+ T cells, a

selective A2A agonist had a major inhibitory effect on the T
cell receptor (TCR)-mediated production of IFN-γ and this
effect was decreased by 50 % in cells of A2A

+/− mice and
completely abolished in those from A2A

−/− mice [418]. A2A

receptor activation inhibited T cell proliferation and IL-2
production whether the cells were expanded under Th1 or
Th2-skewing conditions, and again this inhibition was
abolished in A2A-deficient mice [419]. Furthermore, TCR
stimulation caused a rapid increase in A2A mRNA, both in
Th1 and Th2 cells [418, 419].

Adenosine via A2A receptors exerts other effects on Tcells.
The apoptotic effect of adenosine on resting T cells was
inhibited in A2A

−/− mice [417, 420]. On the other hand,
adenosine via A2A receptor inhibited activation-induced cell
death of already activated T cells [421]. Furthermore, the A2A

receptor contributes to the maintenance of a normal number of

naive T cells by inhibiting TCR-induced activation [422].
Adenosine also inhibits T cell mobility [423], migration to
lymph nodes [424] and adhesion to the endothelium [425].

The importance of the A2A-mediated inhibitory effect of
adenosine on T cells was underscored by the discovery that
CD39 is selectively expressed on Treg cells (see Fig. 6) [426]
that are essential for maintaining peripheral tolerance [427,
428]. In human T cells, CD39 is expressed primarily by
immunosuppressive Treg cells that express the Foxp3 tran-
scription factor, and its activity is enhanced by TCR ligation
[429]. CD73 is also expressed on CD4+/CD25+/Foxp3 Treg
cells [430–432]. However, subsets of Treg cells expressing
CD39, but not CD73, have been identified [433]. Inhibition of
ADA activity further enhanced Treg-mediated immunosup-
pression [432].

Several studies have shown the impact of adenosine-
mediated inhibition of T cells in various models of disease.
Defective adenosine-induced cAMP accumulation and

Fig. 6 The CD39/CD73 pathway modulates regulatory T cell (Treg)
activity. The activation of T cell receptor (TCR), expressed on Tregs,
induces CD39 activity. This increment of ATP-metabolizing activity is
critical for the immunosuppressive activity of Tregs because it facilitates
the pericellular generation of adenosine, a substantial component of the
immunosuppressive and anti-inflammatory functions of Tregs. The in-
hibitory action of Treg-derived adenosine can be ascribed to the activation

of A2A receptors expressed on T effector cells, which undergo reduced
immune activity. In addition, adenosine generation triggers a self-rein-
forcing loop of Treg functions because the stimulation of A2A receptors
expressed on these cells elicits their expansion and increases their immu-
noregulatory activity. (Reproduced from [426], with permission from
Elsevier)
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immunosuppression were reported in T lymphocytes of pa-
tients with systemic lupus erythematosus [434, 435]. A2A

receptor activation during reperfusion after ischemia protected
the myocardium from infarction and this effect was dependent
on an inhibition of T cell accumulation [436, 437]. A2A

receptor agonists attenuated allograft rejection and alloantigen
recognition by an action on T lymphocytes [438], suppressed
the development of graft-versus-host disease [439, 440] and
attenuated experimental autoimmune myasthenia gravis
[441]. CD39 and CD73 expressed on Treg cells led to a local
accumulation of adenosine that protected against Helicobacter
induced gastritis [442]. Treg cells suppressed contact hyper-
sensitivity reactions by a CD39 and adenosine-dependent
mechanism [425]. In other models, the action of adenosine
proved to be deleterious. A2A-deficient mice were protected
from the lethal effect of sepsis, due to preserved lymphocyte
function and decreased immunosuppressive IL-10 [443].
CD39 and CD73 expressed on ovarian cancer cells generate
adenosine that exerts an immunosuppressive effect, which

was relieved by siRNAs against CD39 and CD73 and by an
A2A antagonist [444]. In HIV infection, Treg inhibitory effects
were relieved by CD39 downregulation and reproduced by an
A2A agonist [445, 446]. Furthermore, a polymorphism of the
CD39 gene was identified, that is associated with downregu-
lation of CD39 and slower progression to AIDS [446].

Few studies have been performed on B lymphocytes.
Accumulation of cAMP produced by adenosine in B cells
stimulated by Staphyloccocus aureus suppressed IgM produc-
tion [447]. On the other hand B cells coexpress CD39 and
CD73 and adenosine inhibited B cell proliferation and cyto-
kine expression [448]. Activated B cells also inhibited T cell
proliferation and cytokine production [448].

P2 receptors Early reports showed that ATP protected rat
lymphocytes against the loss of intracellular enzymes
into the medium [449, 450] and that receptors for ATP
were present on lymphocytes [451]. The action of ATP
on lymphocytes is complex: ATP was reported to

Fig. 7 Purinergic signalling in Tcell activation. Antigen recognition by T
cells involves the formation of an immune synapse between a T cell and
an antigen-presenting cell (APC). The immune synapse contains a large
number of signalling molecules that are required for T cell activation,
including T cell receptors (TCRs), MHC molecules, co-stimulatory re-
ceptors and the purinergic signalling receptors P2X1, P2X4 and P2X7. In
response to TCR and CD28 stimulation, pannexin 1, P2X1 receptors and
P2X4 receptors translocate to the immune synapse. ATP released through

pannexin 1 promotes autocrine signalling via the P2X receptors. Con-
finement of ATP in the immune synapse results in a powerful autocrine
feedback mechanism that facilitates the signal amplification required for
antigen recognition. P2 receptors expressed and ATP released by APCs
may also have important roles in regulating the antigen recognition
process. NFAT nuclear factor of activated T cells. (Reproduced from
[474], with permission from Springer)
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stimulate DNA synthesis in a subpopulations of T cells
[452, 453], but ATP was also shown to be highly toxic
to human lymphocytes and to thymocytes, causing per-
meabilization of the plasma membrane and cell death
[454, 455]. It was later shown that ATP increased cy-
tosolic Ca2+ in mouse thymocytes [456–458] and stim-
ulated the PLC pathway in human B lymphocytes [459].
On the other hand, an ATP4− receptor-operated sodium
channel was identified on human lymphocytes [460,
461]. ATP-gated channels were also identified in human
lymphoblasts [462].

Important advances were made in 1994 and the follow-
ing years with the identification on human lymphocytes of
P2Z, now called P2X7, receptors antagonised by oxATP
[463] and by the isoquinoline derivative KN-62 [464].
P2X7 receptors were also identified specifically in human
B lymphocytes [465, 466] and murine T lymphocytes
[467]. P2X7 receptors were implicated in the mitogenic
stimulation of human T lymphocytes purified from periph-
eral blood [468]. ATP and the selective P2X7 agonist
BzATP caused plasma membrane depolarisation and a
Ca2+ influx in T lymphocytes. ATP or BzATP alone had
no effect on lymphocyte proliferation but potentiated the
action of mitogens such as anti-CD3 [468]. Transfection of
lymphoid cells lacking P2X7 receptors with P2X7 cDNA
increased their proliferation [469]. Later studies showed that
TCR stimulation triggers the release of ATP through
pannexin-1 hemichannels [470] and vesicular exocytosis
[471], and upregulates P2X7 expression [472]. siRNA silenc-
ing of P2X7 inhibited T cell activation, which was also lower
in C57BL/6 mice that express a poorly functional P2X7

receptor, as compared to BALB/c mice that express fully
functional P2X7 receptors [472]. Shockwaves increased T cell
proliferation through ATP release and P2X7 activation [473].
Thus ATP released through pannexin 1 channels enhances T
call activation in an autocrine manner (Fig. 7; [474]). But it is
also involved in a paracrine communication that leads to
calcium waves in neighbouring lymphocytes and a reduction
of T cell motility in lymph nodes that would favour T cell
scanning of antigen-loaded DCs [475]. However, P2X7 recep-
tors also induced the shedding of L-selectin (CD62L) from T
cells, which accompanies T cell activation and allows T cells
to move away from lymph nodes and enter the circulation
[476–482].

ATP induced the lysis of CD4+ thymocytes and peripheral
CD4+ T cells [483] and the apoptosis of murine thymocytes
[484, 485]. T lymphocyte subsets express different levels of
P2X7 and high levels are associated with ATP-induced cell
death [486]. P2X7 receptor-mediated cell death was also
shown to differ between different stages of murine T cell
maturation [487]. Interestingly mouse Treg cells express a
higher level of P2X7 and their activation by ATP leads to their
depletion [488, 489]. P2X7

−/− mice have increased levels of

Treg cells [490]. The P2X7 receptor was also involved in T
cell death induced by NAD+ through the ADP-ribosylating
ectoenzyme, ART2. Indeed ART2-catalyzed ADP-
ribosylation activates P2X7 receptors [491–493]. In par-
ticular Treg cells express ART2 and can be depleted by
intravenous injection of NAD+ [494]. However, ATP
(1 mM) enhanced the proliferation and immunosuppres-
sive ability of human Treg cells, whereas it induced
apoptosis of CD4+ T cells [495]. The dual action of the
P2X7 receptor on growth versus death clearly depends on
the concentration of ATP, with stimulatory effects at 250
nM and inhibition at 1 mM [495]. This could be related
to the existence of two states of activation of the P2X7

receptor: cation-selective channel or large conductance
non-selective pore [496].

Numerous studies have shown the importance of the lym-
phocyte P2X7 receptor in various models of inflammatory
diseases. In some of these models, inhibition or deficiency
of P2X7 was associated with decreased immune reactions.
Mycobacterium tuberculosis infected P2X7

−/− mice had an
increased microbial burden in the lung and pulmonary infil-
trates contained a higher number of Treg cells [497]. oxATP
was shown to inhibit T cell-mediated autoimmunity in models
of autoimmune type 1 diabetes and encephalitis in mice [498].
CD38 knockout NOD mice develop accelerated type 1 diabe-
tes. This was corrected by coablation of P2X7 [499]. oxATP
delayed islet allograft rejection [500] and increased cardiac
transplant survival in mice [501]; these effects were associated
with decreased T cell activation. However in other models
P2X7 deficiency was associated with increased immune reac-
tions, illustrating the dual role of P2X7 receptors emphasized
previously. Following oral infection with Listeria

monocytogenes, P2X7-deficient mice showed enhanced CD8
responses in the intestinal mucosa, which can be explained by
the proapoptotic effect of P2X7 on intestinal CD8 cells [502].
Graft versus host disease was enhanced in P2X7

−/− mice, and
this is associated with T cell expansion and reduced Treg cells
[503]. EAE was also exacerbated in P2X7

−/− mice as a result
of decreased apoptosis of T lymphocytes [504] and increased
T cell cytokine production [505].

P2X receptors other than P2X7 have been shown to play a
role in T cell control. RT-PCR studies had shown that P2X1,
P2X2 and P2X6 were expressed by murine thymocytes in
addition to P2X7 [506]. ATP released through pannexin he-
michannels following TCR stimulation amplified T cell acti-
vation not only through P2X7 receptors [472] but also via
P2X1 and P2X4 receptors, as demonstrated by the use of
siRNA [474, 507]. Hypertonic saline is known to increase T
cell function [508]: it acts through the release of ATP and the
activation of P2X1, P2X4 and P2X7 receptors, as shown
also by gene silencing [509]. Both P2X7 and P2X4 are
also involved in the activation of unconventional βγ T
cells [510, 511].
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Although P2X receptors and particularly P2X7 play a ma-
jor role in lymphocytes, there is some evidence for the role of
P2Y receptors as well. Upregulation of P2Y2 receptor mRNA
expression was described as an immediate early gene response
in activated thymocytes [512] and P2Y2 receptors were shown
to be involved in ATP-induced T cell migration [495]. The
P2Y6 receptor was shown to be expressed in activated T cells
infiltrating in inflammatory bowel disease [513]. Antagonists
of the P2Y6 receptor blocked murine T cell activation [514],

but these results must be interpreted with caution since T cells
of P2Y6-deficient mice exhibited an increased activity in a
model of allergic pulmonary inflammation, suggesting that the
P2Y6 receptor plays an inhibitory rather than a stimulatory
role [515]. P2Y14 receptors were shown to be functionally
expressed by mouse spleen-derived T lymphocytes [516].
Adenine nucleotides inhibited CD4+ T cell activation via an
increase in cAMP induced by an unidentified P2Y receptor
[517].

Table 2 Expression profiles and functional responses of the purinergic receptor subtypes in different immune cells

Inflammatory cell type Functional response to purines P2 receptor subtype (expression profile
and/or involvement in functional response)

Neutrophils Undefined roles P2Y1, P2Y4, P2Y11, P2Y14 and P2X7

Calcium mobilization P2Y2

Actin polymerization P2Y2

Primary granule release P2Y2

Chemotaxis P2Y2, P2Y6 and P2X1

Reduced cAMP accumulation P2Y14

Delay in constitutive neutrophil apoptosis P2Y11

Macrophages Undefined roles P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14 and
P2X1–P2X6

Intracellular calcium increase P2Y1, P2Y2, P2Y4, P2Y11, P2X4 and P2X7

IL-1β/IL-18 maturation/release via the NLRP3
inflammasome, caspase-1 and cytosolic K+ depletion

P2X7

Release of cathepins, PGE2, MMP-9 phosphatidilserine
(caspase independent)

P2X7

Promoting chemotaxis/phagocytosis P2Y2, P2Y12, P2X1 and P2X3

Regulation of autophagy P2X4 and P2X7

Multinucleated giant cells formation P2X7

Dendritic cells Undefined roles P2X1, P2X4, P2X5, P2X7, P2Y1, P2Y4, P2Y6

and P2Y11

Regulation in cytokine release P2Y11

DC maturation P2Y11, P2Y12 and P2Y14

Apoptosis P2X7

DC migration P2Y2 and P2Y11

Lymphocytes

B and T cells Undefined roles P2X2, P2X3, P2X5, P2X6 and all P2Y

T cell activation (p38 MAPK activation and IL-2
gene transcription )

P2X1, P2X4 and P2X7

T cell activation (CD62L shedding) P2X7

cAMP accumulation P2Y14

Inhibition of immunosuppressive potential of Tregs P2X7

Natural killer cells Regulation of NK cytoxicity and chemotaxis P2Y11

Eosinophils Undefined roles P2Y1, P2Y4, P2Y6, P2Y11, P2Y14, P2X1, P2X4

and P2X7

Chemotaxis P2Y2

Release of chemokines and cytokines P2Y2, P2X1, P2X7 and P2Y6

Mast cells Undefined roles P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y11,
P2Y12 and P2Y13

Degranulation P2Y13 and P2Y14

Reproduced from [550], with permission from Springer
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Natural killer (NK and NKT) cells

P1 receptors NK cell activity was shown to be inhibited by
adenosine and A2 receptor agonists that increase cAMP [518].
Later studies demonstrated the involvement of A2A receptors
[519]. Adenosine via the A2A receptor inhibited IFN-γ pro-
duction by NKT cells, a subset of T cells with natural killer
activity [520], but increased their production of IL-4 and IL-
10 [521]. Mice were protected against liver reperfusion injury
and concanavalin A (ConA)-induced hepatitis by adenosine
acting on the A2A receptor on NKT cells, and this protection
was abolished in A2A

−/− mice [520, 522]. Sickle cell disease
results in disseminated microvascular ischemia and reperfu-
sion injury that leads to the activation of NKT cells and the
upregulation of A2A receptors [523–525]. Activation of A2A

receptors in NY1DD mice with sickle cell disease reduced
pulmonary inflammation and injury [523]. In a phase I study,
the A2A agonist regadenoson was administered to patients
with sickle cell disease and was shown to inhibit the activation
of NKTcells [524]. A2A

−/−mice were protected against tumor
metastasis, and this protection was associated with increased
NK cell maturation and cytotoxic function [526]. On the other
hand, an A3 receptor agonist was shown to potentiate NK cell
cytotoxic activity [527] and IFN-γ production [528].

P2 receptors Inhibition of human and mouse NK cell reac-
tivity via nucleotide receptors was reported [529–532]. It was
later shown that ATP inhibits cell killing by NK cells via the
P2Y11 receptor and an increase in cAMP [533]. On the other
hand, NKT cells express the P2X7 receptor, the activation of
which can lead to either apoptosis or cell activation
[534–536]. In vitro NAD induced rapid apoptosis of NKT
cells that was mediated by the P2X7 receptor, but its injection
in Con A-treated mice enhanced cytokine production by NK
cells and liver injury, that was decreased in P2X7 knockout
mice [534]. In CD39-deficient mice, apoptosis of NKT cells
was increased leading to protection against ConA-induced
liver injury [535] or hyperoxic lung injury [536].

Section summary

The release of ATP through pannexin hemichannels or vesic-
ular exocytosis amplifies in an autocrine way the TCR-
mediated activation of T lymphocytes. This amplification is
mediated by the P2X7 receptor, and also by P2X1 and
P2X4 receptors. But activation of P2X7 can also induce
T cell death. The resulting effect (activation or death)
depends on the particular subset of T cells and on the
concentration of ATP.

Adenosine exerts inhibitory effects on T lymphocytes,
which are mediated by the A2A receptor. Treg cells over-
express the ectonucleotidases CD39 and CD73 that

sequentially convert ATP into AMP and adenosine, and their
immunosuppressive action is partially mediated by adenosine.

Concluding remarks

Extracellular nucleotides and adenosine exert a variety
of effects on distinct subsets of immune cells via a wide
spectrum of receptor subtypes (Table 2). These actions
can be both stimulatory and inhibitory, and the balance
between the two critically depends on the amount and
time course of nucleotide release. This is consistent with
the role of ATP and its degradation product adenosine
as danger signals that stimulate the immune response
following injury but moderate this response when it
becomes excessive and deleterious.

Neutrophils and eosinophils

ATP released from neutrophils amplifies their attraction by
chemotactic signals via the P2Y2 receptor and after its degra-
dation to adenosine via the A3 receptor, one example of
cooperation between P1 and P2 receptors. The P2Y2 receptor
is also involved in the recruitment of eosinophils in the lung
during allergic inflammation. On the other hand ATP and
adenosine have opposite effects on O2

− production and other
functions of neutrophils: potentiation by ATP and inhibition
by adenosine.

Monocytes/macrophages and microglia

ATP released from apoptotic cells constitutes a find-me signal
that attracts monocytes and macrophages, an action mediated
by the P2Y2 receptor. Via the P2X7 receptor, ATP stimulates
NLRP3 inflammasome activation and IL-1β secretion by
macrophages, their killing of bacteria and their apoptosis.

ADP acting on the P2Y12 receptor induces the polarisation
and migration of microglia. UDP acting on the P2Y6 receptor
stimulates their phagocytic activity. ADP and UDP have, thus,
a complementary action of find-me and eat-me signals, re-
spectively, involving a cooperation between two distinct P2Y
receptor subtypes. The P2X4, A1 and A3 receptors have also
been shown to play a role in microglia migration, whereas the
A2A receptor is inhibitory.

Dendritic cells

ATP can exert an immunostimulatory effect on DCs via P2X7

receptor activation. But it can also activate the P2Y11 receptor
leading to a semi-maturation state characterized by the upreg-
ulation of co-stimulatory molecules and the inhibition of IL-
12 production, which impairs the Th1 response and favours
tolerance or a Th2 response. The balance between these
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opposite effects depends on the amount of ATP released and
the time course of this release.

Other specific functions of DCs can be activated by nucle-
otides via distinct P2Y receptor subtypes: chemotaxis by the
P2Y2 receptor and antigen endocytosis by the P2Y12 receptor.
Adenosine acting on the A2A (human) or A2B (mouse) recep-
tors exerts complex effects on DCs: as ATP it impairs Th1
polarisation and favours Th2 and/or tolerance, but it also
favours Th17 cell development.

Lymphocytes

The release of ATP through pannexin hemichannels or vesicular
exocytosis amplifies in an autocrine way the TCR-mediated
activation of T lymphocytes. This amplification is mediated by
the P2X1, P2X4 and P2X7 receptors. On the other hand, Treg
cells over-express the ectonucleotidases CD39 and CD73 that
sequentially convert ATP into AMP and adenosine, which binds
toA2A receptors on effector Tcells and suppresses their function.

Neuroimmunology

Contrary to earlier beliefs, the evidence that immune cells are
innervated, albeit by nerve varicosities that form occasional
close appositions, is convincing. This will be important for
future studies of neuroimmunology that might reveal addi-
tional roles of ATP and purinergic signalling.
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