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Abstract There is widespread involvement of purinergic sig-
nalling in endocrine biology. Pituitary cells express P1, P2X
and P2Y receptor subtypes tomediate hormone release. Aden-
osine 5′-triphosphate (ATP) regulates insulin release in the
pancreas and is involved in the secretion of thyroid hormones.
ATP plays a major role in the synthesis, storage and release of
catecholamines from the adrenal gland. In the ovary
purinoceptors mediate gonadotrophin-induced progesterone
secretion, while in the testes, both Sertoli and Leydig cells
express purinoceptors that mediate secretion of oestradiol and
testosterone, respectively. ATP released as a cotransmitter
with noradrenaline is involved in activities of the pineal gland
and in the neuroendocrine control of the thymus. In the
hypothalamus, ATP and adenosine stimulate or modulate the
release of luteinising hormone-releasing hormone, as well as
arginine-vasopressin and oxytocin. Functionally active P2X
and P2Y receptors have been identified on human placental
syncytiotrophoblast cells and on neuroendocrine cells in the
lung, skin, prostate and intestine. Adipocytes have been
recognised recently to have endocrine function involving
purinoceptors.
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Introduction

Physiological events in the periphery are locally as well as
centrally regulated. The local regulation is concerned with
precise functional adjustments according to local needs and is
executed predominantly by exocrine/paracrine cells and local
neurons. Endocrine/paracrine cells, which secrete bioactive
peptides, are found in epithelial structures almost everywhere
in the body, including the thyroid (parafollicular cells), epithe-
lium of the airways, the gastro-entero-pancreatic region and the
genito-urinary tract. The peptide hormone-producing endocrine
cells have an endodermal origin. There is a growing number of
reports that purinoceptors on endocrine cells mediate release of
hormones (see [65,338,382,411,487,511,513,514]).

Pituitary gland (hypophysis)

The pituitary gland is the master endocrine gland lying be-
neath the hypothalamus. It has an anterior lobe that secretes:
thyroid-stimulating hormone (TSH), which stimulates growth
of the thyroid gland and releases its hormone; adrenocortico-
tropic hormone (ACTH), which regulates the endocrine activ-
ities of the adrenal cortex which produces cortisol; follicle
stimulating hormone (FSH), which promotes secretion of
oestrogen and the development of eggs and sperm cells;
gonadotrophins; growth hormone; prolactin; luteinising hor-
mone (LH) that releases oestrogen, progesterone and testos-
terone; lipotropin and melanocyte-stimulating hormone
(MSH). The posterior lobe (neurohypophysis) secretes vaso-
pressin (VP) and oxytocin (OT), which are synthesised in the
hypothalamus and transported to the pituitary, where they are
stored before release. The anterior pituitary hormones do not
act on endocrine glands, but directly affect specific tissues;
prolactin causes breast development and milk production and
MSH stimulates pigment cells. There are five cell types in the
anterior pituitary, namely lactotrophs, somatotrophs,
corticotrophs, gonadotrophs and thyrotrophs, as well as pitu-
itary stem cells [161].

Adenosine triphosphatase activity was identified in the
neural lobe of the bovine pituitary gland, giving an early
indication for the presence of purinergic signalling [574].
Adenosine 5′-triphosphate (ATP) was reported early to induce
release of VP from neurohypophysial neurosecretory granules
[403,424]. In another early paper, intraperitoneal injection of
caffeine was shown to cause a rise in plasma corticosterone
and stimulated ACTH release, suggesting that events in the
pituitary-adrenal axis were modulated (at least in part) by an
effect on adenosine receptors [373,474]. Later, adenosine was
shown to regulate the release of ACTH from cultured anterior
pituitary cells [10]. In electron microscopic studies, Ca2+-

ATPase was shown to be present on the plasma membranes
on the granular, but not the non-granular, folliculo-stellate
cells (FSC) of the rat anterior pituitary [490] and nerve
endings [539]. A more recent study has shown that ATP
is released from pituitary cells and then broken down by
ecto-NTPDase1-3 [218]. Inhibiting the activity of ecto-
NTPDases with ARL 67151 led to an increase in ATP
release from perfused pituitary cells and apyrase enhanced
the degradation of released ATP. Pannexins mediate ATP
release in the pituitary gland; pannexin 1 was dominantly
expressed in the anterior lobe, while pannexin 2 expression
was dominant in the intermediate and posterior pituitary
[308]. Pannexin 1 isoforms have been shown to be present
in rat pituitary cells and appear to be associated with P2X2,
P2X3 and P2X4, as well as P2X7 receptor channels and
ATP release [309].

In the cloned pituitary cell line GH3 and rat anterior pitu-
itary cells, adenosine activity via A1 receptors inhibits prolac-
tin release [121,353,416]. A regulatory role for adenosine in
modulating adenylate cyclase activity and reducing prolactin
release from primary cultures of rat anterior pituitary cells in
both basal and vasoactive intestinal peptide (VIP)-stimulated
conditions has been suggested [284]. Adenosine, acting
through A1 receptors, however, was claimed to stimulate the
release of prolactin from the anterior pituitary in vitro [609].
More recently studies show that hormone-containing endo-
crine cells express mostly A1 receptors, while non-endocrine
follicle stimulating cells express mostly A2B receptors [438].
Adenosine regulates thrombomodulin and endothelial protein
C receptor expression in FSC [437]. Adenosine stimulated
cells of the hypothalamus-pituitary-adrenal cortical axis [519].
The involvement of A1 receptors has been described in the
inhibition of gonadotrophin secretion of LH and FSH induced
by adenosine acting via A2 in rat hemipituitaries in vitro [414].
A2 receptors have also been implicated in the stimulatory
effects of adenosine on prolactin secretion [415]. ATP, acting
after breakdown to adenosine via A1 receptors, induces
stellation of 37 % of pituicytes and it was suggested that there
is purinergic regulation of pituicyte morphological plasticity
and subsequent modulation of hormone release [461]. Further
VP and OT reverse adenosine-induced pituicyte stellation
[462]. A2B receptors mediate adenosine inhibition of taurine
efflux from pituicytes [417]. It has been claimed that adeno-
sine increases interleukin (IL) 6 and decreases release of
tumour necrosis factor from anterior pituitary cells [445].
Adenosine signalling pathways in the pituitary gland have
been reviewed, highlighting the effects of adenosine on
pituitary cell proliferation and the evidence for opposing
actions on endocrine and FSC [438–440]. Briefly, A1 recep-
tors are expressed in rodent pituitary endocrine cell lines
mediating hormone release, whereas A2B receptors appear to
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be predominant in primary anterior pituitary cell cultures
consisting mainly of FSC mediating stimulation of IL-6
secretion.

Growth hormone releasing hormone (GHRH) is secreted
by arcuate neurons into the hypothalamic portal vessels and
stimulates growth hormone (GH) release by activating GHRH
receptors on somatotrophs. Pulsatile release of GH involves
P1 receptors expressed on somatotroph cells [489]. A2A re-
ceptor gene expression has been reported to occur transiently
during the embryological development of the anterior and
intermediate lobes of the pituitary gland [581]. There are no
reports of A3 receptors in the pituitary gland. Adenosine,
acting via A1 receptors, specifically blocks the terminal N-
type Ca2+ channel in isolated rat neurohypophysial terminals,
leading to inhibition of the release of both VP and OT [580].
The functions of the pituitary gland are tightly controlled by
neuronal and hormonal afferents of the brain. The roles of
melatonin and adenosine in rodent pituitary function have
been discussed [258]. Adenosine stimulates connexin 43 ex-
pression and gap-junctional communication in FSC [305].

Adenosine is an important regulator of the functions of
pituitary tumour GH4 cells, which secrete prolactin and
growth hormone, by modulating, in an autocrine manner, the
activity of L-type voltage-dependent calcium channels
[439,612].

Adenosine increased release of IL-6 from primary anterior
pituitary cell cultures [445] and the implications of this finding
for inflammation and tumorigenesis were discussed [439].
Adenosine-induced IL-6 expression in FSC is mediated via
A2B receptors coupled to protein kinase (PK) C and p38
mitogen-activated protein kinase (MAPK) [440].

Extracellular ATP was shown to activate phospholipase
(PL) C and mobilise intracellular calcium in primary cultures
of sheep anterior pituitary cells [566]. Later it was shown that
uridine 5′-triphosphate (UTP), as well as ATP, were potent
agonists on these cells [117], suggestive of P2Y2 (and/or
P2Y4) receptors on lactotrophs in the rat adenohypophysis
[71]. ATP, adenosine 5′-diphosphate (ADP) and UTP stimu-
late cultured gonadotrophs from rat pituitary gland and
gonadotroph-derived αT3-1 cells, probably mediated by
P2Y2 and/or P2Y4 receptors [91,92]. It was proposed that
ATP represents a paracrine/autocrine factor in the regulation
of Ca2+ signalling and secretion of gonadotrophs consistent
with mediation by P2X2 and/or P2X5 receptor channels
[542].

Molecular cloning and functional characterisation of rat
pituitary P2Y2 receptors were carried out and shown to be
located on rat primary gonadotrophs, GH3 cells, and mixed
sheep pituitary cells [93,94]. An autocrine/paracrine role of
ATP in the regulation of release of prolactin from most (if not
all) mammotrophs was proposed [383].

Evidence was presented for the presence of at least two
types of purinoceptor on all five types of cells in the
anterior pituitary, namely P2Y2 and P2X1, although the
existence of a subpopulation of cells expressing P2X2/3
and P2Y1 was not excluded [575]. P2X2 receptors have
been shown to be localised at the electron microscope level
on pituicytes and a subpopulation of neurosecretory axons
in the rat neurohypophysis [321]. The primary P2X2 recep-
tor transcript in rat pituitary cells undergoes extensive alter-
native splicing, with generation of six isoforms [276]. A
heteropolymeric P2X2 receptor has been claimed to mediate
hormone release from lactotrophs, somatotrophs and
gonadotrophs [512]. The mRNAs for wild-type and spliced
channels were identified in enriched somatotrophs, where
they were shown to be functional, but not gonadotroph or
lactotroph fractions.

It has been proposed that ATP, coreleased with neuropep-
tides from neurohypophysial nerve terminals, acts as a
paracrine/autocrine messenger, stimulating Ca2+ entry via a
P2X2 receptor and secretion of VP, but not OT [550]. ATP
was shown to be released stimulation-dependently from the
rat isolated posterior lobe of the hypophysis to act via P2
receptors for local control of hormone secretion [502]. In
addition, ATP, cosecreted with VP and OT from cells in the
hypothalamus, has been claimed to play a role in the regula-
tion of stimulus-secretion coupling in the neurohypophysis
[299]. A recent study has shown that endogenous ATP po-
tentiates VP, but not OT, secretion from neurohypophysial
terminals [268]. The output of the neurohypophysial hor-
mones VP and OT depends on the frequency and pattern of
firing of their synthesising neurons in the hypothalamus. ATP
released from pituicytes and/or nerve terminals in the hy-
pophysis, when broken down by ecto-nucleotidases to aden-
osine, acts on A1 receptors to modulate release of VP [460].
ATP, acting via P2Y receptors, triggers calcium mobilization
in primary cultures of rat neurohypophysial astrocytes
(pituicytes) ([551]; see [549], for a review of the multifaceted
purinergic regulation of stimulus-secretion coupling in the
neurohypophysis).

Mixed populations of rat anterior pituitary cells express
mRNA transcripts for P2Y2, P2X2, P2X3, P2X4 and P2X7
receptors ([277]; Table 1). The transcripts and functional P2Y2

receptors were identified in lactotrophs and GH3 cells, but not
in somatotrophs or gonadotrophs. Lactotrophs and GH3 cells
also express transcripts of P2X3, P2X4 and P2X7 receptors.
Functional P2X2 receptors were found in somatotrophs and
gonadotrophs, but not in lactotrophs. A recent study reported
that mRNA transcripts for all P2X receptor subunits (except
for P2X5) were expressed in rat anterior pituitary, and of these
the P2X4 mRNA transcripts were the most abundant
[614,615]. They showed that thyrotropin-releasing hormone-
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responsive cells, including lactotrophs, express homomeric
and/or heteromeric P2X4 receptors, which facilitate Ca2+

influx and hormone secretion. Another study also described
P2X7 receptors on GH3 cells and showed that they mediated
increase in [Ca2+]i and depolarisation [101]. ATP, operating
via P2X2 receptors controls the pacemaker activity, voltage-
gated Ca2+ influx and basal LH release in gonadotrophs [613].
A valuable review discusses the complexity of purinergic
signalling in lactotrophs, which express multiple
purinoceptors and also reports the presence of P2X receptors
in thyrotrophs and corticotrophs, although the subtypes were
not identified ([510]; Fig. 1a). Transcripts for P2Y1, P2Y4,
P2Y6 and P2Y12, as well as P2Y2 receptors, were identified in
mixed anterior pituitary cells [217]. It was shown further that
P2Y1 receptors mediated the stimulatory actions of ADP (and
ATP) for prolactin secretion and that of the P2X receptor
subtypes previously recognised, the P2X4 receptors provided
the major pathway for Ca2+ influx-dependent signalling and
prolactin secretion. In the neurohypophysis, extracellular ATP
released from nerve terminals may act directly on pituicytes to
induce K+ efflux via a P2Y receptor [552]. Thus, ATP can act
as a neuron-glial signalling molecule within the
neurohypophysis.

The Tpit/F1 cell line derived from pituitary FSC (glia-like
cells in the anterior pituitary) exhibits responses to ATP con-
sistent with those of normal FSC [89]. It was shown that ATP,
acting via P2Y2 receptors increased both nitric oxide (NO)
secretion and NO synthase (NOS) mRNA in these cells. ATP
actions on FSC in primary culture have also been shown to act
via P2Y receptors in response to ATP coreleased with pituitary
hormones ([558]; Fig. 1b). In a recent study, P2Y1 and P2Y4

receptors were shown to be expressed in the majority of
gonadotrophs and thyrotrophs; P2Y2 receptors were
expressed in a small subpopulation of lactotrophs and almost

all of the FSC; P2Y6 receptors were expressed on macro-
phages; and P2Y12 receptors were expressed on a small sub-
population of unidentified cells in the rat anterior pituitary
[607]. P2X2 receptors were identified on corticotropin-
releasing and thyrotropin-releasing hormone producing neu-
rons [105]. Corticotrophs and somatotrophs were found not to
express P2Y receptors. Cultures of stably transfected GH4C1
rat pituitary cells express P2X7 receptors [264,348].
Purinergic receptor ligands stimulate pro-opiomelanocortin
(POMC) gene expression in AtT-20 mouse pituitary
corticotroph cells. ATP, adenosine and corticotrophin-
releasing hormone act synergistically to promote the expres-
sion of transcription factors of the POMC gene and ACTH
synthesis via different intracellular signalling pathways
([617]; see Fig. 1c). mRNA for A1, A2A, P2X1, P2X3,
P2X4, P2X6, P2X7, P2Y1, P2Y2 and P2Y4 receptors was
identified in corticotroph cells.

Reviews about purinergic regulation of hypothalamic and
pituitary functions are available ([509,513,514]; and see sche-
matic Fig. 2).

Pancreas

The pancreas performs both exocrine and endocrine functions.
It regulates the metabolic states of the body by sensing chang-
es in fatty acids and glucose and responds by secreting insulin
and glucagon. Most of the pancreas is exocrine, consisting of
70-90 % acinar cells and 5-25 % duct cells, varying between
species. Endocrine cells in the islets of Langerhans consist of
only 3-5 % of the pancreas. Pancreatic stellate cells consist of
less than 5 % of the pancreas mass.

The first reports on the role of purinergic signalling in the
endocrine pancreas appeared 50 years ago. Secretion of

Table 1 Purinoceptor subtypes expressed by different endocrine cell types

Cell type Purinergic receptor subtypes

P2X1 P2X2 P2X3 P2X4 P2X6 P2X7 P2Y1 P2Y2 P2Y4 A1 A2A

Lactotrophs X ✓ ✓ ✓ ✓ ✓ ✓

GH3 cells - ✓ ✓ ✓ ✓ ✓

Somatotrophs ✓ X X X X

Gonadotrophs ✓ X X X X ✓ ✓

Melanotrophs ✓

Thyrotrophs (P2X✓)

Corticotrophs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Folliculo-stellate cells (FSC) – – – – ✓ ✓

Hypophyseal pituicytes

(astrocytes) ✓ ✓

GH4Cl cell line ✓

✓receptors present, X receptors absent
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insulin by ATP was reported in 1963 for rabbit pancreas slices
[449], confirmed later in primates [304]. Experiments onATP-
induced insulin release were carried out on isolated perfused
pancreas (e.g. [150,518]).

ATP released together with insulin from pancreatic secre-
tary granules by exocytosis was reported in 1975, comparable
to the release of ATP with noradrenaline (NA) from adrenal
chromaffin granules [298]. ATP was next shown to stimulate
glucagon and insulin secretion from isolated perfused rat
pancreas in 1976, which was dependent on low and high
glucose concentrations, respectively [328]. The ATP released
from secretary granules is broken down toADP and adenosine
monophosphate (AMP) [517] and ectoATPases are present
[303]. Adenosine, resulting from ATP breakdown, inhibited
insulin secretion stimulated by glucose [240]. Adenosine,
ADP and 5′-AMP elicit release of glucagon in isolated per-
fused rat pancreas [582].

Early studies on the role of nucleotides on insulin secretion
came from the laboratory of Mme Marie-Madelaine
Loubatières-Mariani. It was shown, for example, that the
relative potencies of nucleotides that caused insulin release
induced by glucose was ATP≥ADP>AMP. Adenosine had
only weak activity and guanosine triphosphate (GTP), inosine
triphosphate, cytosine triphosphate and UTP were virtually
inactive [329]. It was shown that 2-2′'pyridylisatogen tosylate,
a P2 receptor antagonist, inhibited the insulin secreting action
of ATP [82]. Stimulation of the secretion of glucagon, but not
insulin, by adenosine suggested that α-cells were more sensi-
tive to adenosine than β-cells [330]. There have been some
valuable reviews about various aspects of purinergic endo-
cr ine signal l ing in the pancreas over the years
[50,66,133,219,228,337,382,411,479,515,524]. A recent one
is available about purinergic signalling in diabetes ([67];
Fig. 3).

Both endocrine and exocrine cell activities are regulated by
parasympathetic and sympathetic nerves, in addition to hor-
mones, and autocrine and paracrine mediators [350].
Intrapancreatic parasympathetic nerves are present at day 14
of gestation in the foetal rat pancreas, but there was no
sympathetic innervation at that stage [119]. ATP and acetyl-
choline (ACh) act synergistically to regulate insulin release
[28] and islet oscillations [207], in keeping with their roles as
cotransmitters from parasympathetic nerves. Intrapancreatic
ganglia are involved in the regulation of periodic insulin
secretions and studies of insulin release from the perfused
pancreas after nerve blockade led to the proposal that the islets
communicate via non-adrenergic, non-cholinergic neurotrans-
mission [505]. Effector cells are innervated when they form
close relationships with axonal varicosities [64]. Such rela-
tionships have been shown between sympathetic nerve vari-
cosities and both α- and δ- cells, although less so with β-cells
[451]. Sympathetic nerve stimulation inhibited insulin secre-
tion, probably via α2A receptor mediated opening of ATP-
dependent K+ channels [132,324]. Another study showed that
over-expression of the α2A adrenoceptor contributed to devel-
opment of type 2 diabetes [457]. Sympathetic nerve stimula-
tion regulated exocrine ducts and acinar cells via β-adrenergic

Fig. 1 a Characterization of ion-conducting purinergic receptors
expressed in pituitary cells. Pattern of current signals in GT1 cells
expressing recombinant P2X3, P2X4 and P2X7 receptors. (Reproduced
from [510], with permission from Elsevier.) b Responses of rat pituitary
folliculo-stellate cells in primary culture to ATP (10 μm), UTP (10 μm)
and K+ (50 mm) applied as indicated with horizontal bars above the

traces . The trace is not shown during 10–40 min. The same cell
responded to ATP and to UTP with a 30-min wash. (Reproduced from
[558], with permission from Wiley.) c Schematic representation of the
putative molecular mechanism for the purinergic regulation of pro-
opiomelanocortin (POMC) gene expression in AtT20mouse corticotroph
cells. ATP, adenosine and corticotrophin-releasing hormone (CRH) stim-
ulate the 5′-promoter activity of the POMC gene in a more than additive
manner, suggesting an enhancing role of these compounds in CRH-
mediated adrenocorticotropic hormone (ACTH) synthesis. The ligands
also stimulate the expression of transcription factors of the regulation of
the POMC gene, without enhancing ACTH secretion. The effect of
adenosine and CRH, but not ATP, can be inhibited by a protein kinase
A (PKA) inhibitor, indicating mediation via different intracellular signal-
ling pathways. NuRE Nurr1/Nur77 response element, PLC phospholi-
pase C. (Reproduced from [617], with permission from Blackwell.)
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receptors [314,315,238,381], although its major effect was on
blood vessels where it caused vasoconstriction [238]. Further,
sympathetic nerves (releasing NA and ATP as cotransmitters)
indirectly regulate pancreatic endocrine and exocrine secretion

via actions on parasympathetic ganglionic neurons in the pan-
creas [605]. Different pancreatic cell types possess a number of
purinergic and adenosine receptors and ectonucleotidases, impli-
cating ATP as a parasympathetic/sympathetic cotransmitter.

Fig. 2 Expression of purinergic receptors in the hypothalamus and
pituitary. a Receptors and receptor channels expressed in neurons of
nuclei of the hypothalamus. For paraventricular and supraoptic nuclei,
receptors expressed in parvocellular areas are listed. b Schematic repre-
sentation of the hypothalamopituitary system. Insets indicate expression
of purinergic receptors in secretory and supporting cells in three com-
partments. Note the pattern of expression of purinergic receptors: P2X2R
are expressed in a majority of secretory cells (in anterior and middle
hypothalamic neurons, vasopressinergic nerve endings and anterior pitu-
itary (AP) cells). Supporting cells (astrocytes in the hypothalamus,
pituicytes in the posterior pituitary (PP) and folliculostellate (F-S) cells

in the anterior lobe) do not express P2XRs. Many cells co-express
P2XRs, which facilitate electrical activity, and A1Rs, which silence
electrical activity. P2X7R are also expressed in hypothalamopituitary
cells, but the cell types expressing these channels have not been identi-
fied. In other brain regions, astroglial cells express P2X7Rs. ATP is co-
secreted by neurons making synapses with magnocellular neurons in the
hypothalamus and by both vasopressin and oxytocin-secreting neurons in
the PP. ATP is also released by AP cells through still not well-character-
ized pathways. Green cells, vasopressin (AVP)-secreting neurons; orange
cells, oxytocin-secreting neurons; pink cells, GnRH neurons.
(Reproduced from [509], with permission from Elsevier.)
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Several types of nucleotide-/nucleoside-modifying en-
zymes are expressed in various pancreatic cells. Membrane
Mg2+- or Ca2+-activated adenosine triphosphatase activity in
rat pancreas has been reported [211,214,283,343]. ATP
diphosphohydrolase was identified in pig pancreas, hydrolys-
ing ATP to ADP and AMP [282]. An early study of rat
pancreas showed ATPase, ADPase, 5′-nucleotidase and alka-
line phosphatase activity in the vasculature, endocrine and
exocrine cells [44]. ATPase was present on both endocrine
and exocrine cells, while endocrine but not exocrine cells
expressed alkaline phosphatase (see [187]). ATP-
pyrophosphohydrolase (ecto-NPP) and alkaline phosphatase
were shown in isolated mouse pancreatic islets [69]. Later,
type-1 ecto-nucleoside triphosphate diphosphohydrolase (de-
noted NTPDase/CD39) was purified from pig pancreas [480].
A monoclonal antibody was prepared as a specific inhibitor of
human NTPDase-3, which was expressed in all Langerhans
islet cells [364]. Later, NTPDase-3 was shown to be expressed
in endocrine cells of several species, and ecto-5′-nucleotidase
(CD73) was expressed in rat, but not in human and mouse
[288]. It was also shown that NTPDase-3 modulated insulin
secretion.

Islets of Langerhans are situated throughout the pancreas,
comprising of four cell types, α-cells containing glucagon, β-
cells containing insulin and amylin and δ-cells containing
somatostatin and pancreatic polypeptide-containing cells.

β-Cells

Extracellular ATP stimulation of β-cells results in insulin
secretion (see [109,411,450]) and ATP released from nerves
was proposed to regulate insulin secretion [524]. In 1963, it
was reported that ATP added to the medium surrounding
pieces of rabbit pancreas increased insulin secretion into the
medium [449]. Stimulation of insulin secretion also occured
when ATP was applied to the isolated perfused rat pancreas
[327–329,518] and hamster pancreas [150]. ATP increases
[Ca2+]i in clonal insulin-producing RINm5F cells [15]. ATP
action was found to be glucose-dependent and was exerted via
two different types of P2 receptors: P2X receptors on rat
pancreatic β-cells transiently stimulated insulin release at
low glucose concentrations and P2Y receptors potentiated
glucose-stimulated insulin secretion ([410]; see [479]). Elec-
trophysiological and immunocytochemical evidence has been

Fig. 3 Role of purinergic receptors in regulation of insulin secretion and
β-cell survival. The facilitative GLUT-2 transporter mediates glucose
entry. Glucose metabolism results in production of ATP, which closes
the ATP-sensitive channel, KATP. The channel comprises of four Kir6.2
and SUR1 subunits. Closure of KATP depolarises the cell membrane
potential and thus opens voltage-gated L-type Ca2+ channels eventually
leading to generation of Ca2+ action potentials. Exocytosis of secretory
vesicles containing insulin (and ATP) is triggered by increases in the
cellular Ca2+. ATP can be also released from parasympathetic and sym-
pathetic nerves. P2 receptors can boost and amplify signals associated
with the glucose effect on insulin secretion and on proliferation or
apoptosis of β-cells. P2X receptors facilitate Ca2+/Na+ influx and

membrane depolarisation, and as a result, they can elicit insulin secretion
even at low glucose concentrations. Some P2Y receptors increase cellular
Ca2+ and activate protein kinase C (PKC) pathways. In addition, other
P2Yand adenosine receptors affect the cyclic AMP pathway and possibly
Epac signalling. At high adenosine concentrations, adenosine would be
transported into the β-cell and exert metabolic effects. Receptors leading
to increased insulin secretion are shown in green, those inhibiting insulin
secretion are in red. Receptors affecting cell proliferation are in blue and
those stimulating apoptosis purple. Receptors depicted here are taken
from functional studies and the prefixes refer to rat, mouse or human
receptors. (Reproduced from [66], updated from [382], with permission
from The Society of Endocrinology.)
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presented that P2X1 and P2X3 receptors are expressed by
mouse pancreatic β-cells [484]. It has been shown that the
mitochondrial Ca2+ uniporter is required for sustained in-
crease in cytosolic ATP/ADP ratio and is essential for
glucose-induced ATP increases in pancreatic β-cells [532].
The concentration-response relationship for different P2 re-
ceptor agonists with different glucose backgrounds were
summarised in a review [411]. Later studies indicated that
ATP also had inhibitory effects on insulin release, perhaps
via specific P2 receptor subtypes with different binding sites,
and/or different intracellular signalling pathways, or even
indirectly via adenosine receptors after ATP breakdown. Pan-
creatic β-cells act as glucose sensors, where intracellular ATP
is altered with glucose concentration change. It has been
reported that elevated cytosolic ATP enhanced the activity of
Na+ channels, which lead to modulation of β-cell excitability
and insulin release when blood glucose concentration in-
creases [621]. There also appear to be significant species
differences. ATP, via P2X and/or P2Y receptors, increases
[Ca2+]i in many β-cell preparations and models, including
human insulin-secreting β-cells, where ATP enhances sensi-
tivity and responsiveness of β-cells to glucose fluctuations
([242,503]; see Fig. 4). Intracellular signalling pathways, in-
cluding KATP channel open/closed state, membrane voltage
and Ca2+ influx, lead to release of insulin. The initial phase of
the biphasic insulin response to glucose was potentiated by
endogenous ATP [85]. Comparative effects of ATP and relat-
ed analogues on insulin secretion in rat pancreas have been
reported [86]. ATP triggers synchronization of β-cell rhyth-
micity after increasing [Ca2+]i [197].

Insulin granules contain ATP (and ADP) [239,298]. These
granules are secreted and were detected as quantal exocytotic
release from rat β-cells expressing P2X2 receptors acting as

ATP biosensors; ATP concentrations up to 25 μmol/l close to
plasma cell membranes have been detected [216,251]. ATP
was shown to be released by exocytosis, while insulin was
retained in the granule [384], suggesting that basal release of
ATP may have a role as an autocrine regulator. The vesicular
nucleotide transporter (VNUT) is expressed in pancreatic β-
cells and VNUT-mediated ATP release is part of the mecha-
nism that controls glucose-induced secretion [181]. They
showed further that P2X receptors are critical in mediating
the effect of ATP on insulin secretion when VNUT is over-
expressed. Evidence has been presented to suggest that P2Y1

as well as P2X receptors play a role in the modulation of
insulin secretion, proliferation and cell viability in mouse
pancreatic β-cells [391]. ATP is also co-released with 5-
hydroxythryptamine (5-HT), γ-aminobutyric acid, glutamate
and zinc, which have further autocrine coregulatory functions
on insulin secretion [49,251,444]. Extracellular nucleotides
inhibit insulin receptor signalling [87].

The molecular identities of P2 receptors on various prepa-
rations of β-cells are summarised in Table 2 and their role in
regulation of insulin secretion is shown in Fig. 3. α,β-Meth-
ylene ATP (α,β-meATP) mimicked the ATP effects on insulin
secretion [408], indicating that P2X1 or P2X3 receptor sub-
types might be involved. RT-PCR and Western blots showed
that most of the P2X1 - P2X7 receptors were expressed in rat
primary islet β-cells and the INS-1 cell line [444,470]. The
characteristics of the P2X7-like receptor activated by ATP
were described in the hamster β-cell line, HIT-T15 cells
[291]. Mouse, human and porcine β-cells express rapidly
desensitising P2X1 and P2X3 receptors, and it was proposed
that paracrine and/or neural ATP activation of these receptors
contribute to the initial outburst of glucose- or ACh-evoked
insulin release [484]. Further, ATP liberated together with
insulin, might participate in positive feedback control of insu-
lin release [41,116]. P2X3 receptors were shown to constitute
a positive autocrine and amplifying signal for insulin release
in the human pancreaticβ-cell [242]. In the rat INS-1 cell line,
the P2X3 receptor inhibited insulin secretion at all glucose
concentrations tested [470].

Evidence for P2Y receptors mediating the biphasic re-
sponse in insulin secretion from β-cells has been presented
[29,153,306]. Extracellular ATP increases [Ca2+]i in β-cells,
mainly by triggering Ca2+ release from intracellular stores
[196,597], implicating P2Y receptors. Adenosine-5′-(β-
thio)-diphosphate (ADPβS) was a potent agonist mediating
insulin secretion from perfused rat pancreas and isolated islets
[34,410], indicating that P2Y1, P2Y12 or P2Y13 receptors
might be involved. This ADP analogue also enhanced insulin
secretion and reduced hyperglycemia after oral administration
to rats and dogs [227]. β-Cell apoptosis is induced by high
glucose and free fatty acids via the autocrine action of ATP
acting via P2Y13 receptors [531]. Several studies focussed on
P2Y1 receptors and pharmacological agents were developed

Fig. 4 Proposedmodel for the positive autocrine feedback loopmediated
by ATP in human β cells. Left hand panel : ATP, coreleased with insulin,
activates ionotropic P2X3 receptors in the β-cell plasma membrane. This
opens the cation selective P2X3 channel pore to let Na+ and Ca2+ flow
into the cell (1). The resultant membrane depolarization and increase in
action potential frequency increases Ca2+ flux through high voltage-gated
Ca2+ channels. Increased [Ca2+]i (2) stimulates insulin secretion. Right
hand panel: In the absence of P2X3 activation (using a P2X receptor
antagonist), insulin secretion is diminished, revealing a strong contribu-
tion of ATP receptor activation to the response. (Modified and reproduced
from [242], with permission from the National Academy of Sciences of
the United States of America.)
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Table 2 Molecular identity of P2 receptor subtypes expressed in pancreatic β-cells (Reproduced from [66], with permission from the Society of
Endocrinology)

Receptor
subtype

Tissue origin Technique Reference

P2X1 Rat and mouse pancreas (progressively upregulated) Immunohistochemistry [109]

Mouse islet cells Immunocytochemistry [484]

Rat INS-1e RT-PCR [470]

P2X2 Rat islets, rat (INS-1) and mouse (βTC3) β-cell models RT-PCR, Western blot analysis and immunohistochemistry [444]

Rat INS-1e RT-PCR [470]

P2X3 Mouse islet cells Immunocytochemistry [484]

Rat islets, rat (INS-1) and mouse (βTC3) β-cell models RT-PCR, Western blot analysis and immunohistochemistry [444]

Rat INS-1e RT-PCR, siRNA [470]

Human islets Immunohistochemistry, RT-PCR, Western blot analysis and in-situ
hybridization

[242]

P2X4 Rat islets, RINm5F and HIT-T15 cells mRNA blot analysis [579]

Rat and mouse pancreas (progressively upregulated) Immunohistochemistry [109]

Rat islets, rat (INS-1) and mouse (βTC3) β-cell models RT-PCR, Western blot analysis and immunohistochemistry [444]

Rat INS-1e RT-PCR [470]

P2X5 Human islets in-situ hybridization [242]

P2X6 Rat islets, rat (INS-1) and mouse (βTC3)β-cell models RT-PCR, Western blot analysis and immunohistochemistry [444]

Rat INS-1e RT-PCR [470]

P2X7 P2Y1 HIT-T15 cells Western blot analysis [292]

Rat INS-1e RT-PCR [470]

Human islets in-situ hybridization [242]

Mouse WT and KO islets and pancreas RT-PCR,Western blot analysis, immunohistochemistry and functional studies [188]

Human islets

INS-1 β-cells RT-PCR and Western blot analysis [332]

Mouse islets and β-cells RT-PCR [405]

Mouse β-TC6 insulinoma cells RT-PCR [390]

Rat INS-1e RT-PCR [470]

Mouse MIN6 RT-PCR [17]

Mouse WT and KO whole body Functional studies [301]

P2Y2 INS-1 β-cells RT-PCR and Western blot analysis [332]

Rat INS-1e RT-PCR [470]

P2Y4 Pancreatic β-cells (normal and diabetic rats) Immunohistochemistry [109]

Rat islets, INS-1 and RIN cells RT-PCR and Western blot analysis [470]

INS-1 β-cells RT-PCR and Western blot analysis [332]

Rat INS-1e RT-PCR, siRNA [470]

P2Y6 INS-1 β-cells RT-PCR and Western blot analysis [332]

Mouse islets and β-cells RT-PCR [405]

Mouse β-TC6 insulinoma cells RT-PCR [390]

Rat INS-1e RT-PCR [470]

Mouse MIN6 RT-PCR [17]

P2Y11 Human β-cells RT-PCR, Western blot analysis, immunofluorescence [333]

HIT-T15 cells Western blot analysis [292]

P2Y12 INS-1 β-cells RT-PCR and Western blot analysis [332]

Human β-cells RT-PCR, Western blot analysis, immunofluorescence [333]

Rat INS-1e RT-PCR [470]

P2Y13 Mouse islets and β-cells RT-PCR [9]

Other functional and pharmacological evidence for P2 receptors is given in the text
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[147,159,230]. P2Y1 receptor knockout mouse experiments
indicated that the receptor was involved in glucose homeosta-
sis, although insulin secretion was decreased in islets isolated
from P2Y1 knockout mice [301]. Pancreatic β-cells also ex-
press other P2Y receptors. The P2U (i.e. P2Y2 or P2Y4)
receptor was cloned and characterised from human pancreas
[ 506 ] . Th e P2Y 4 r e c e p t o r wa s d emon s t r a t e d
immunohistochemically in rat β-cells [109,110]. mRNA and
protein expression showed that rat insulinoma INS-1 cells
express P2Y1, P2Y2, P2Y4, P2Y6 and P2Y12 receptors
[332,470]. Further, the P2Y4 receptor stimulated insulin se-
cretion at all glucose concentrations tested [470]. However,
mouse β-cells did not express P2Y2 and P2Y4 receptors
[390,405].

Although most studies have shown that ATP/ADP increase
insulin release, some early studies showed that ADP could
also decrease insulin release [409,428]. Later studies showed
that P2Y receptors, possibly P2Y1, mediated inhibition of L-
type Ca2+ channels in rat pancreatic β-cells [194]. Another
study showed that in mice β-cells ADP inhibited insulin
secretion by activation of P2Y13 receptors, but increased
insulin secretion via P2Y1 receptors [9].

P2Y1 and P2Y6 receptors in mouse β-cells mediated inhi-
bition of insulin secretion at high glucose concentrations, but
were slightly stimulant at 5 mM glucose [390]. Other studies
showed clear stimulation of insulin secretion via these recep-
tors at glucose concentrations >8 mM [17,405]. A further two
receptors were identified, P2Y11 and P2Y12, in human pan-
creatic islets and their involvement in stimulation of insulin
secretion was postulated [333]. In the hamster β-cell line HIT-
T15, P2Y11 receptors stimulated insulin secretion while P2X7
receptors inhibited it; the net effect depending on the glucose
concentration [292]. P2X7 receptors mediate IL-1 receptor
antagonist secretion and it has been suggested that this in turn
regulates β-cell mass and function [188].

P2 receptors are also involved in β-cell survival. Pancreatic
islet cells express NTPDase-3 and ecto-5′-nucleotidase is pres-
ent in some species, leading to accumulation of adenosine
[288]. While rat islets express 5′-nucleotidase for breakdown
of extracellular ATP to adenosine, mouse islets do not [604].
Microelectrode recordings from mouse pancreatic β-cells
showed that theophylline (a non-selective P1 receptor antago-
nist) depolarised the β-cell membrane leading to insulin re-
lease; further, in 10 mM glucose, β-cells exhibited slow waves
with bursts of spikes in the plateau and increased insulin
secretion [223]. In perfused dog pancreas, the adenosine ana-
logue 5′-N-ethylcarboxamidoadenosine (NECA) inhibited in-
sulin release, the effect being concentration-dependent [16]. A1

receptors mediating inhibition were pharmacologically identi-
fied on β-cells [32,226,572] and in INS-1 cells [543]. A1

receptor antagonism in rat pancreatic islets potentiates insulin
secretion [623]. The ectonucleotidases and A1 receptors might
explain some of the dual effects of ATP.

The physiological roles of all these P1 and P2 receptor
subtypes and their different effects on insulin secretion are
being investigated. Studies of both in vivo and in vitro pan-
creas and in isolated islets with coupled β-cells showed that
secretion of insulin (and glucagon and somatostatin) is pulsa-
tile. Pulsatility is reflected by intracellular Ca2+ oscillations
and membrane potential changes. It has been suggested that
purinergic signalling is one of the coordinating mechanisms
[219,221,382]. Activation of P2Y receptors enhanced insulin
release from β-cells by triggering the cyclic AMP (cAMP)/
PKA pathways [98]. Inhibition of the P2Y1 receptor attenuat-
ed glucose-induced insulin oscillations, but increased the total
amount of insulin secreted [466]. Glucose stimulation of
mouse β-cells triggers oscillations of the ATP concentration
in the sub-plasma membrane space and it was suggested that a
dynamic interplay between ATP and [Ca2+]i in β-cells may be
important for the generation of pulsatile insulin secretion
[307]. A1 receptor deletion increased insulin pulses and
prolonged glucagon and somatostatin pulses and they lost
their antisynchronous action [245,468]. Endothelial cells in
the islets had a tonic inhibitory action on β-cell P2 receptors,
resulting in impaired synchronisation of the insulin release
pulses [222]. Figure 3 illustrates the pulsatility of ATP release
and differential regulation via various P2 receptors and shows
that P1 receptors could contribute to the pattern of insulin
release [11]. It was claimed that adenosine inhibited insulin
release from rat β-cells [31].

It has been suggested that P2Y receptors mediating stimu-
lation of Gs proteins could have similar roles as incretins,
glucagon-like peptide and gastric inhibitory peptide, both by
augmenting insulin release and by maintaining the β-cell
number [601]. An important signalling pathway of incretin
action involves Epac (exchange proteins activated by cAMP).
Whether P2Yor adenosine receptors also stimulate Epac in β-
cells has not yet been investigated.

α-Cells

ATP stimulated secretion of glucagon from α-cells in iso-
lated perfused rat pancreas in one study, though in another
study adenosine and ADP, but not ATP, were effective
[328,582]. The presence of A2 receptors on glucagon-
secreting α-cells was reported in several studies
[16,83,84]. Adenosine stimulation of glucagon secretion
via A2 receptors was potentiated by an α2-adrenergic ago-
nist [203]. NECA, an A2 receptor agonist, potentiated ACh-
induced glucagon secretion [30]. Both A1 and A2A recep-
tors on mouse α-cells were shown by immunohistochem-
istry and stimulation of A2A receptors with CGS-21680 to
increase glucagon release, while adenosine decreased it
[554]. Pulses of glucagon (and somatostatin) were
prolonged in A1 receptor knockout mice, indicating that
these α-cells (and δ-cells) possessed A1 receptors [468].
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Diadenosine tetraphosphate stimulated glucagon and insu-
lin secretion in perfused rat pancreas [486]. Studies onmiceα-
cells showed that they expressed P2 receptors. P2Y6 receptors,
activated by uridine 5′-O-thiodiphosphate, increased glucagon
release [405]. In contrast, P2Y1 receptors mediated inhibition
of Ca2+ signalling and glucagon secretion in mice α-cells
[554]. In the presence of high concentrations of glucose,
insulin secretion was significantly greater in islets from
P2Y1 receptor knockout mice, indicating that P2Y1 receptors
play a physiological role in the maintenance of glucose ho-
meostasis, at least in part, by regulating insulin secretion
[198,301]. Glucagon secretion in rat islets was inhibited by
the selective P2Y1 receptor antagonist MRS 2179 [198].
P2X7 receptors are expressed on α-cells, perhaps responding
to ATP released from β-cells [109]. P2X7 receptors were
shown to be expressed early in a subpopulation of glucagon-
and insulin-immunopositive cells in developing islets, which
later became restricted to glucagon-expressing α-cells
[97,109].

δ-Cells

It was recognised early that δ-cells had local inhibitory effects,
via somatostatin, on the release of insulin and glucagon from
adjacent α- and β-cells [220]. Stimulation of somatostatin
secretion by P2 receptor agonists from dog pancreas was
reported [33], especially by ADPβS [229]. Pulses of somato-
statin (and glucagon) were removed by addition of the P2Y1

receptor antagonist MRS 2179, although the regularity of
insulin secretion was maintained [467].

Thyroid gland

The thyroid gland is a large endocrine gland situated at the
base of the neck, consisting of two lobes on each side of the
trachea. The thyroid gland is concerned with regulation of the
metabolic rate, by the secretion of thyroid hormone, which is
stimulated by TSH from the pituitary gland and requires trace
amounts of iodine. Sympathetic nerves supply blood vessels
in the thyroid and various nerve terminals have also been seen
in close apposition to the bases of thyroid follicular epithelial
cells [540,559]. Parasympathetic and sensory nerves are also
present in the thyroid gland [204].

An early paper reported that ATP stimulated, while aden-
osine inhibited, PK activity in bovine thyroid [252]. Adeno-
sine was shown to inhibit thyroidal T4 release, through
receptor-mediated cAMP activated PK [166,335,591].

The in vitro action of thyroid-releasing hormone (TRH) on
iodine metabolism in dog thyroid appears to be modulated by
adenosine, but not ATP [122]. Intralysosomal hydrolysis of
thyroglobulin, which promotes thyroid hormonal secretion,
requires an acidic pH. Addition of ATP to the incubation

medium prevented alkalinization and it was argued that an
ATP-driven proton pump is present in the membranes of
thyroid lysosomes [165].

ATP has been claimed to activate Ca2+-dependent nicotin-
amide adenine dinucleotide phosphate-oxidase, generating
hydrogen peroxide in thyroid plasma membranes, which reg-
ulates hormone synthesis through the activation of H2O2

production, a substrate for peroxidase [368]. Signals arising

Fig. 5 a A proposed model for the control of ERK1/2 phosphorylation
and fos induction by thyroid P2Y2 receptors in PC Cl3 cells. The P2Y2

activation provokes intracellular Ca2+ signalling and activation of cal-
modulin (CaM) and calcium-dependent PKCs. CaM is responsible for
the epidermal growth factor receptor (EGFR) transactivation and P2Y2

endocytosis. These two events coordinate the phosphorylation of ERK1/2
through the activity of phosphoinositide 3-kinase (PI3K), novel PKC-ε
and mitogen-activated protein kinase (MEK ). ERK1/2 and PKCα/β
induce the expression of fos protein. (Reproduced from [141], with
permission from Elsevier.) b RT-PCR analysis of P2 receptor transcripts
present in thyroid FRTL5 cells. Agarose gel electrophoresis of PCR
products. M size markers: 100 bp ladder (Gibco), appropriate sizes are
indicated. For each receptor amplification, lane 1 is a PCR reaction using
the appropriate plasmid construct as template, lanes 2 and 3 incorporated
cDNA synthesis where reverse transcriptase was present or absent, re-
spectively. PCR amplifications with no added template were also carried
out for each primer set and resulted in no amplification products (data not
shown). The figure is representative of three independent experiments.
(Reproduced from [137], with permission from Wiley.)
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fromATP occupation of P2 receptors on rat FRTL-5 thyrocyte
cell line leads, via PLC and adenylate cyclase, to iodide efflux
[393]. ATP increases [Ca2+]i in dog thyroid cells [432], sug-
gestive of P2 receptor involvement. P2 receptor stimulation
also led to arachidonate release from FRTL-5 thyroid cells
[395]. ATP, as well as TRH, regulates [Ca2+]i in human
thyrocytes in primary culture [434]. However, extracellular
ATP has been shown to completely reverse the TSH-induced
morphological change in FRTL-5 cells [369]. P2Y receptors
have been identified on the PC-C13 rat thyroid cell line that
mediates increase in [Ca2+]i via PLC activation, Ca2+ store
depletion and L-type voltage-dependent Ca2+ channel activa-
tion [340]. In a later study by this group, P2Y2 receptor
mRNA was shown on both PC-C13 cells and a transformed
cell line (C-ElAraf) derived from PC-C13 cells [140]. How-
ever, nomitogenic selective P2Y2 receptor activation occurred
in PC-C13 cells ([141]; Fig. 5a).

Atrial natriuretic peptide-induced cyclic guanosine
monophosphate accumulation by purinergic agonists occurs
in FRTL-5 thyroid cells [392]. Porcine thyroid cells produced
H2O2, but not O2, when stimulated by extracellular ATP
[367]. ATP increased the generation of inositol phosphates
in dog thyrocytes [435,436], again suggesting that P2Y recep-
tors might be involved. From a pharmacological study, it was
concluded that a G protein is involved in the nucleotide-
induced activation of FRTL-5 cells [394]. ATP activates a
Ca2+-dependent Cl- current in rat FRTL-5 cells [341]. In an
electrophysiological study, it was shown that depolarisation of
rat thyroid FRTL-5 cells decreased the ATP-induced Ca2+

influx [544,545], raising the possibility that P2X receptors
are also present.

An important advance was made when it was suggested
that at least three different purinergic receptors were involved
in the responses of FRTL-5 thyroid cells to ATP and probably
also its breakdown product, adenosine, coupled to different
signal transduction systems, namely activation of PLC, inhi-
bition and activation of adenylate cyclase [473]. The relative
order of potencies of nucleotides on the P2 receptors located
on FRTL-5 cells was: adenosine-5′-(γ-thio)-triphosphate
(ATPγS)≥ATP≫ADP≫GTP [125] perhaps suggestive of a
P2X receptor subtype. ATP as low as 10-7 M specifically
increased [Ca2+]i; this was duplicated by ATPγS, but not by
adenosine, AMP, ADP or α,β-meATP [7]. The ATP-induced
rise in [Ca2+]i was biphasic, with the second component
related to the opening of a channel, since it required extracel-
lular Ca2+ and was abolished by SC38249, an inhibitor of
voltage operated channels [39], consistent with a P2X receptor
subtype. On the other hand, P2 receptor stimulation of iodide
efflux from FRTL-5 rat thyroid cells involves parallel activa-
tion of PLC and PLA2 [488], a clear indication of P2Y
receptor involvement. Since extracellular UTP as well as
ATP increase [Ca2+]i in single human thyrocytes [478], this
suggests that P2Y2 and P2Y4 receptors are involved. A UTP

sensitive receptor has also been located on the apical mem-
brane of thyroid epithelial cells that mediates inhibition of Na+

absorption [47]. RT-PCR analysis and pharmacological stud-
ies revealed the presence of P2Y2, P2Y4, P2Y6, P2X3, P2X4
and P2X5 receptor mRNA on rat FRTL-5 cells involved in
control of DNA synthesis ([137]; Fig. 5b). An immunohisto-
chemical study of the localisation of P2X receptor subtype
proteins in adult rat thyroid showed that: P2X1, P2X2 and
P2X6 receptors were found exclusively on vascular smooth
muscle, endothelial cells stained for P2X3, P2X4 and P2X7
and thyroid follicular cells showed immunoreactivity for
P2X3, P2X4 and P2X5 receptors [189]. No immunostaining
of P2X receptors was observed on C-cells. P2X7 receptors
mediate stimulation of plasma membrane trafficking and
internalisation in rat FRTL cells [271,272].

It has been suggested that extracellular ATP, in the presence
of insulin, may be a cofactor (comitogen) in the regulation of
thyroid cell proliferation, probably by phosphorylating
MAPK and stimulating the expression of c-fos [546]. ATP
regulates PLA2 activation by a Gi/Go protein-dependent
mechanism and Ca2+, PKC and MAPK are also involved in
its regulatory process [136].

Sympathetic nervous control of thyroid hormone secretion
has been reported [201]. ATP released as a cotransmitter with
NA from sympathetic nerves is likely to stimulate P2 recep-
tors on thyroid follicular cells. Another source of ATP may be
calcitonin-secreting C-cells, which stain with quinacrine that
recognises high levels of ATP bound to peptides in vesicles
[135]. ATP may also be released from thyroid follicular epi-
thelial cells by paracrine or autocrine mechanisms [271].

Adenosine A1 receptors were identified on rat FRTL-5
thyroid cells [279,603] and P2 receptor activation of
phosphoinositide turnover shown to be potentiated by A1

receptor stimulation of thyroid cells [370]. The P1 receptor
agonist phenyliospropyladenosine strongly inhibited thyrotro-
pin (TSH)-induced cAMP accumulation and H2O2 generation
in FRTL-5 cells [40]. Adenosine is a potent stimulator of
endothelin-1 secretion from rat thyroid FRTL-5 cells [562].
P1 receptor-mediated modulation of TSH actions on FRTL-5
thyroid cells has also been described [273].Thyroid-specific
expression of the A2 adenosine receptor transgene promoted
gland hyperplasia and severe hyperthyroidism, causing pre-
mature death in mice [290]. Adenosine inhibits DNA syn-
thesis stimulated with TSH, insulin or phorbol 12-
myristrate 13-acetate in rat thyroid FRTL-5 cells [563].
Extracellular adenosine increased Na+/iodide (I-) sup-
porter gene expression in rat thyroid FRTL-5 cells and
stimulates I- transport via the adenosine A1 receptor
[212]. Thyrotropin regulates A1 receptor expression in
FRTL-5 cells [564]. Thyroid hormone stimulates 5′-ecto-
nucleot idase (CD73) of neonatal rat ventr icular
myocytes [73] and in cultured vascular smooth muscle
cells [529].
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The parafollicular cell of the mammalian thyroid gland is a
neural crest derivative, which is capable of expressing neural
characteristics when stimulated by nerve growth factor.
Parafollicular cells produce 5-HT, which is stored in the same
secretary granules as the peptide hormone, calcitonin. There is
ATP-dependent uptake of 5-HT by secretary granules isolated
from sheep thyroid parafollicular cells [104].

Hypothyroidism occurs with subnormal activity of the
thyroid gland with low testosterone levels. If present at birth
and untreated, it leads to cretinism. In adult life, it causes
mental and physical slowing, undue sensitivity to cold,
slowing of the pulse, weight gain and coarsening of the skin;
this can be treated with thyroxine (T4). Thyroid hormones
have profound effects on cardiovascular function in both
hypothyroidism and hyperthyroidism [23]. It has been sug-
gested that in hyperthyroidism, increase in ATP hydrolysis by
E-NTPDase 3 and subsequent decrease in extracellular ATP
levels is an important factor for prevention of the excessive
contractility of cardiomyocytes induced by an overproduction
of triiodothyronine (T3) [22]. Hyperthyroidism increases
platelet 5′-nucleotidase activity, while hypothyroidism de-
creases it [54]. Hyperthyroidism reduces ecto-nucleotidase
activity in synaptosomes from hippocampus and cerebral
cortex of rats [53,55]. Evidence has been presented to suggest
that both excess and deficiency of thyroid hormones can
modulate the activities of both diphosphohydrolase (CD39)
and CD73 ectoenzyme activities in rat blood serum with
effects on vascular activity [56]. It has been claimed that both
purinergic signalling and reactive oxygen species participate
in thyroid hormone-induced vasorelaxation, and that there is a
diminution of P2Y6 receptor expression in hyperthyroid rats
[24]. Hypothyroidism has been shown to lead to impotence in
some men. In an experimental rabbit model of hypothyroid-
ism, relaxations to ATP, α,β-meATP and electrical field stim-
ulation of corpus cavernosum strips were reduced, while
relaxation to adenosine was unchanged [606].

Purinergic stimulation by ATP is able to induce rapid
cytoplasm to nucleus translocation of APEI Ref-I protein
initially and its neosynthesis later in a human thyroid tumour
cell line (ARO) which expresses high levels of the APEI Ref-I
protein involved in both base excision repair pathways of
DNA lesions and in eukaryotic transcriptional regulation of
gene expression [418]. In thyroid papillary carcinoma cells,
P2X7 receptor mRNA and protein was increased and it was
suggested that it may be a useful marker for this disease [491].
A recent review discusses the role of purinergic signalling in
thyroid hormone activities in both heath and disease [485].

Parathyroid gland

Two pairs of parathyroid glands are situated behind or some-
times embedded within the thyroid gland. They are stimulated

to produce parathyroid hormone by a decrease in the amount
of calcium in the blood. A high level of parathyroid hormone
causes transfer of calcium from bones to the blood. A defi-
ciency lowers blood calcium levels causing tetany, a condition
relieved by treatment with the hormone. ATP and ATPγS
mobilise cellular Ca2+ and inhibit parathyroid hormone secre-
tion [371]. It has been suggested that the ATP may be released
from sympathetic nerve terminals in the parathyroid gland
and/or by autocrine release from parathyroid secretory vesi-
cles [106]. Parathyroid hormone potentiates nucleotide-
induced [Ca2+]i in rat osteoblasts; it is suggested that this
may explain how systemic parathyroid hormone can initiate
bone remodelling [57]. Human parathyroid hormone secretion
is inhibited by caffeine, suggesting that P1 receptors are also
involved [331].

Adrenal gland

Adrenal chromaffin cells

Co-storage and release of NA and ATP from chromaffin cells

Chromaffin cells of the adrenal medulla can be regarded as a
highly specialised form of sympathetic nerve cell, both have a
common embryological origin in the neural crest. Well before
NA andATPwere recognised as cotransmitters in sympathetic
nerves, NA and ATP were shown to be co-stored in a ratio of
about 4:1 [42,46,232,280,587] and coreleased [72,74,507]
from adrenal chromaffin cells by vesicular exocytosis
[205,237]. It was also suggested that chromagranines and
dopamine-β-hydroxylase were stored together with NA and
ATP in these cells [422,589,590]. NA and ATPwere shown to
be localised in chromaffin granules within the chromaffin cells
[589] and the ATP stored in the granules is not synthesised in
them, but is taken up from the cytoplasm [278,407].

Early studies considered that the major role of ATP was to
regulate the synthesis, storage and release of catecholamines
(CA) from chromaffin cells (see [231,262,360,536,588]). It
was only later that it was recognised as an equal partner in
hormonal activities by analogy with the roles of NA and ATP
as cotransmitters in sympathetic neurotransmission (see [62]).
ATP and CA are released in parallel from adrenal chromaffin
cells in response to stimulation by ACh, K+ or Ba2+ ([253];
Fig. 6a and b). ACh and nicotine caused exocytotic release of
both CA (mainly adrenaline) and ATP from bovine adrenal
chromaffin cells [454,583]. This response was blocked by
mecamylamine, a nicotine receptor blocker [186]. Later it
was shown that methacholine, a selective muscarinic agonist,
as well as nicotine, induced CA and ATP secretion, via in-
creasing [Ca2+]i, in porcine adrenal chromaffin cells, indicat-
ing that both nicotinic and muscarinic receptors were
expressed by chromaffin cells [600]. Diadenosine
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tetraphosphate (Ap4A) is co-released with ATP and CA from
bovine adrenal medulla [75,483].

In bovine chromaffin cells, the Ca2+ channels involved in
exocytosis are effectively inhibited by ATP and opioids that
are coreleased with CA during cell activity [70]. Uptake of
met-enkephalin by chromaffin cells was shown to be depen-
dent on the presence of ATP in the incubation medium [528].
Chromaffin cells take up adenosine and convert it into ATP

[352]. Tricyclic antidepressants block cholinergic nicotinic
receptors and ATP secretion in bovine chromaffin cells [241].

Purinoceptor subtypes in adrenal chromaffin cells

ATP was shown early to depolarise adrenal chromaffin cells
and it was suggested that this may be related to hormone
release from granules and regulation of CA secretion in vivo

Fig. 6 a and b Typical recordings of on-line measurement of ATP and
catecholamine (CA) released from cultured adrenal chromaffin cells in
response toACh and highK+. ACh (a, 100mM, ■) or highK+ (b, 60mM,
□) was applied for 1 min. The responses of ATP (filled circle) and CA
(open circle) are superimposed. Vertical bars indicate the amplitude of
peak oxidative currents and luminescence induced by ATP (50 nM) and
NA (0.5 mM). (Reproduced from [253], with permission from Elsevier.)
c Effect of nucleotides on production of inositol phosphates in bovine
adrenocortical fasciculata cells. (Reproduced from [379], with permission
from Elsevier.) d Simplified model for inhibitory regulation of adrenaline
secretion involving transmitters released from both nerve terminals and
chromaffin cells of bovine adrenal gland. Auto-inhibitory feedback loops
related to cholinergic transmission are not considered for simplicity.
Inhibitory transmitters acting on receptors preferentially located to adren-
ergic chromaffin cells (i.e. P2Y receptors and κ-opioid receptors) have
been considered, as well as nor adrenaline, which inhibits adrenaline
release via α2-adrenoceptors. Activation of P2Y, κ-opioid and α2-

adrenergic receptors inhibits voltage-sensitive Ca2+ channels (VSCCs)
via Gi/o proteins (not depicted for the latter two receptors for simplicity)
and, consequently, exocytosis. Protein kinase C (PKC) is negatively
coupled to VSCCs in an isoform-specific fashion. AD-cell adrenergic
chromaffin cell, NA-cell noradrenergic chromaffin cell, ACh acetylcho-
line, VSCC voltage-sensitive Ca2+channels, AChR nicotinic cholinergic
receptors, P2XR P2X receptors, P2YR P2Y receptors, κ-OpiR /α2AdrR

κ-opioid and α2-adrenergic receptors (represented as a single entity for
simplicity), PLC phospholipase C, PKC protein kinase C,Gq and G i/o G
proteins, Adr adrenaline, NA noradrenaline, Opi opioid peptides. For
simplicity, and because [Ca2+]i rises induced by PLC activation do not
evoke catecholamine secretion from bovine chromaffin cells, they are not
made explicit in the scheme. Also for simplicity, granule exocytosis is not
depicted as occurring preferentially in the vicinity of VSCC hot-spots.
Positive and negative signs indicate stimulatory and inhibitory interac-
tions, respectively. (Reproduced from [541], with permission.)
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[313,385,427] via cAMP [236]. CA secretion from bovine
chromaffin cells can also be inhibited by extracellular ATP,
probably after being converted to adenosine [96].

The presence of P2 receptors on adrenal chromaffin cells
was first suggested in 1990 [6]. ATP can produce at least three
different effects on adrenal chromaffin cells: inhibition of
voltage-gated Ca2+ channels [113,127,225,311], release of
Ca2+ from internal stores [441] and activation of a non-
selective cation channel [402]. While the first two effects are
most probably mediated by P2Y receptors, the third effect has
the characteristics for the activation of P2X receptors. A
biphasic rise in [Ca2+]i was shown in response to extracellular
ATP, one phase due to release of Ca2+ from intracellular sites,
the other from extracellular sites which was lost in Ca2+-free
solutions [347]. This important study was a clear hint for the
recognition that both P2X and P2Y receptors are expressed by
chromaffin cells [127,402,441].

The P2 receptors on adrenaline-containing chromaffin cells
were claimed to differ from those found on NA-containing
chromaffin cells ([79,541]; Fig. 6d). The suggestion was that
the inhibitory effect of ATP on NA-containing cells appeared
to be largely mediated by P2X receptors, while the adenosine-
containing cells were activated by both UTP and ATP and
appeared to be largely mediated by P2U (probably P2Y2 or
P2Y4) receptors. It was proposed that P2Y receptors on adre-
nal chromaffin cells mediate negative feedback of hormone
secretion and that ATP inhibited both N- and P/Q-type Ca2+

channels [113,311]. Neuropeptide Y (NPY) and ATP may be
co-modulators of this feedback pathway [618].

In one of the first immunohistochemical studies of P2X
receptors, P2X1 and P2X2 immunoreactivity on chromaffin
cells of the adrenal medulla was reported [577]. Later immu-
nohistochemical studies ([2,3]; Fig. 7) showed limited expres-
sion of P2X5 and P2X7 receptors in rat chromaffin cells, while

Fig. 7 a and b Guinea pig adrenal gland sections immunoreacted with
P2X1 or P2X2 receptor antibodies. a P2X1 receptor-immunoreactive
cortical cells (arrows) of the inner part of the zona reticularis (r) at
corticomedullary junction (m medulla). b P2X2 receptor-immunoreacted
section showing immunoreactive elements (arrows) located in the outer
region of the zona reticularis. Note the irregular shape of the immunore-
active elements and their location between groups of non-immunoreac-
tive cortical cells (f zona fasciculata). Note that whereas the two panels
are at the same magnification, a appears of higher magnification due to
the presence of large vascular plexus and a more network-like

arrangement of the cortical cells in the inner region of zona reticularis.
c–e Sections of guinea pig adrenal medulla immunoreacted with P2X5 or
P2X6 receptor antibodies. c P2X5 receptor-immunoreactive nerve fibres
that form plexuses (arrows) around the chromaffin cells. d P2X5 recep-
tor-immunoreactive intrinsic neurones (black arrows) located in the
adrenal medulla. Note the proximal parts of processes (small white
arrows) projecting out of some of the cells, which indicate their neural
identity. e P2X6 receptor-immunoreactive chromaffin cells (arrows). All
scale bars=40 μm. (Reproduced from [3], with permission from Karger.)
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P2X6 immunoreactivity was detected in the guinea-pig. Brake
et al. [48] cloned the P2X2 receptor from PC12 cells and
detected weak expression of the mRNA in the adrenal gland
byNorthern blotting. P2X4mRNA has also been detected [43].
However, in both studies, it was not certain whether the mRNA
was present in the medullary or cortical cells.

Functional studies have demonstrated the presence of P2X
receptors on bovine [441] and guinea-pig [316,402] chromaffin
cells. However, these receptors appear to be absent in the rat
[237,316]. The P2X receptor present on chromaffin cells can be
activated by ATP and 2-methylthio ATP, but is much less sensi-
tive or insensitive to α,β-meATP [316,441]. To date, the only
detailed pharmacological study of P2X receptors on chromaffin
cells has been carried out on the guinea-pig. Here, the receptor is
antagonised by pyridoxalphosphate-6-azonphenyl-2′,4′-
disulphonic acid, but suramin and Cibacron blue are quite weak
antagonists. The response is potentiated by low pH, but
inhibited by Zn2+. Thus, while this receptor has some
properties in common with the rat P2X2 receptor (ago-
nist profile, effect of pH), the lack of potentiation by
Zn2+ and the low sensitivity to the antagonists suramin
and Cibacron blue are not. Although three spliced var-
iants of the guinea-pig P2X2 receptor have been cloned,
and some pharmacological characterisation has been
carried out, there is at present insufficient information
to identify the native P2X receptor present on guinea-
pig chromaffin cells. The pharmacological properties of
the P2X receptor present on guinea-pig chromaffin cells
are very similar to that of the α,β-meATP-insensitive
receptor found on pelvic ganglion neurons. It therefore
seems likely that it is in fact the homomeric P2X2
receptor. Evidence has been presented that voltage-
dependent Ca2+ channels are regulated in a paracrine
fashion by ATP acting on P2X receptors in porcine
adrenal chromaffin cells [389].

P2Y receptors mediate inhibition of exocytotic release of
CA from adrenal chromaffin cells by modulation of voltage-
operated Ca2+ channels, rather than by a direct effect on the
secretory machinery [213,429,560]. Exposure of bovine chro-
maffin cells to NPY results in a long-lasting increase in
subsequent stimulation of inositol phosphate formation by
ATP acting on P2Y receptors [130]. P2Y2 receptors have been
identified immunohistochemically on rat chromaffin cells [5],
which is consistent with this effect. ATP stimulation also
appears to act through adenylate cyclase to stimulate cAMP
formation in bovine chromaffin cells [616], so it is interesting
that P2Y12 receptors which use this second messenger system,
have since been demonstrated in these cells [142].

Second messenger transduction mechanisms

Extracellular ATP leads to increase in [Ca2+]i and accumula-
tion of inositol 1,4,5-trisphosphate (InsP3) in cultured adrenal

chromaffin cells [471]. A recent paper suggests that UTP and
ATP acting through P2Y2 receptors increase extracellular
signal-regulated kinase 1/2 phosphorylation in bovine chro-
maffin cells through epithelial growth factor receptor (EGFR)
transactivation [334]. The EGFR inhibitor, AG1478, de-
creased ATP-mediated extracellular-signal-regulated kinase
(ERK)1/2 phosphorylation.

Ectonucleotidases

ATPase activity in hydrolysing ATP in chromaffin cells was
implicated in the uptake of CA [535] and the release of both
amines and ATP from the chromaffin granules membrane
[413]. The presence of ecto-nucleotidases responsible for the
hydrolysis of released ATP was first described in cultured
chromaffin cells [547] and were later localised and
characterised in intact pig adrenal glands [27]. ARL 67156
is an effective inhibitor of ecto-nucleotidase activity in bovine
chromaffin cells [131].

Diadenosine polyphosphates

Ap4A, diadenosine pentaphosphate (Ap5A) and diadenosine
hexaphosphate have been identified on bovine adrenal med-
ullary tissue [421,452]. More recently diadenosine diphos-
phate, adenosine guanosine polyphosphate (ApnG) and
diguanosine polyphosphates (GpnG) have also been identified
in chromaffin granules [243]. CA secretion evoked by K+-rich
solutions was further enhanced by diadenosine triphosphate
and Ap5A, while Ap4A inhibited it [76]. It was speculated that
P2Y receptors were likely to mediate the extracellular action
of Ap4A [77,419]. Carbachol-induced release of Ap4A and
Ap5A from perfused bovine adrenal medulla and isolated
chromaffin cells was reported [420]. Ecto-dinucleotide
polyphosphate hydrolase was identified, in addition to ecto-
nucleotidases, in cultured chromaffin cells [453].

Medullary endothelial cells

CA and ATP and other factors released by chromaffin
cells must pass through an endothelial cell barrier to
enter the bloodstream. ATP has been shown to stimulate
prostacyclin formation via production of the second
messenger InsP3 [164]. An intracellular Ca2+-releasing
P2U receptor (probably P2Y2 or P2Y4) has been iden-
tified on adrenal endothelial cells [78].

Purinergic signalling in development and ageing

There is abundant expression of P2Y2 receptors in NA-
containing adrenal chromaffin cells and very little on
adrenaline-containing cells in mature rats. However, in new-
born rats, P2Y2 receptors are expressed equally on both NA
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and adrenaline-containing cells and by one week the majority
of P2Y receptor labelled cells contain adrenaline [5]. There is
a dramatic loss of P2Y2 receptor expression on both NA- and
adrenaline-containing cells in the adrenal gland of old
(22 month) rats compared to newborn animals. ATP, acting
via P2Y2 receptors, may influence the phenotypic expression
of chromaffin cells into NA- or adrenaline-containing cells
during early development and ageing. Age-related changes in
the localisation of P2X receptors in the rat adrenal gland have
also been reported [4].

Adrenocortical cells

Extracellular ATP stimulates steroidogenesis in bovine adre-
nocortical cells via P2Y receptors and Ca2+ mobilization
[256]. In contrast, adenosine inhibits secretion of corticoste-
roids [598]. Calcium is essential for ATP-induced steroido-
genesis in bovine adrenocortical fasciculata cells [375]. Later
UTP and ADP, as well as ATP, were shown to stimulate
cortisol secretion in these cells, suggesting more than one P2
receptor subtype is involved [235]. The mechanism of ATP-
stimulated cortisol secretion depends on depolarization-
dependent Ca2+ entry and may be linked to stress-induced
chromaffin cell secretion to corticosteroid production [599].

The rat adrenal cortex is more densely innervated in the
capsule-glomerulosa and in the juxta-medullary regions. Elec-
tron microscopic studies have shown autonomic axons sup-
plying adrenal cortical tissue, which sometimes penetrate the
basal lamina of the cortical cells and come with close
(200 nm) contact with their plasma membranes [448,561]. It
has been suggested that the nerve fibres in the superficial
cortex are mainly of extrinsic origin in contrast to a major
contribution of intrinsic neurons in the medulla [401].

Activation of the splanchnic sympathetic innervation
strongly potentiates the steroidogenic action of ACTH from
the anterior pituitary and there is compelling evidence that the
innervation normally plays an important part in cortisol secre-
tion [134]. Neural release of ATP acting on cortical cells has
been considered [247], although the possibility that there is a
paracrine non-synaptic modulatory role for CA andATP in the
regulation of adrenocortical steroid secretion has also been
raised [520]. It has been suggested that the suprachiasmatic
nucleus utilises neuronal pathways to spread its time of the
day message, not only to the pineal to control melatonin
secretion, but also to the adrenal cortex to influence cortico-
sterone secretion [58]. The cotransmitters released by nerve
varicosities influence the production of aldosterone [520].
ATP potentiates both ACTH- and angiotensin II-induced ste-
roidogenesis in bovine adrenocortical fasciculata cells [257].

Both ATP and NA were released in response to electrical
field stimulation in superfused rat adrenal capsule-
glomerulosa preparations and ecto ATPases identified around
nerve profiles at the border of capsule and zona glomerulosa

tissue [247]. Angiotensin II and ATP provoke K+ efflux from
perfused bovine glomerulosa cells and quinine and apamin
significantly reduce the effect of ATP [319].

Two different P2Y receptors (one likely to be a P2Y2 or
P2Y4 receptor since it was activated by both UTP and ATP)
have been shown to be linked to steroidogenesis in bovine
adrenocortical cells [377]. They showed further that mRNA
for P2Y2, but not P2Y4 receptors, or for P2Y1, P2Y11 and
P2Y12 receptors, although ADP did stimulate steroidogenesis,
perhaps via an unidentified P2Y receptor subtype ([378,379];
Fig. 6c). In a recent study, a human adrenal cortex-derived cell
line, NCl-H295R, which expresses all the key enzymes need-
ed for steroidogenesis, was shown to express receptor mRNA
and protein for A2A and A2B, P2X5 and P2X7, and P2Y1,
P2Y2, P2Y6, P2Y12 P2Y13 and P2Y14 subtypes [380]. They
claimed further that the P2Y1 receptor was linked to Ca2+-
mobilization and cortisol secretion.

Adenosine-stimulated adrenal steroidogenesis involves
A2A and A2B receptors, activation of which triggers the Janus
kinase 2-MAPK-activated PK-ERK signalling pathway [90].
Foetal cortisol concentrations are suppressed by A1 receptor
activation and restrict the increase in ACTH during moderate
hypoxia [244].

Ovary

Ovaries produce oocytes and are the principal source of
oestradiol and a source of progesterone and androgens in
females. In addition to oocytes of different stages of matura-
tion, there are specialised mesenchymal granulose and theca
cells that engulf oocytes to form ovarian follicles. Oocyte
maturation in the mouse is stimulated by a surge of LH
12 hours prior to ovulation. ATP was shown to inhibit LH-
stimulated testosterone accumulation by isolated ovarian fol-
licles from rabbits [325]. Adenosine produced a seven-fold
amplification of LH-stimulated cAMP accumulation and pro-
gesterone secretion in rat luteal cells, but did not show a
similar effect on LH-stimulated cAMP accumulation and an-
drogen secretion in luteal cells [208]. Adenosine exerts pre-
dominantly inhibitory actions on hormone-induced granulosa
cell differentiation [266]. Adenosine stimulates adenylate cy-
clase in rat ovarian membrane preparations and preovulatory
granulosa cells via A2 receptors [36]. AMP-activated PK
regulates progesterone secretion in rat granulose cells [548].
It was suggested that adenosine and prostaglandin F2αmay be
regulators of luteal cell function by acute and local control of
the action of LH [25]. In a later study, this group showed that
there was no effect of adenosine on androgen secretion in
Leydig cells, but that adenosine produced a marked amplifi-
cation of FSH-stimulated cAMP accumulation and steroid
secretion from granulosa cells from rat and human ovaries
[26,425].
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LH rapidly depletes luteal cell ATP, which appears to be a
physiological action, since it occurs during functional
luteolysis at the end of the pseudopregnant cycle [501]. The
authors suggest that during functional luteolysis, the rising
levels of LH that occurs during follicular development and
ovulation cause depletion of luteal ATP levels to ensure irre-
versible regression and eventual death of the corpora lutea of
the previous cycle. ATP levels in granulosa-luteal cells can be
influenced by gonadotrophins as well as by adenosine [35].
Recognition of the presence of P2U receptor mRNA in the
human granulosa cells followed and ATP/UTP was shown to
cause rapid and transient increase in [Ca2+]i [526]. ATP was
shown to have an antigonadotrophic action in human granu-
losa cells [525]. In a later publication from this group, they
showed that ATP induced nuclear translocation of phosphor-
ylated ERKs and the induction of egr-1 and c-raf-i expression
in the human ovary, supporting the notion that the MAPK
signalling pathway plays a role inmediating the effects of ATP
on gonadotrophin-induced progesterone secretion in the hu-
man ovary [527]. P2, but not P1, receptors were also identified
on chicken granulosa cells [361]. P2Y2 and/or P2Y4 receptors
in human granulosa-luteal cells mediate calcium oscillations
[294,504]. Granulosa cells in contact with the oocyte, respond
to ATP via a mechanism that involves P2Y2 receptor stimu-
lation and the participation of ryanodine receptors [357].
Regulation of proliferation of cultured thecal/interstitial cells
and steroidogenesis via UTP-sensitive P2Y receptors is rele-
vant in ovarian pathophysiology, since theca hyperplasia is
involved in polycystic ovarian syndrome [569]. Purinergic
signalling to ovarian perifollicular smooth muscle changed
from P2X2 to P2X1 receptors during pregnancy, while there
was an increase in P2X2 receptor expression on ovarian
vascular smooth muscle [255]. Menopause is associated with
decline in ovarian function. P2X2 receptor protein levels were
shown to increase with ageing (menopause model), perhaps

contributing changes in ageing-relates decline in ovarian func-
tion [620]. The theca (or ovarian surface epithelium) is the
external layer surrounding the ovarian follicle involved in the
synthesis of androgens, the substrate for oestradiol and pro-
gesterone synthesis in granulosa cells. ATP causes apoptotic
cell death of porcine ovarian theca cells via P2X7 receptor
activation ([568]; Fig. 8).

The mammalian ovary is directly innervated by sympathet-
ic nerves, which appear to play major roles in regulating
ovarian functions, such as follicular maturation, steroid secre-
tion and ovulation [286]. There are also intrinsic neurons in
the rat ovary, but it is not known which cells they innervate or
whether ATP is a cotransmitter [115]. Ovarian sympathetic
activity increases during the ovulatory process, but the neuro-
nal content of NA and ATP decreases after ovulation. ATP
evokes Ca2+ oscillations in isolated human granulosa-luteal
cells [504]. Granulosa cells secrete oestradiol and luteal cells
secrete both oestradiol and progesterone. P2Y receptors are
expressed by human and porcine granulosa–luteal cells; ATP
has been shown to decrease the production of progesterone
and oestradiol and the authors favoured a neuronal origin of
ATP [526]. It has been proposed that P2Y2 and P2Y4 receptors
on granulosa cells modulate Cl- permeability by regulating
Ca2+ release [37]. ATP, probably released from sympathetic
nerves, has been shown to activate nuclear translocation of
kinases (MAPKs) leading to the induction of early growth
response 1 and Raf expression in human granulosa-luteal cells
[527].

At least 99 % of follicles in the mammalian ovary undergo
follicular atresia, a cellular degeneration that involves apopto-
sis in both somatic and germinal follicular cells. ATP-induced
apoptotic cell death in porcine ovarian theca cells has been
shown to be mediated by P2X7 receptors [568], which is part
of the regulation of folliculogenesis, known to be modulated
by sympathetic cotransmitters. ATP suppresses the K+ current
responses to FSH or adenosine in monolayers of the small
follicular cells surrounding a single large oocyte of Xenopus
[176]. The follicular cells of Xenopus have a P2 receptor
[265,356] and since UTP and ATP are equipotent, this may
be a P2Y2 or P2Y4 receptor subtype [176].

Ovariectomy and oestradiol replacement therapy signifi-
cantly decreased the hydrolysis of ATP and ADP [423]. Ovar-
ian tumours appear to arise mainly from the ovarian surface
epithelium, which is a simple squamous-to-cuboid mesotheli-
um that covers the ovary. ATP stimulates mitogen-activated
kinase in pre-neoplastic and neoplastic surface epithelial cells
and it was suggested that co-released ATP from sympathetic
nerves may play a role in regulating cell proliferation in both
normal and neoplastic ovarian surface epithelial cells [99].
Ovarian stimulation is a significant risk factor for arterial
and venous thrombosis. It has been shown that FSH has a
stimulatory effect on ATP release and platelet aggregation
[19]. Functional phosphodiesterase 8 has been identified in

Fig. 8 Purinergic agonist-evoked [Ca2+]i increase in porcine ovarian
theca cells. Cultured theca cells were loaded with fluo-4/AM, and
[Ca2+]i was monitored with fluorescence microscopy. Plots show the
mean (±SEM) of maximum fluorescence increase in response to 1 mM
ATP, UTP, or 250 μM Bz-ATP (20 sec applications). (Reproduced from
[568], with permission from Wiley Liss.)
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the mammalian ovarian follicle and it was suggested that it is
involved in hormonal regulation of folliculogenesis, indicat-
ing a potential application of inhibitors as novel contracep-
tives [472].

Testis

The testis is the primary source of testosterone production. It
consists of seminiferous tubules, within which spermatogen-
esis takes place, and interstitial spaces between these tubules,
containing Leydig cells (testosterone-producing cells), as well
as supporting tissue and blood or lymphatic vessels. Germ
cells and Sertoli cells are the only cell types present within the
seminiferous tubules and they are in close contact with each
other. The germ cells migrate within the seminiferous tubules
and differentiate from stem spermatogonia, through spermato-
cytes, to spermatids. The changes in Sertoli cell and germ cell
morphology during the repetitive cycle of germ cell develop-
ment in the rat have been categorised into the 14 different
developmental stages. P2X2 and P2Y2 receptors have been
described on mouse Sertoli cells and a paper identifies mito-
chondria as essential components of Sertoli cell signalling that
control the purinergic-mediated Ca2+ responses [570]. Acti-
vation of AMP-activated PK by adenosine promotes lactate
offer to germ cells, thus contributing to successful spermato-
genesis [178]. There is sympathetic innervation of the testis
with predominant supply to blood vessels; sensory nerve
fibres are also present.

There is ultrastructural evidence for sympathetic innerva-
tion of Leydig and interstitial cells, which secrete androgens in
the testis of various animals and hormones [430]. ATP was
shown to act via P2 receptors to increase [Ca2+]i in mouse
Leydig cells [412]. P2X2 receptors were later described on
Leydig cells [426] and ATP shown to increase testosterone
secretion [163]. Leydig cells express pannexin hemichannels,
which may account for ATP release [555]. Various P2X re-
ceptor subtypes, namely, P2X1, P2X2, P2X3, P2X5 and
P2X7 (but not P2X4 or P2X6) receptors, are expressed on
germ cells during spermatogenesis [191]. No evidence for a
role of sympathetic innervation in the control of sperm devel-
opment has been presented. Multiple purinergic receptors lead
to intracellular calcium increases in rat Sertoli cells [270].

A1 receptors were identified in rat testis [365,508] and
adenosine caused steroid production in isolated Leydig cells
[455]. The A1 receptors were also localised in Sertoli cells of
the seminiferous tubules [354]. Pertussis toxin treatment of
cultured Sertoli cells reversed the adenosine-mediated inhibi-
tion of cAMP accumulation and potentiated the cAMP re-
sponse to FSH [249,355].

The Sertoli cells from the mammalian testis are multifunc-
tional cells that release several proteins and fluid into the
lumen of the seminiferous tubules and play a key role in germ

cell development. FSH is the main messenger of the response
of immature Sertoli cells. When Sertoli cells were exposed to
ATP, a fast and biphasic increase in [Ca2+]i was obtained
[281]. Sertoli cells express P2 receptors that are associated
with phosphoinositide turnover and are activated equally by
ATP and UTP suggesting that P2Y2 or P2Y4 receptors are
involved; they have profound effects on FSH responsiveness
[157]. ATP stimulates accumulation of InsP3 in primary cul-
tures of rat and mouse Sertoli calls, consistent with P2Y2 or
P2Y4 receptor activation [162,463]. Extracellular ATP stimu-
lates oestradiol secretion in rat Sertoli cells via both P2X and
P2Y receptors, which leads to increases in both [Ca2+]i and
[Na+]i and membrane depolarisation leading to oestradiol
secretion ([459]; Fig. 9). RT-PCR studies revealed mRNA
for P2Y1, P2Y2 and P2X4 and P2X7 receptors in cultured
rat Sertoli cells [270].

Leydig cells are interposed between the seminiferous tu-
bules in the testis. They secrete androgens in response to LH
from the anterior pituitary gland. Rat Leydig cells express P2
receptors and their activation by ATP leads to testosterone
secretion via a mechanism dependent on the influx of Ca2+

from the external medium [163], consistent withmediation via
a P2X receptor subtype. The pharmacological features sug-
gested that the P2X2 receptor subtype was involved [426].
Production of androgens by Leydig cells is dependent on
androstenedione, the precursor of testosterone synthesis and
the activation of the microsomal enzyme 17β-hydroxysteroid
dehydrogenase (17βHSD). ATP generation is required for the
activation of 17βHSD in the final step of androgen biosyn-
thesis [260]. The activity of 17βHSD is modulated by extra-
cellular pyridine dinucleotides and adenosine [152]. Evidence
for sympathetic innervation of human Leydig cells has been
presented and their influence on the secretion of testosterone,

Fig. 9 Effects of extracellular ATP (ATPe) on oestradiol production in rat
Sertoli cells: cells were cultured for 4 days in control medium. On the
fourth day in culture, cells were stimulated with ATPe (1, 10, 100 and
1000 μM). After 24 h, media were collected and oestradiol production
determined by radioimmunoassay. For evaluation of ATPe-induced
oestradiol secretion, Sertoli cells were incubated in different experimental
conditions as reported in figure legend. Values are expressed as mean ±
S.D. of three separate experiments performed in duplicate: a p <0.05; b p
<0.01; c p <0.001 vs. control and Na+-free medium. (Reproduced from
[459], with permission from Elsevier.)
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perhaps involving ATP release as a cotransmitter with NA
[162].

Thyroid hormones are regulators of the male reproductive
system. They modulate extracellular ATP levels in hypothy-
roid cultured Sertoli cells and congenital hypothyroidism and
thyroid hormone supplementation on NTPDase activities in
Sertoli cells can influence the actions of ATP and adenosine
on reproductive functions during development [611].

There is sympathetic and sensory innervation of the rodent
testicular artery and the pampiniform plexus, a venous net-
work that surrounds it. The innervation is largely restricted to
the capsule of the testes and most superficial blood vessels,
suggesting a role in the control of temperature. The testicular
capsule of the rat, mouse, rabbit and man all contain contract-
ible smooth muscle. ATP released as a cotransmitter from
sympathetic nerves can stimulate contraction of testicular
smooth muscle, probably mediated through P2X1 and/or
P2X2 receptors [18]. Mouse Leydig cells express P2X4,
P2X6 and P2X7 receptor subunits as well as P2X2 receptors
and it was suggested that heteromeric P2X2/4/6 receptors may
also be present [12].

Pineal gland

The pineal gland is a pea-sized mass of tissue attached by a
stalk to the third ventricle of the brain, deep between the
cerebral hemispheres at the back of the skull. It contains
neurons, glia and special secretary cells called pinealocytes.
It functions as an endocrine gland, synthesising, storing and
secreting the hormone melatonin.

Endogenous adenosine was shown to be involved in the
regulation of melatonin output in the chick pineal gland [145].
Adenosine, acting by A2 receptors, elevated both N -
acetylserotonin and melatonin in rat pineal gland [182], prob-
ably via A2B receptors [183,372]. A1 receptors and later A2A

receptors were identified in the pineal of sheep [146,602]. A2B

and A3 receptors were both claimed to be present on mouse
pineal tumour cells [516].

It was believed for many years that pineal function was
regulated by release of NA from sympathetic nerve terminals.
However, when it was established that ATP was released as a
cotransmitter with NA from sympathetic nerves (see [62]),
evidence was presented that ATP was also involved in regu-
lation of pineal activities by sympathetic nerves [362,376].
The presence of P2 receptors in the rat pineal gland was later
reported, and claimed that their main role was to mediate
potentiation of the effect of NA-induced N′-acetyl-5-HT pro-
duction [155]. A P2Y1 receptor was identified in cultured rat
pineal glands [154] and later shown to mediate enhancement
of the rate of pinealocyte-induced extracellular acidification
via a calcium-dependent mechanism [156].

Chick pineal glands exhibit persistent circadian rhythms in
the rate of formation of melatonin. It has been claimed that
purinergic receptors play no major role in control of this
circadian rhythm in the rate of thymidine uptake [578].

Thymus

The thymus is a bilobed organ in the base of the neck, above
and in front of the heart. It is enclosed in a capsule and divided
internally by cross walls into many lobules, each full of T-
lymphocytes. It doubles in size by puberty, after which it
gradually shrinks, being replaced by adipose tissue. In infan-
cy, the thymus controls the development of lymphoid tissue
and immune responses related to autoimmunity. The thymus
is important in immunological function because it contains the
active hormone thymosin, which helps to stimulate the pro-
duction and development of T-lymphocytes. The purine deg-
radation enzymes adenosine deaminase and purine nucleoside
phosphohydrolase are linked to lymphocyte differentiation
and formation and there is evidence for deficiencies in these
enzymes in some combined immunodeficiency diseases. T-
lymphocytes migrate from the bone marrow to the thymus,
where they mature and differentiate until activated by antigen.
The thymus gland is innervated by sympathetic nerves that
supply the subcapsular cortex, particularly the major blood
vessels that run to the corticomedullary junction, but are
sparse in the medulla, although there is an increase in β-
adrenoceptor expression in the medulla during maturation.
There is also evidence that nerve fibres containing ACh and
VIP also supply the thymus. There is an increase in sympa-
thetic innervation of the thymus with age, suggesting that
these nerves may play a role in age-associated immune
dysregulation.

Evidence for stimulation of thymocytes by adenosine,
leading to increase in cAMP was presented early [45,172],
to enhance DNA synthesis [202] and regulate thymocyte
proliferation [469]. The adenosine receptor involved was
claimed to be the A2 subtype, based on agonist potencies
[168]. There is cross-talk between A2A receptors and T cell
receptors in both directions, supporting a possible role of A2A

receptors in the mechanism of immunosuppression in vivo,
under adenosine deaminase deficiency and hypoxic condi-
tions such as solid tumours [275].

ATP stimulates calf thymus DNA α-polymerase [584] and
enhances calcium influx in intact thymocytes [139,312], sug-
gesting the involvement of P2X receptors. Extracellular ATP
increases [Ca2+]i in mouse thymocytes, but they vary in sen-
sitivity depending on the degree of maturation [458]. It was
suggested that extracellular ATP may be involved in the
processes that control cellular proliferation within the thymus.
P2X4 receptor mRNA was identified in the rat thymus [43].
ATP and adenosine are selective in targeting different
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thymocyte subsets and they have additive and/or antagonistic
effects with T cell receptor- and steroid-induced thymocyte
death ([13]; Fig. 10a).

ATP has been shown to produce apoptotic cell death of
thymocytes [366,619], implicating the presence of P2X7 re-
ceptors, which were later identified on phagocytic cells of the
thymic reticulum [108]. It has been suggested that P2X7
receptor-mediated signalling is involved in the regulation of
differentiation as well as cell death in the thymus and purified
T, but not B, lymphocytes [102]. P2X7 receptor-mediated
apoptosis of thymocytes involves de novo ceramide synthesis
and mitochondria alterations ([302]; Fig. 10b and c). P2X1
receptors have also been claimed to play a role in apoptosis of
thymocytes [103].

ATP had a biphasic effect on mouse thymocyte consisting
of hyperpolarisation followed by depolarisation [345]. There
is transient upregulation of P2Y2, but not P2X1, receptor
mRNA expression in mouse thymocytes after the addition of

steroid hormone [274]. It was suggested that there may be a
common early event in responses of T cells to different acti-
vating stimuli. mRNA for P2X1, P2X2, P2X6 and P2X7
receptors has been described on mouse thymocytes [173].

In an immunohistochemical and in situ hybridization study
of P2 receptors in the rat thymus, it was confirmed that P2X4
receptors were expressed in thymocytes and P2X1 and P2Y2

receptors on subpopulations of lymphocytes (see [65]). It was
also shown that P2X1, P2X2 and P2X4 receptors were present
in thymic blood vessel smooth muscle, P2X3 receptors on
endothelial cells and P2X5 receptors on fibroblasts in the
adventitia ([190]; Fig. 11a). Further, P2X2 and P2X3 recep-
tors were abundant on medullary epithelial cells, while P2X6
receptors were prominent in Hassall's capsules. P2X2 recep-
tors were found on subcapsular and perivascular epithelial
cells and P2X2, P2X6 and P2X7 receptors on epithelial cells
along the thymic septa. In a functional study of three prepa-
rations of thymic epithelial cells: 2BH4murine cell line, IT45-

Fig. 10 a Extracellular ATP increases intracellular [Ca2+]i in mouse
thymocytes in culture. Comparison of effects of ATP with effects of its
catabolites [ADP, AMP and adenosine (Ado)] on elevation of [Ca2+]i.
Thymocytes were loaded with the [Ca2+]i-sensitive indicator indo-I and
incubated with (1 mM) or without nucleotides, and the concentration of
[Ca2+], was continuously measured. (Reproduced from [13], with per-
mission from the American Association of Immunologists.) b and c ATP-
induced apoptosis is mediated by P2X7 receptors in thymocytes from
BALB/c mice. b Thymocytes were incubated for 5 h with purinoceptor
agonists. Apoptosis was evaluated from the percentage of cells with
apoptotic nuclei (means ± S.E. of four to five experiments). ATP and
the P2X7 receptor agonist 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-
triphosphate (BzATP) were the most potent agonists. *Significantly dif-
ferent from corresponding control, °significantly different from ATP. c
Thymocytes were incubated for 30 min with 1 mM ATP or 5 μM α,β-
methylene ATP (αβ), for 2 h with 500 μM oxidised ATP (oATP),
followed by 30 min with 1 mM ATP. Data shown are the percentages

of phosphatidylserine (PS)+propidium iodide (PI) cells (treated minus
control), determined from fluorescence microscopy after the binding of
annexin-V-FITC in PI-cells (means ± S.E. of three to four experiments).
The most mature thymocytes, the single positive cells (SP: CD4+CD8-
and CD4-CD8+), were the most sensitive to ATP, whereas the double
positive (DP: CD4+CD8+) and double negative (DN: CD4-CD8-) cells
exhibited a lower sensitivity. (Reproduced from [302], with permission
from Elsevier.) d Dose-dependent increase in prostaglandin E2 (PGE2)
production by ATP and UTP in TEA3A1 rat thymic epithelial cells.
Confluent TEA3A1 cells were incubated for 15 min at 37 °C with
increasing doses of adenosine 5′-[βγ-methylene]triphosphate
(p[CH2]ppA), guanosine 5′-triphosphate (GTP ), adenosine 5′-[αβ-
methylene]triphosphate (pp[CH2]pA) and 2-methylthioadenosine tri-
phosphate (2-MeSATP ). At the end of the experiment, media were
collected and the level of PGE2 produced by the cells was determined
by radioimmunoassay. Each point represents the mean+S.D. (n =3).
(Reproduced from [317], with permission from Portland Press.)

Purinergic Signalling (2014) 10:189–231 209



R1 rat cell line, and primary murine cells derived from the
Nurse cell lympho-epithelial complex, it was shown that
extracellular ATP increases [Ca2+]i probably largely via
P2Y2 receptors activated by both ATP and UTP [38]. They
showed further that murine 2BH4 cells also expressed P2X7
receptors. P2Y2 receptor mRNAwas identified at the electron
microscopic level in the rat thymus and shown to be localised
on cortical T cells and endothelial cells of thymic blood
vessels ([322]; Fig. 11b).

In the thymus, prostaglandin E2 (PGE2) is produced and
maintained at a high level, largely by thymic epithelial cells.
ATP, acting via P2Y receptors, leads to production of PGE2

and it has been suggested that ATP released as a cotransmitter
from sympathetic and parasympathetic nerves may be respon-
sible for the high levels of PGE2 in the thymus ([317,318];
Fig. 10d).

IL-6 is an important factor for thymic proliferation and
differentiation, produced by thymic epithelial cells. It has been
suggested that ATP released as a cotransmitter from

sympathetic nerves leads to IL-6 production [576], implicat-
ing the presence of P2X7 receptors. Extracellular ATP induces
phosphatidylserine externalisation earlier than nuclear apopto-
tic events in thymocytes [107]. Intercellular calcium waves
have been identified between thymic epithelial cells and
shown to depend on both gap junctions and P2 receptors
[374].

Adenosine triphosphatase was localised histochemi-
cally intracellularly in thymocytes and shown to be
more prominent in thymocyte precursors than in mature
thymocytes [363]. ATP, and to a lesser extent ADP, but
not AMP, GTP or inosine triphosphate, increased [Ca2+]i
and initiated blastogenesis [138]. Adenosine deaminase
was localised in the human thymus [88]. Phorbol esters
regulate adenosine deaminase mRNA in human thymo-
cytes [344]. Studies of transgenic mice over-expressing
CD73, suggest that adenosine accumulation may play a
role in adenosine deaminase-deficiency severe combined
immunodeficiency [442]. It is known that the thymus
and other lymphoid tissues react to nutritional disorders
more rapidly than most other organs. Re-feeding with a
20 % protein diet for 9 days is enough to reverse the
effect produced by severe protein malnutrition and aden-
osine deaminase and purine nucleoside phosphorylase
activities [151]. Adenosine deaminase deficiency in-
creases thymic apoptosis and causes defective T cell
receptor signalling [14].

There is a valuable review discussing the roles of extracel-
lular ATP in the neuroendocrine control of the thymus [8].

Neuroendocrine hypothalamus

Mg2+ATP has been shown to stimulate the release of luteinis-
ing hormone-releasing hormone (LHRH) from isolated hypo-
thalamic granules [68]. ATP facilitates the action of chelated
copper, perhaps released endogenously, to stimulate the re-
lease of LHRH from explants of the median eminence via
interaction with a purinergic receptor [21]. ATP stimulated
LHRH release and increased [Ca2+]i levels in both neurons
and glia; LHRH neurons express P2X2 and P2X4 receptors,
while glia express P2Y1 and P2Y2 receptors and interactions
between neurons and glia appear to be involved in the initia-
tion of Ca2+ oscillations and pulsatile LHRH release in vivo in
primates [537]. P2X2, P2X4, P2X5 and P2X6 receptor sub-
units were shown by immunohistochemistry to be expressed
on the perykarya of LHRH-producing neurons, and P2X2 and
P2X6 receptors on the axon terminals [175,320,321,595].
NTPDase3 has been identified in the neuroendocrine hypo-
thalamus and it has been suggested that it plays a role in the
initiation of the LH surge and ATP involvement in the regu-
lation of pituitary LH release [622].

Fig. 11 a and b P2X4 and P2X1 receptor immunoreactivity in rat
thymocytes: immunofluorescence with Texas Red. a Clusters of P2X4
receptor-expressing thymocytes along the cortico-medullary junction and
within the medulla. b Thymocytes staining for P2X1 in the subcapsular
area. Scale bar in a 20μm and b 40μm. c Ultrastructural identification of
P2Y2 receptor mRNA in the cortex of rat thymus. Note intense labelling
(numerous ‘black’ gold-silver grains: arrows) localised in the cytoplasm
of resting T-cells (T) of the specimen that was hybridised to the DIG-
labelled rat P2Y2 receptor antisense oligonucleotide probe. ×11,000. (a
and b Reproduced from [190] with permission from Springer. c
Reproduced from [322], with permission from Karger.)
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ATP injected into the paraventricular and supraoptic nuclei
leads to a release of the antidiuretic hormone, arginine-
vasopressin (AVP) [358,359]. It was later proposed that ATP
was released as a cotransmitter with NA from neurons in the
caudal medulla that project to supraoptic VP cells [118].
Application of ATP and UTP (but not adenosine) produced

depolarisations of supraoptic neurosecretory cells in
superfused explants of rat hypothalamus, via P2X and P2Y2

receptors [233]. ATP appears to act via P2X receptors both on
the cell bodies and dendrites of vasopressinergic neurons in
the supraoptic nucleus of the hypothalamus [481]. ATP pro-
duces inward currents in isolated vasopressinergic

Fig. 12 a Patch-clamp analysis of ATP-induced currents in rat supraop-
tic nucleus (SON) neurons. Representative current responses to UTP (10-
3 M), BzATP (10-4 M) and ATP (10-3 M) obtained from a single SON
neuron. The breaks in the trace are 3–5 min. The holding potential was
−80 mV. The major salt in the pipette used in experiments shown in this
figure was caesium methanesulphonate. (Reproduced from [481], with
permission from Wiley.) b Rat SON astrocytes respond to ATP and
noradrenaline (NA) and the response is synergistic. Averaged values
show that the amplitude of the response to the co-application of the two
transmitters is significantly greater than the sum of the responses to
individual applications (*** P<0.001, n =22). (Reproduced from [143],
with permission from Elsevier.) c Summary of effects of suramin on
electrically-stimulated vasopressin (AVP) release from wild-type (WT),
P2X3, P2X2⁄3 and P2X7 receptor knockout (KO) mice. These data
indicate that P2X2 is the primary receptor responsible for the facilitation
of electrically-stimulated AVP release by endogenous release of ATP. The
inhibitory effect of suramin on endogenous ATP facilitation of AVP

release was significantly (P<0.05) reduced only in the P2X2⁄3 KOmice.
* Indicates significant difference P <0.05 compared to WT control.
(Reproduced from [114], with permission from Wiley.) d Model of the
established exogenous and the proposed endogenous purinergic effects
on neurohypophysial terminals. Different physiological burst patterns
regulate oxytocin (OT; high frequency) vs. AVP (low frequency) release.
The biophysical properties of the VGCC (N, L, R on OT and N, L, Q on
AVP terminals) alone, however, cannot explain the differential effects of
such bursts. Thus, we propose that endogenous co-released ATP activates
P2X2, P2X3, P2X4 and P2X7 receptors localised on AVP terminals,
while activating only P2X7 receptors on OT terminals. The flux of
Ca2+ through these receptors increases [Ca2+]i and, thus, neuropeptide
release. The ATP is then broken down to adenosine by ecto-nucleotidases,
which are present only on AVP terminals. Adenosine, which acts on A1

receptors, present on both terminal types, directly inhibits N-type Ca2+

channels and subsequent neuropeptide release. (Reproduced from [300],
with permission from Elsevier.)
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neurohypophysial terminals via P2X2 and P2X3 receptors
[267]. RT-PCR studies showed that mRNAs for P2X3,
P2X4 and P2X7 receptors were predominant in rat supraoptic
nucleus and functionally expressed, leading to increase in
[Ca2+]i ([481]; Fig. 12a). Evidence has been presented that
ATP-induced currents in AVP neurons in the supraoptic nu-
cleus may be mediated, at least in part, by pannexin channels
associated with P2X receptors [386]. Adenosine, probably
resulting from the breakdown of ATP released from nerves
in the supraoptic nucleus, inhibits the release of γ-
aminobutyric acid and glutamate via activation of presynaptic
A1 receptors leading to modulation of AVP and OT release
[396].

In keeping with the features of cotransmission, ATP (via
P2X receptors) and phenylephrine (via α1 adrenoceptors) act
synergistically to stimulate AVP release [487,497,500]. Syn-
ergistic activation of astrocytes by ATP and NA in the rat
supraoptic nucleus has also been described ([143]; Fig. 12b).
ATP, acting via P2X2 receptors (which do not show desensi-
tization), caused rapid, sustained release of AVP and OT into
perfused explants of the rat hypothalamus-neurohypophysial
system [193], while substance P potentiated these responses
[250]. P2X5 receptors were shown to be expressed on neurons
containing AVP and NOS in the rat hypothalamus ([596];
Fig. 13). Evidence was presented to show that P2Y as well

as P2X receptors mediate ATP-stimulated increase in [Ca2+]i
in the supraoptic nucleus, the P2Y1 receptor subtype being
more prominent than the P2Y2, P2Y4 or P2Y6 subtypes [498].
In a later paper from this group, it was suggested that P2Y1

receptors may regulate VP release by mediating stretch-
inactivated cation channels [499]. A recent study has shown
that AVP-containing neurons to the rat paraventricular nucleus
expressed P2X4, P2X5 and P2X6 receptors, while OT-
containing neurons only expressed P2X4 receptors; in the
supraoptic nucleus, AVP neurons expressed P2X2, P2X4,
P2X5 and P2X6 receptors and OT-containing neurons
expressed P2X2, P2X4 and P2X5 receptors [206]. It was
concluded in recent papers that P2X4 receptors were found
only on AVP terminals, while P2X7 receptors were expressed
on both AVP and OT terminals and somata and this suggested
that this is controlled by hypothalamic neurohypophysial neu-
rons to form a positive feedback mechanism for hormone
release (Fig. 12c) [114,269]. Amodel was proposed to explain
how purinergic and/or opioid feedback modulation during
bursts can mediate differences in the control of neurohypo-
physial AVP and OT release ([300]; Fig. 12d). Adenosine,
acting via P1 receptors, reduces ATP-stimulated AVP release
from hypothalamo-neurohypophysial explants [496].

Orexin/hypocretin neurons in the hypothalamus, involved
in arousal and feeding behaviours, express A1 adenosine

Fig. 13 Coexistence of P2X5 receptor immunoreactivity and vasopres-
sin (AVP) in rat hypothalamus. a P2X5 receptor-immunoreactive (ir)
neurons and fibers in the paraventricular hypothalamic nucleus, lateral
magnocellular area (PaLM; green). b AVP-ir neurons and fibers in the
PaLM at the same section of a (red). c Coexistence of P2X5 receptor-ir
and AVP-ir in the supraoptic nucleus (SON). Note that nearly all the AVP-
ir neurons also expressed P2X5 receptor immunoreactivity (yellow), but a

number of the P2X5 receptor-ir neurons (green) did not express AVP. d
Coexistence (yellow) of P2X5 receptor immunoreactivity (green) and
AVP (red) in the retrochiasmatic part of supraoptic nucleus (SOR). Scale
bar for all figures 80 μm. In each figure, the dorsal aspect of the nuclei is
at the top and the ventral aspect of the nuclei is at the bottom.
(Reproduced from [596], with permission from Elsevier.)
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receptors [538,594]. P2X2 receptor mRNA has also been
shown to be expressed on orexin/hypocretin neurons in the
rat perifornical hypothalamus [160] and ATP, released from
neurons and/or glia, leads to increased activity of the
hypocretin arousal system via P2X2 receptors [592].

Placenta

The placenta and umbilical vessels are involved in steroido-
genesis as well as regulation of blood flow and control of
transport of materno-foetal fluid and solutes.

NO, released from endothelial cells following occupation
of P2 receptors in response to ATP, ADP and UTP, may
regulate the release of corticotrophin-releasing hormone from
human placental syncytiotrophoblast cells. An increase in
placental 5′-nucleotidase was described in late human preg-
nancy and duration of labour and it was suggested that this
may reflect enhanced oestrogen synthesis and facilitation of
uterine contractions during labour [61]. Immunocytochemical
localisation of 5′-nucleotidase was shown on the external
surface of the microvillous plasma membrane of the
syncytiotrophoblast, where it may play a role in regulating
foeto-placental-maternal microcirculation in the human term
placenta [346]. P2X7 receptors mediate regulation of PLD in
human placental trophoblasts [126].

P2X1, P2X4, P2X5, P2X6 and P2X7 receptor mRNA has
been described in human placental vessels, which contribute
to humoral regulation of placental blood flow [565]. The
syncytiotrophoblast is the solute-transporting epithelium of
the human placenta that facilitates maternal-foetal nutrient
exchange. Since the human placenta is not innervated, auto-
c r ine , pa rac r ine and endoc r ine modu la t ion o f
syncytiotrophoblast transport function is of pivotal impor-
tance. Functionally active P2X4, P2X7, P2Y2 and P2Y6 re-
ceptors have been identified on human placental
syncytiotrophoblast cells [446]. This group showed later that
post-translational modifications of the syncytiotrophoblast
P2X4 receptor are altered in preeclampsia [447].

Neuroendocrine cells

The neuroepithelial bodies (NEBs) consist of pulmonary neu-
roendocrine cells that are usually arranged in innervated clus-
ters in the airway mucosa. They are O2 sensors, of particular
importance in early life before the carotid body O2 sensory
system is fully established. They also appear to mediate reflex
activities in response to hyperventilation and noxious sub-
stances, by releasing ATP to act on P2X3 receptors on sensory
nerves arising from the nodose ganglia, which innervate
NEBs [51,52]. Parasympathetic efferent fibres also innervate
NEBs [1].

Merkel cells in the skin are also regarded as neuroendo-
crine cells. They are innervated largely by sensory nerves,
which are likely to be activated by ATP, which is stored in
high concentrations and probably released from these cells by
mechanical distortion [112].

Rat prostate neuroendocrine cells express both P2X and
P2Y receptor subtypes, which mediate marked increase in
[Ca2+]i [59,261]. The authors speculate ATP is released as a
cotransmitter with NA in sympathetic reviews innervating the
prostate.

The gastrointestinal tract is, in size at least, the largest
endocrine organ in the body. Endocrine cells in the intestinal
mucosa release a number of putative hormones [259,476]. For
example, the intestinal hormone cholecystokinin acts on pri-
mary afferent nerve fibres in the vagal trunk [128]. OT is
expressed by intrinsic sensory and secretomotor neurons in
the guinea-pig enteric nervous system, suggesting that OT in
the gut is involved in both motility and the balance of absorp-
tion and secretion of water and electrolytes [608].

Adipocytes

Adipocytes were long considered to be an inert tissue for fat
storage, but it is now recognised that it has endocrine func-
tions [80,224,263,456]. Adipocytes secrete adipokines, in-
cluding adiponectin, leptin, tumour necrosis factor-α and IL-
6, as well as adenosine and fasting-induced adipose factor.
Leptin is produced by white adipocytes and acts on the brain
to maintain body weight by suppressing food intake [431].
Adiponectin has an anti-inflammatory role, protecting against
insulin resistant type 2 diabetes, fatty liver disorder and
atherosclerosis.

P1 receptors

Adenosine was shown to inhibit adenylate cyclase activity in
fat cell ghosts [144,323] and lipolysis in adipose cells stimu-
la ted by NA or sympathe t ic nerve s t imula t ion
[169,234,493,556]. Insulin and adenosine are both
antilipolytic; they are additive, but not synergistic [494]. Both
insulin and adenosine have major roles in regulating adipose
tissue mobilisation [351]. Adenosine also plays a role in the
regulation of adipose tissue blood flow [342,492,557]. Fat cell
plasma membranes were shown to contain sites which bind
[3H]adenosine with high affinity [339]. Adenosine receptors
on fat cells that mediate inhibition of cAMP accumulation and
lipolysis were identified [553]. CD73-derived adenosine is an
insulin-independent modulator of lipolysis in fat tissue under
in vivo conditions [60]. They were claimed first to be Ra, Ri

and then P receptors [179] and later as A1 receptors in rats
[199,406], pigs [349] and humans [200,287,534]. Adenosine
inhibited lipolysis in vivo in obese premenopausal women
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[180]. White adipocytes were found to be more responsive
than brown adipocytes to inhibition of lipolysis by A1 receptor
agonists [464]. Lipolysis of mature brown fat cells is signifi-
cantly increased by activation by A2A receptor agonists or by
A1 receptor antagonists [192]. The A2 receptor subtype, which
is positively coupled to adenylate cyclase, is expressed in
adipocyte precursor cells, but not mature adipocytes [567].
However, in later papers A1 receptors expressed in human pre-
adipocytes were shown to initiate differentiation while A2B

receptors mediated inhibition of apidogenesis [185,533]. Ad-
ipocyte A1 receptors are tonically activated by endogenous
adenosine at nanomolar concentrations [310]. A partial ago-
nist of the A1 receptor was identified and evidence presented
that the rat epididymal A1 receptors are a homogenous recep-
tor population with regard to affinities for ligands [148]. There
is a deficient lipolytic response to CA in hypothyroidism and
it was suggested that this may be due to an increased influence
of adenosine [170]. Short-term hyperthyroidism modulates
the expression of adenosine receptors in adipocytes [433].

In subcutaneous abdominal fat cells from obese subjects,
the antilipolytic effect of an adenosine analogue was markedly
attenuated [387,388], with decreased adenosine receptor num-
bers [248]. Insulin resistance in Obese Zucker rats is tissue
specific and signalling via adenosine receptors may be a factor
contributing to tissue specific insulin resistance [111]. Over-
expression of A1 receptors in adipose tissue protects mice
from obesity-related insulin resistance [129]. Data has been
presented to suggest that inhibition of lipolysis by adenosine is
greater in obese African-American women and this may ex-
plain why obese African-American women have more diffi-
culty in losing weight than obese Caucasian women [20]. It
has been claimed recently that promotion of brown adipose
tissue development in white adipose tissue by physiological
activation of AMP kinase may have potential for treating
obesity [573]. Adenosine had different effects on the actions
of OTand insulin on glucose oxidation and lipogenesis [195].
Adenosine greatly enhanced lipolysis in isolated fat cells from
streptozotocin-diabetic rats compared to controls [495]. The
maximal rate of lipolysis of adipocytes from exercise-trained
rats was increased compared to controls, but inhibition by
adenosine was comparable in the two groups [482]. Lactation
results in an increased responsiveness of adipocytes to β-
agonists which stimulate lipolysis and paradoxically, to aden-
osine which inhibits lipolysis [571]. Activation of A1 recep-
tors, which have a dominant expression in adipocytes, in-
creases leptin secretion [95,443], as well as inhibition of
lipolysis and protection against obesity-related insulin resis-
tance [185]. They suggest that targeting A1 and A2B receptors
could be considered for the management of obesity and dia-
betes (see also [123,124]). Leptin-induced lipolysis opposes
the tonic inhibition by endogenous adenosine in white adipo-
cytes [174]. AMP kinase has been claimed to have fat-
reducing effects on adipose tissue [177]. In a study using A1

receptor knockout mice, increase in lipolysis and decrease in
lipogenesis was expected, but in fact an increased fat mass
was observed [246]. The authors suggested that this might
indicate that other actions of A1 receptors, possibly outside
adipose tissue, may also be important. However, partial an-
tagonism of A1 receptors increased lipolysis in cells incubated
with adrenaline and adenosine with insulin [523]. It was
concluded that the adenosine that accumulates in human ad-
ipocyte suspensions is almost exclusively derived from ATP
released from cells [254]. A1 receptor signalling contributes to
insulin-controlled glucose homeostasis and insulin sensitivity
and is involved in the metabolic regulation of adipose tissue
[149]. An early review about adenosine and lipolysis is avail-
able [167]. AMP is a selective inhibitor of brown adipocyte
non-selective cation channels [209].

There is recent interest in the differentiation of mesenchy-
mal stem cells (MSCs) into adipocytes and purinoceptors
appear to be involved. For example, differentiation of MSCs
into adipocytes was accompanied by significant increases in
A1 and A2A receptor expression and their activation was
associated with adipogenesis [184].

P2 receptors

ATP inhibition of insulin-stimulated glucose transport in fat
cells was recognised early [81,158,210]. ATP also inhibited
insulin-stimulated glucose oxidation [530]. Insulin-stimulated
D-allose transport, into or out of the cell, but not basal trans-
port, is inhibited by brief exposure of isolated fat cells to
exogenous ATP and ADP [326]. It was suggested that ATP
blocks transmission of signal from the insulin receptor to the
carrier system. Sympathetic nerve stimulation induces a rapid
fall in ATP in subcutaneous adipose tissue, perhaps secondary
to the hypoxia produced by vasoconstriction [171]. Evidence
was presented to suggest that extracellular ATP may partially
inhibit the binding of insulin to its surface receptor and, at the
same time, may strongly block the degradative pathways for
the processing of insulin [215]. Chronic inflammation in
adipose tissue is an important etiologic factor for the devel-
opment of insulin-resistance, particularly in obesity. In a re-
cent paper, it has been shown that high doses of ATP induce
inflammatory responses and insulin resistance in rat adipo-
cytes [610]. The authors suggest that defects in ATP-induced
insulin signalling play a major role for the impaired glucose
uptake in response to insulin treatment. Echinocytosis by
glucose depletion, where erythrocytes shrink, has been attrib-
uted to ATP depletion, although other mechanisms may also
be involved [593].

High fat diets are associated with a reduction in sympathet-
ic activity in brown adipose tissue [465], bearing in mind that
it is now well established that ATP is released as a
cotransmitter from sympathetic nerves (see [63]). In obesity,
sympathetic nerve activity is increased relating to obesity
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hypertension, while sympathetic nerve activity to adipose
tissue is reduced and unresponsive to stimulation by feeding
[289]. It was further suggested that local sympathetic nerve
dysfunction may contribute to abnormal adipose tissue behav-
iour in obesity and body fat accumulation.

From a study of brown adipocytes of rats it was suggested
that secretion, mobilization of membrane transporters, and/or
membrane expression of receptors may be regulated by ATP
released as a cotransmitter from sympathetic nerves acting via
P2Y receptors [295,404]. In a later study, these authors con-
cluded that white adipocytes are very similar to brown adipo-
cytes in their response to extracellular ATP [296]. ATP, acting
via P2 receptors, is involved in the regulation of the key
enzyme of oestrogen biosynthesis, aromatase, in stromal cells
from human adipose tissue [475]. They suggest that P2 recep-
tors might provide a direct link between sympathetic nerve
activity and oestrogen biosynthesis. ATP not only mobilises
Ca2+ from intracellular stores (probably via P2Y receptors),
but also exerts a potent inhibitory effect on the store-operated
Ca2+ entry process in adult rat brown adipocytes [397,398].
ATP, probably released from sympathetic nerves, modulates
via P2 receptor activation, the amount and voltage dependence
of voltage-gated K+ currents in brown adipocytes [585], and
increases membrane conductance in single rat adipocytes
[100].

ATP also mediates long-term signalling, for example it
modulates proliferation of brown adipocytes [586]. Evidence
has been presented that extracellular ATP redistributes actin
filaments towards the plasma membrane of brown adipocytes
via P2 receptors [399].

Genes expressing P2X1, P2X4, P2X5 and P2X7, in addi-
tion to P2Y1, P2Y2, P2Y4 and P2Y6 receptor mRNA identi-
fied by RT-PCR, have been described in rat adipocytes [398].
P2Y2 and P2Y11 receptors have been identified on white
adipocytes and it has been suggested that P2Y11 receptors
might be involved in inhibition of insulin-mediated leptin
production and stimulation of lipolysis [293]. In a more recent
paper, leptin production by white adipocytes was decreased in
P2Y1 receptor knockout mice [285]. It was suggested that the
P2Y1 receptor may regulate plasma leptin in lean mice, but is
overcome in obese mice. P2Y2, P2Y6 and P2Y12 receptors,
and all P2X receptor subtypes except P2X6, were identified as
the nucleotide receptors on brown fat cells [297]. Human
adipocytes express functionally active P2X7 receptors that
mediate release of inflammatory cytokines; adipocytes from
patients with metabolic syndrome show enhanced P2X7 re-
ceptor expression [336].

ATP enhanced 3 T3-L1 pre-adipocyte cell migration into
fat cell clusters, one of the essential processes of adipose tissue
development, by activating P2Y receptors, as well as enhanc-
ing the differentiation of adipocytes by adipogenic hormones
[400]. Deficits in receptor regulation, transporter mobilization
and adipocyte hormone secretion are all thought to contribute

to the pathology of obesity. Stimulation of lipogenesis in rat
adipocytes by ATP, which regulates fat stores independently
from established hormones, has been reported [477].

Ca2+ATPase in mitochondria, that is brown adipose tissue-
specific, has been described that can generate heat in the
presence of Ca2+ concentrations similar to those generated
by adrenergic stimulation [120]. Resveratrol and genistein,
naturally occurring plant-derived compounds present in red
wine and said to have anti-adipogenic effects, deplete ATP
from adipocytes [521].

Increase in release of ATP in adipocytes appears to be an
important factor increasing leptin gene expression and en-
hancing leptin secretion after a meal (see [522]).

Concluding comments

In most other areas, the recent emphasis has been on the
pathophysiology and therapeutic potential of purinergic sig-
nalling. Surprisingly, this has not yet happened in relation to
endocrine biology, but hopefully with the recent development
of purinoceptor subtype antagonists that are orally bioavail-
able and stable in vivo, this aspect will be explored.
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