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Abstract Purinergic signalling plays major roles in the
physiology and pathophysiology of digestive organs. Aden-
osine 5′-triphosphate (ATP), together with nitric oxide and
vasoactive intestinal peptide, is a cotransmitter in non-
adrenergic, non-cholinergic inhibitory neuromuscular trans-
mission. P2X and P2Y receptors are widely expressed in
myenteric and submucous enteric plexuses and participate
in sympathetic transmission and neuromodulation involved
in enteric reflex activities, as well as influencing gastric and
intestinal epithelial secretion and vascular activities. In-
volvement of purinergic signalling has been identified in a
variety of diseases, including inflammatory bowel disease,
ischaemia, diabetes and cancer. Purinergic mechanosensory
transduction forms the basis of enteric nociception, where
ATP released from mucosal epithelial cells by distension
activates nociceptive subepithelial primary afferent sensory
fibres expressing P2X3 receptors to send messages to the
pain centres in the central nervous system via interneurons
in the spinal cord. Purinergic signalling is also involved in
salivary gland and bile duct secretion.
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Summary and future directions

Introduction

Atropine-resistant responses of gastrointestinal smooth mus-
cle to parasympathetic nerve stimulation were recognised
early [419, 472, 544]. It was not until the early 1960s, how-
ever, that autonomic transmission other than adrenergic and
cholinergic was identified. Electrical activity was recorded in
the guinea pig taenia coli using the sucrose gap technique, and
after stimulation of the intramural nerves in the presence of
adrenergic and cholinergic blocking agents, inhibitory
hyperpolarisations and relaxations were reported ([106,
107]; see [95]). These hyperpolarisations were blocked by
tetrodotoxin (TTX), a neurotoxin that prevents the action
potential in nerves without affecting the excitability of smooth
muscle cells [77], establishing that they were inhibitory junc-
tion potentials (IJPs) in response to stimulation of non-
adrenergic, non-cholinergic (NANC) nerves. Later NANC
transmitters were shown to be present in intrinsic enteric
neurons controlled by vagal or sacral parasympathetic nerves
[108]. NANC mechanical responses were identified at about
the same time in the stomach upon stimulation of the vagus
nerve [459, 460].

Identification of the transmitter released during NANC in-
hibitory transmission in the gut was the next step. Several
criteria were postulated by Eccles and also by Paton to be
needed to be satisfied to establish a neurotransmitter: synthesis
and storage in nerve terminals; release by a Ca2+-dependent
mechanism; mimicry by the exogenously applied transmitter of
the nerve-mediated responses; inactivation by neuronal uptake
and/or ectoenzymes; and parallel block by drugs of responses
to stimulation by nerves and exogenously applied transmitter
[198]. Different substances were considered in the late 1960s,
including amino acids, monoamines and neuropeptides, but
none satisfied the criteria. However, hints in a paper by Drury
and Szent-Györgyi [191] showing extracellular actions of pu-
rines on heart and blood vessels, papers showing extracellular
actions of adenosine 5′-triphosphate (ATP) on autonomic gan-
glia [216] and a paper showing release of ATP during anti-
dromic stimulation of sensory nerves supplying the rabbit ear
artery [326] led Burnstock and his colleagues to look at ATP

and this satisfied all the criteria needed to establish it as a
transmitter involved in NANC inhibitory neurotransmission
(Fig. 1; [109]). A review article was published formulating
the purinergic neurotransmission hypothesis [82]. Few
believed in this hypothesis over the next 20 years and it
was often ridiculed at meetings and symposia. Resistance
to this concept was understandable because ATP was well
known as an intracellular energy source involved in the
Krebs cycle, and it seemed unlikely that such a ubiquitous
molecule would also act as an extracellular signaller. It is
now recognised that ATP, an ancient biological molecule,
appears to have evolved both as an intracellular energy
source and an extracellular signalling molecule. Much
evidence is now available in support of the purinergic
hypothesis (see [1, 83, 84, 86, 88, 97, 103, 194, 289,
336, 511, 527, 646, 700, 760]).

Purines can influence motility, secretion and absorption in
a variety of direct and indirect ways. Purines can be released
from intrinsic enteric nerves, sympathetic nerves or sensory
motor nerves during axon reflexes, to act directly on smooth
muscle purinoceptors mediating relaxation or contraction or
on epithelial cell receptors. They act on prejunctional nerve
terminals to modify transmitter release from motor and inhib-
itory neural control pathways. They participate in synaptic
transmission in myenteric and submucosal ganglia that are
involved in the control of gastrointestinal motility, mucosal
secretion and absorption. They act on blood vessels or inter-
stitial cells of Cajal (ICC) thereby indirectly modulating mo-
tility patterns. Purines also can act on sensory nerve endings in
the gut wall after release from epithelial cells to initiate local
and/or central reflex activity that alters gastrointestinal motil-
ity and secretory patterns and initiate nociception. Other sig-
nalling roles for ATP in the gut have emerged through the

�Fig. 1 Mimicry of inhibitory responses of various gastrointestinal
smooth muscle preparations to transmural stimulation and ATP, often
followed by rebound contractions. Hyoscine (1.3 μmol/l) and
guanethidine (3.5 μmol/l) were present except where stated. a Guinea
pig stomach preparations consisting of strips (4×40 mm) cut as a spiral
around the mid portion of the stomach; transmural stimulation (S , 5 Hz
for 30 s), ATP (5 μmol/l for 30 s). b Guinea pig taenia coli, transmural
stimulation (S , 5 Hz for 15 s), ATP (1 μmol/l for 15 s). c Guinea pig
ileum, acetylcholine (ACh , 0.006 μmol/l for 30 s, hyoscine omitted),
noradrenaline (NA , 0.17 μmol/l for 30 s, hyoscine omitted), ATP
(5 μmol/l for 30 s), transmural stimulation (S , 5 Hz for 30 s); d guinea
pig colon, transmural stimulation (S , 5 Hz for 15 s), ATP (5 μmol/l for
15 s). e Biopsy specimen of human colon cut as 10×5×4 mm strips;
transmural stimulation (S , 5 Hz for 2 min), ATP (400 μmol/l for 2 min). f
Rat duodenum, transmural stimulation (S , 5 Hz for 20 s), ATP (10 μmol/l
for 20 s). g Rat ileum, transmural stimulation (S , 5 Hz for 30 s), ATP
(50 μmol/l for 30 s). h Rat rectum, transmural stimulation (S , 3 Hz for
l min), ATP (200μmol/l for l min). i Mouse colon, transmural stimulation
(S , 5 Hz for 30 s), ATP (40 μmol/l for 30 s). j Mouse rectum, transmural
stimulation (S , 5 Hz for 1 min), ATP (40μmol/l for 1 min). Timemarkers,
1 min (Reproduced from [110], with permission from Wiley)
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years, including synaptic transmission between neurons in
myenteric and submucosal plexuses, control of epithelial cell
secretion and absorption, as a sympathetic nerve cotransmitter
in controlling intestinal vascular tone and initiating colic pain.
The roles of purines in gut pain and inflammation and the
possible roles of purinergic signalling in various gut diseases
will be considered (see [99]).

There was early evidence for cotransmission in sympathetic
nerves supplying the guinea pig taenia coli [647]. Stimulation
of periarterial sympathetic nerves led to release of tritium from
guinea pig taenia coli preincubated in [3H]adenosine (which is
taken up and converted largely to [3H]ATP), and the release of
both tritium and noradrenaline (NA) was blocked by guaneth-
idine. It has been claimed that ATP is the sole transmitter in
sympathetic nerves supplying arterioles in the submucosal
plexus of the intestine, while NA release from these nerves acts
as a modulator of ATP release [209]. ‘Axon reflex’ activity is
widespread in autonomic effector systems and forms an impor-
tant physiological component of autonomic control of blood
vessels and visceral organs, including the gut [88, 328]. The
early work of Holton [326] showing ATP release during anti-
dromic stimulation of sensory collaterals, taken together with
the evidence for glutamate in primary afferent sensory neurons,
suggests that ATP and glutamate may be cotransmitters in these
nerves. Most enteric neurons are derived from neural crest
tissue that differs from that which forms the sympathetic and
parasympathetic systems and form a local control system that is
capable of acting independently [234]. Cotransmission occurs
in enteric neurons and the concept of ‘chemical coding’ was
proposed as a consequence of the patterns of co-localisation
defining specific neuron types [235]. A subpopulation of intra-
mural enteric nerves provides NANC inhibitory innerva-
tion of gastrointestinal smooth muscle. Three major
cotransmitters are released from these nerves: (1) ATP
producing fast IJPs; (2) nitric oxide (NO) also produc-
ing IJPs, but with a slower time course; and (3) vaso-
active intestinal peptide (VIP) producing slow tonic
relaxations [91]. The proportions of the effects mediated
by these three transmitters vary considerably in different
regions of the gut and in different species. For example,
in some sphincters, the NANC inhibitory nerves primar-
ily utilise VIP, in others they utilise NO, and in non-
sphincteric regions of the intestine, ATP is more prom-
inent. ATP and NO have been shown to co-mediate
NANC relaxation of the circular muscle of the human
sigmoid colon [49].

Gastrointestinal tract

A detailed account of purinergic neuromuscular transmission
in different regions of the gut is available [103].

Smooth muscle

Non-adrenergic, non-cholinergic (NANC) neuromuscular

transmission

NANC inhibitory nerves are prominent in many regions of the
gut (see [87, 91, 337]), but NANC excitatory nerves have also
been described, notably in the guinea pig ileum, and in the
gastrointestinal tract of lower vertebrates (Fig. 2) [81, 89, 110,
628]. They are also found in neonatal development (see [89,
91]). While ATP, NO and VIP appear to be cotransmitters in
many of the inhibitory NANC nerves, there is much variabil-
ity in their proportional effects in different regions of the gut
and between species. In general, it seems that in most species,
NO is the dominant cotransmitter in anterior regions of the
gut, while ATP ismore prominent in the posterior regions. The
P2Y1 receptor is the main receptor subtype mediating NANC
inhibitory responses in the mouse gut, partly by direct action
on smooth muscle and partly by activating enteric neurons
that release ATP and NO [271]. There is evidence that pros-
taglandin is responsible for the rebound contraction following
stimulation of NANC inhibitory nerves [111].

Two pathways of similar magnitude were involved in nerve-
mediated relaxation of pig lower oesophageal sphincter: one
via NO and one via an apamin-sensitive pathway, mediated by
ATP and adenosine 5′-diphosphate (ADP), acting on P2Y1

receptors [214]. A selective P2Y1 receptor antagonist,
MRS2179, reduced the non-nitrergic component in both pigs
[214] and humans [206]. ATP and adenosine are reported to
augment the contractions of the guinea pig oesophagus both to
cholinergic nerve stimulation and applied acetylcholine (ACh)
[375]. Immunoreactivity for P2X2 and P2X3 receptors was
colocalised with vesicular glutamate transport 2, a specific
marker for sensory intraganglionic laminar endings (IGLEs),
in the mouse oesophagus [387, 693]. ATP may be a
neuromodulator in IGLEs via a P2X2, P2X3 and/or P2X2/3
receptor-mediated pathway in the oesophagus.

Although many early papers did not favour purinergic in-
volvement in NANC inhibitory transmission in the stomach
(e.g. [11, 23, 229, 316, 344, 429, 430, 521]), there is good
evidence that ATP is involved in most species in concert with
NO and, to a lesser extent, VIP [45, 91, 161, 162, 211, 283,
480, 491, 523, 526, 532, 728, 751]. Vagally induced NANC
gastric relaxation of cat stomach is inhibited by P2 receptor
desensitisation with α,β-methylene ATP (α,β-meATP), but it
is likely that this is due to interference with ganglionic trans-
mission in the vagal pathway, rather than neuromuscular block-
ade [176, 177]. Responses to stimulation of enteric inhibitory
neurons were reported to be substantially reduced by apamin,
which blocks small conductance Ca2+-activated K+ channels
[30], in the circular muscle coat of the antrum, but not fundus
[154]. Studies of gastric volume from anaesthetised rabbits
showed that the relaxations produced by vagal nerve
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stimulation were mimicked by ATP, but not VIP. Purinergic
inhibitory neuromuscular transmission is lacking in the antrum
of P2Y1 receptor knockout mice [278].

There is evidence that ATP mediates the non-cholinergic
component of the excitatory junction potential (EJP) and
contraction of intestinal smooth muscle [747]. ATP also
caused a fast contraction of rat ileum by stimulation of cho-
linergic interneurons in the myenteric plexus [595]. Evidence
was presented for two types of P2 receptor in guinea pig
ileum, one where α,β-meATP and 2-methylthio ATP (2-
MeSATP) were equipotent in eliciting direct contraction of
smooth muscle and another where α,β-meATP, but not 2-
MeSATP, produced contractions by activating cholinergic
nerves [384].

There is purinergic inhibitory neuromuscular transmission
in the duodenum and jejunum of most species of laboratory
animals [41, 91, 457, 522, 620, 705, 729, 730]. Purinergic
NANC transmission has been reported in the ileum of pig
[158, 217] and humans [729, 748]. ATP and NO are NANC
cotransmitters in rat ileum [48, 627]. P1 (A1) receptors medi-
ate prejunctional inhibition of release of ACh, ATP and other
transmitters including tachykinins from enteric nerve termi-
nals [46, 91, 427, 605, 687], while presynaptic A2A receptors
mediate facilitation of cholinergic transmission [684].

ATP and NO are cotransmitters in NANC inhibitory nerves
in the colon [65, 67, 200, 324, 382, 554, 586, 673, 746]. β-
Nicotinamide adenine dinucleotide (β-NAD) may be the

purinergic inhibitory neurotransmitter in the colon, but not in
the caecum [291]. The results using P2Y1 knockout mice
support this view [245, 246, 278]. It has been claimed that
β-NAD is the inhibitory neurotransmitter, rather than ATP, in
human and non-human primate colons [196, 348]. However,
evidence supporting this claim has been questioned [290].
Both purinergic and nitrergic components of NANC inhibito-
ry transmission are inhibited by apamin, but it is more effec-
tive on the purinergic component [277]. Schisandrin, a Chi-
nese herbal medicine, has been claimed to induce NANC
relaxation of the rat colon, mediated by ATP and NO, but
not VIP or adenosine [733].

Development of NANC transmission

In developmental studies, NANC nerve-mediated effects were
observed before birth in mouse and rabbit small intestine
[263]. Quinacrine fluorescence, which indicates the presence
of high levels of vesicle-bound ATP, appears before birth in
enteric neurons of rabbit ileum and stomach, 3 days before
catecholamine fluorescence [159]. At 17 days of gestation,
NANC inhibitory and cholinergic excitatory innervation ap-
peared simultaneously in rabbit and inmouse. The appearance
of adrenergic innervation, however, lagged far behind the
other two components. In an electrophysiological study of
developmental changes in the innervation of the guinea pig
taenia coli, the purinergic inhibitory system appeared before

Fig. 2 Mimicry of excitatory
responses of gut segments from
lower vertebrates to transmural
stimulation and ATP. Hyoscine
(1.3 μmol/l) and guanethidine
(3.5 μmol/l) were present
throughout. a Lizard ileum;
transmural stimulation (S , 10 Hz
for 1 min), ATP (10 μmol/l for
l min). b Toad duodenum,
transmural stimulation (5 Hz for
15 s), ATP (10 μmol/l for 15 s). c
Toad ileum, transmural
stimulation (5 Hz for 15 s), ATP
(25 μmol/l for 15 s). d Goldfish
large intestine, transmural
stimulation (10 Hz for 1 min),
ATP (12 μmol/l for 1 min). Time
markers: a–c , 5 min; d , 1 min
(reproduced from [110], with
permission from Wiley)
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and matured faster than the cholinergic excitatory system
[750]. P2X3 receptor-immunoreactive nerves in the embryon-
ic (E) rat stomach are of both intrinsic and extrinsic origin
[721]. Extrinsic sensory nerve fibres express P2X3 receptors
as early as E12 and extend rapidly over the whole stomach by
E14. The intrinsic enteric neuron cell bodies positive for P2X
immunoreactivity did not appear until birth (P1). They peaked
by P14 and then decreased in maturing animals. IGLEs and
intramuscular arrays were first observed at P1 and P7, respec-
tively. P2X3-positive neurons also expressed NO synthase
(NOS) throughout perinatal development. Postnatal develop-
mental changes in purinergic signalling in the small intestine
have been described (see [92, 333]). In rat duodenal segments,
ATP and ADP produced contractile responses at P1; the
responses increased with age, but gradually decreased after
P7 and were gone by day 21. In contrast, the relaxant re-
sponses to ATP and ADP appeared at day 21 and continued to
increase thereafter. Responses to adenosine or adenosine
monophosphate (AMP)were not elicited before day 14, which
were small relaxations that increased with age. A2B receptors
were present at day 15 in the eat duodenum, but A1 receptors
did not appear until after day 20, both receptor subtypes
mediating relaxation, while A2B receptors mediated contrac-
tion of the muscularis mucosa from day 10. The longitudinal
muscle of the colon relaxed via A2B and P2Y receptors, while
the muscularis mucosa contracted via A1 and P2Y2 or P2Y4

receptors. From P3 to P8, P2Y1 receptors mediated contrac-
tion of the mouse gastrointestinal tract, but there was relaxa-
tion of longitudinal muscle throughout the gastrointestinal
tract from day 12 onwards [272]. The shift from contraction
to relaxation occurred 1 week before weaning, associated with
changes that take place in the gut when the food compositions
change from maternal milk to solid food.

Receptor identification

ATP and ADP produce contractions of rabbit oesophageal
muscularis mucosae [548] and purinoceptors were identified
[704]. Adenosine, acting via A1 receptors, contracted cat
oesophageal smooth muscle [615].

The P2 receptor subtypes involved in gastric motility are
still not entirely clear (see [532]). Most reports suggest that a
P2Y receptor is involved in relaxation. It seems likely that a
P2X receptor is involved in contraction [494]. There is immu-
nostaining for P2X receptors in the muscularis externa and
muscularis mucosa [91]. The muscularis mucosae of the rabbit
stomach contracted in response to ATP and ADP, but not to
AMP or adenosine [549]. Muscular P2Y receptors mediate
relaxation in the mouse stomach [492]. A novel function of
the P2Y14 receptor, associated with the contractility of the
rodent stomach, has been reported [43]. Cytidine-5′-
diphosphocholine, an endogenous nucleotide, used for the
treatment of neurodegenerative disorders, produced

contractions of mouse gastric fundus through, at least in part,
purinoceptors and Rho/Rho kinase signalling [303]. Uridine
adenosine tetraphosphate produces contraction of gastric
smooth muscle via P2Y receptors [744].

Analysis of the P2 receptor subtypes involved in motility in
the small intestine revealed that:

1. P2Y1 receptors mediate NANC inhibitory transmission to
intestinal smooth muscle of laboratory animals and
humans [243, 246, 690]. α,β-MeATP has a potent relax-
ant action in some preparations [366, 367, 535]. It seems
likely that α,β-meATP is acting on P2X3 receptors [172,
644] on nerve varicosities to release ATP, which then acts
on P2Y1 receptors on smooth muscle eliciting relaxation
(see [396]). Occupation of P2Y1 receptors on the taenia
coli activated phospholipase (PL) C, increased production
of inositol 1,4,5-trisphosphate (InsP3) and released intra-
cellular Ca2+ ([Ca2+]i) [406]. This led to enhanced pro-
duction of spontaneous transient outward currents, which
caused hyperpolarisation. It has been proposed that β-
nicotinamide, an adenine dinucleotide, which acts on
P2Y1 receptors, is released together with ATP from
NANC inhibitory nerves supplying the gut [496, 497].
The responses of rat ileal myocytes to ADP were not
competitively blocked by pyridoxalphosphate-6-
azophenyl-2′,5′-disulfonic acid (PPADS) [685]. High
levels of P2Y6 receptor mRNAwere found in the human
small intestinal muscle [147]. Uridine diphosphate (UDP)
activation of P2Y6 receptors produced contraction of
mouse ileum [763].

2. P2Y2 and/or P2Y4 receptors mediate smooth muscle con-
tractions in the small intestine of most lower vertebrates
[81, 628], since they are activated by uridine 5′-triphos-
phate (UTP) as well as by ATP [366, 367, 384, 705].

3. Contraction of rat duodenal muscularis mucosae smooth
muscle is mediated by P2X receptors [367].

4. Contraction is mediated by P2X receptors in guinea pig
ileum [358, 376, 380, 488, 602, 702, 703]. α,β-meATP-
induced ileal contractions were inhibited in P2X1 receptor
knockout mice [683]. ATP and α,β-meATP produced
contractions that were antagonised by atropine and it
was concluded that P2 receptors mediated release of
ACh from cholinergic enteric nerves [39, 40, 47, 384,
488, 512, 639, 640, 759].

Patch-clamped enzymatically dispersed smooth muscle
cells from mouse ileum were activated by P2 purinergic
agonists whose effects were attenuated by apamin [688].
Myocytes isolated from the longitudinal muscle of jejunum
and ileum showed a slow transient increase in [Ca2+]i in
response to ATP and 2-MeSATP, suggesting P2Y receptor
mediation [63]. The NANC relaxation of the human ileal
longitudinal and circular muscle is inhibited by MRS2179, a
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selective P2Y1 receptor antagonist [669]. Duodenal brush
border intestinal alkaline phosphatase degrades ATP released
from the epithelium and stimulates HCO3

− secretion via P2Y
receptor activation [483]. The ecto-purinergic system may
regulate cell surface pH, maintaining a protective alkaline
microclimate during acid stress.

Fast relaxations of the guinea pig taenia coli in response to
ultraviolet light (UV) (340–380 nm) closely resembled the
relaxations produced by NANC inhibitory nerve stimulation
and ATP [105]. The responses to UV light were unaffected by
TTX and were not due to ATP release, so it was proposed that
UV light was probably acting on some components of the
purinergic receptor complex. The first structure–activity studies
of analogues of adenine nucleotides in taenia coli showed that
di- or triphosphate groupings were of prime importance in
binding adenine nucleotides to the putative smooth muscle
receptor and that hydrolysis of the terminal phosphates was
not a requirement for inhibitory activity. Later studies extended
these findings [455, 599, 600] and the actions of enantiomers of
2-azido analogues on taenia were also examined [163]. Separate
receptors for adenosine (P1) and ATP/ADP (P2) were proposed
[85], and this was supported by later studies of the guinea pig
taenia coli [75, 219, 600]. Theophylline blocked relaxations
produced by adenosine, but not by ATP. The stereoselectivity
of P2 and P1 receptors was studied in the taenia coli. It was
shown that while P2 receptors mediating inhibitory responses in
taenia coli showed marked stereoselectivity, those mediating
excitatory responses in guinea pig bladder showed little
stereoselectivity [112]. The A2 receptor subtype was identified
in the guinea pig taenia coli [112] and later adenosine analogues
were shown to relax guinea pig taenia coli via P1 (A2B) recep-
tors [558]. β-NAD acts via Pl receptors, while β-nicotinamide
adenine dinucleotide phosphate (NADP) acts as a P2 receptor
agonist [100, 643]. The potent agonist N6-methylATP and the
less potent agonist 2′-deoxyATP were shown to be selective for
P2Y receptors in the taenia coli, but were inactive at P2X
receptors [113]. Structure–activity relationships of pyridoxal-6-
arylazo-5′-phosphate and phosphonate derivatives as P2 recep-
tor antagonists showed that the phenylazo phosphate derivative
and the ethyl phosphonate analogue of isoPPADS had antago-
nist actions on the guinea pig taenia coli P2Y receptor [391].
Diadenosine polyphosphates were claimed to act as P2Y ago-
nists in the taenia coli with a potency order AP3A=AP4A>
ATP>AP4=AP5A, relaxations that were antagonised by
suramin [335]. Comparison of the structure–activity relation-
ships of ectonucleotidases with those of the P2 receptor was
described on the guinea pig taenia coli [696]. Methylene
isosteres of ATP and ADP resisted dephosphylation. Isopolar
phosphonate analogues of ATP were inactive on P2Y receptors
in taenia coli [164].

In murine colonic myocytes, there was a high potency of
pyrimidines and it was suggested that ATP activated the low-
threshold voltage-activated non-selective cation currents and

depressed the relatively high-threshold voltage-activated (L-
type) Ca2+ current via P2Y4 receptors and stimulation of the
PLC/protein kinase C (PKC) pathways [485]. Relaxation of the
rat colon longitudinal muscle was elicited via P2Y and P1 (A2)
receptors [25]. ATP release of Ca2+ from intracellular stores was
mediated by P2Y receptors, shown by employing single channel
recording from cell patches of mouse colonic and ileal smooth
muscle cells [44, 399, 688]. P2Y1 receptors mediate inhibitory
motor control of colonic excitability and transit in the mouse
[349, 756], human [243, 244] and rat [294] colon. ATP and β-
NAD and their metabolites, ADP and ADP-ribose, produced
relaxation of murine colonic smooth muscle, and it was sug-
gested that they might be involved in motility disorders [195]. It
was concluded in a recent review that the P2Y1 receptor-
mediated inhibition may be a general phenomenon in the gut.

At least three subtypes of P2 receptors were claimed to be
present in the circular muscle of the guinea pig colon [747],
namely: P2 receptors, producing apamin-sensitive hyper-
polarisation and relaxation, activated by ATP and sensitive to
suramin and PPADS; P2 receptors, producing an apamin-
sensitive hyperpolarisation and relaxation, which are activated
by adenosine-5′-(β-thio)-diphosphate (ADPβS), but resistant
to suramin and PPADS; and P2 receptors produce contractions,
which are activated byADPβS and are sensitive to suramin and
PPADS. Canine colon circular myocytes expressed mRNAs for
P2X2, P2X3 and P2X4 receptors, while longitudinal myocytes
expressed mRNAs for P2X3 and P2X5 receptors, but no
mRNA for P2X1, P2X6 or P2X7 receptors [425]. Activation
of these receptors produced non-selective cation currents that
depolarised and excited muscles in both layers. ATP also elic-
ited contractions of the longitudinal muscle of the mouse distal
colon acting directly on smooth muscle and indirectly via
activation of cholinergic neurons [761]. Immunohistochemistry
showed that P2Y1 receptor proteins are dominant in smooth
muscle cells of rat distal colon that mediate the potent effects of
ADPβS, while neuronal P2X3 receptors might be involved in
the relaxant response to α,β-meATP [674], probably via ATP
release and activation of P2Y1 receptors. It was also suggested
that neuronal P2Y2 receptors mediate relaxation, partially via
NO release. RT-PCR and pharmacological characterisation of
P1 receptors in the guinea pig distal colon led to the suggestion
that adenosine mediates relaxation through two different recep-
tor subtypes: Al receptors on enteric neurons and A2B receptors
on smooth muscle [371].

Adenosine, ATP and related compounds produced contrac-
tion of the muscularis mucosae of the rat colon [24, 26, 334]. It
was concluded that P1 (A1) and P2Y receptors mediated these
responses. However, immunohistochemical expression of P2X1
receptors in the smooth muscle of the muscularis mucosae, but
not the muscularis externa, suggested that P2X1 rather than P2Y
receptors were involved. The presence of P1 (A1) receptors in rat
colon muscularis mucosae, mediating contraction, was con-
firmed in a later study [566], although part of the response was
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claimed to be due to products of the cyclooxygenase pathway
[567]. ATP inhibited swelling-activated Cl− currents in canine
colonic smooth muscle, and it was suggested that this may be
related to the regulation of myogenic activation in response to
distension [181]. Intestinal myofibroblasts form a monolayer
network beneath the mucosal epithelium. mRNA for P2Y2 re-
ceptors was expressed and ATP induced increases in [Ca2+]i and
contraction of these cells [502]. The human cathelicidin, LL-37,
is involved in innate immune responses, angiogenesis and
wound healing. It was suggested that LL-37 stimulatedmigration
of the human colon cell line, Caco-2, via P2X7 receptors [499]
affecting intestinal epithelial barrier integrity [533].

ATP released as a cotransmitter from nerves or by paracrine/
autocrine release from non-neural cells and its breakdown
product, adenosine, acted on guinea pig distal colon mucosal
epithelial cells to increase short circuit currents corresponding
to electrogenic Cl− secretion and also activated electrogenic K+

secretion via P1 (A2B) receptors on both apical and basolateral
surfaces [753]. Intestinal epithelial cells form a permeable, but
selective, barrier that functions as defence against pathogens as
well as performing digestive functions. They secrete and re-
spond to cytokines that recruit neutrophils and macrophages.
ATP and UTP, via P2Y2 receptors, serve as chemotactic agents
by stimulating the migration of neutrophils and macrophages
through the intestinal epithelial cell barrier [420]. It was sug-
gested that this mechanism may contribute to the inflammatory
mechanisms that contribute to inflammatory bowel disease.
P2Y4 receptors have also been identified immunohisto-
chemically in the human bowel [145].

Postjunctional P1 (A1 and A2) receptors mediate relaxation of
rat and mouse duodenum longitudinal muscle [308, 495, 762].
Adenosine-induced relaxation of possum duodenum is mediated
by A3, as well as A2A receptors [711]. P1 (Al and/or A2B)
receptors mediate contraction of rat ileal muscularis mucosae
[508, 509]. P1 receptor-mediated contraction of the ileum of
Suncusmurinus , a primitive insectivore, has been reported [500].

Sphincter control

There is evidence for the involvement of ATP in the control of
pyloric and internal anal sphincters [562, 629] and in the
NANC inhibitory responses of the lower oesophageal sphincter
[351, 743]. Studies of NANC inhibitory responses of the rat
pyloric sphincter provided evidence for components mediated
by both NO and ATP [354, 629] via P2Y1 receptors, but P2X4
receptors were also expressed in this sphincter [596]. An ATP
component was involved in relaxation of the rabbit sphincter of
Oddi [352], and ATP and ADP were shown to have inhibitory
actions on the cat sphincter of Oddi [551]. An excitatory
response to ATP in the possum sphincter of Oddi involved
P2X receptors, whereas the later inhibitory response was me-
diated by P2Y receptors [713]. ATP was considered early as a
possible NANC inhibitory transmitter in the human internal

anal sphincter [80]. Both ATP and adenosine were shown to
produce concentration-dependent relaxations of the guinea pig
[156], rabbit [59], rat [510, 529] and sheep [3] internal anal
sphincter. Relaxation and hyperpolarisation during electrical
field stimulation of the mouse internal anal sphincter was
mediated by the cotransmitters ATP and NO [383]. ATP
hyperpolarised and relaxed the internal anal sphincter of guinea
pig [440, 562] and rat [171]. P2Y1 receptors mediated the
effects and both apamin-sensitive K+ channels and apamin-
insensitive conductances were involved in hyperpolarisation
and relaxation of the mouse internal anal sphincter [466].

Enteric plexuses

Enteric ganglia

Elegant electrophysiological studies, carried out during the
past 20 years, demonstrated purinergic synaptic transmission
between enteric neurons in both myenteric and submucous
plexuses in both in situ and tissue culture preparations (see
[68, 97, 98, 248, 250, 252, 341, 569, 570, 572, 671]). In a
recent study of the development of the mouse enteric nervous
system [313], almost all enteric neurons responded to ATP
early at E11.5, E12.5, E15.5 and E18.5, and receptors for ATP
were expressed early in E11.5 cultures, followed by the ap-
pearance of receptors to 5-hydroxytryptamine (5-HT). ATP is
released together with ACh from the majority of presynaptic
terminals [436].

Myenteric ganglia. P2X receptors The effects of ATP in
single myenteric neurons from guinea pig small intestine were
first shown by Katayama and Morita [378], using intracellular
electrodes. ATP produced hyperpolarisation in 80 % of AH
neurons and depolarisation in 90 % of S neurons.

The studies of purinergic signalling in guinea pig myenteric
neurons have been extended by several groups. Whole cell
and outside-out patch-clamp recordings have been used to
characterise the physiological and pharmacological features
of P2X receptors on myenteric neurons of the guinea pig
ileum [34]. Agonist rank order of potencies were as follows:
adenosine-5′-(γ-thio)-triphosphate (ATPγS)=ATP=2-
MeSATP >>α,β-meATP=β,γ-methylene ATP, while adeno-
sine and UTP were inactive. Fast excitatory postsynaptic
currents (fEPSCs) were recorded in primary cultures of
myenteric neurons from guinea pig intestine [435, 757].
Hexamethonium-resistant fEPSCs were abolished by PPADS.
The slowly desensitising receptors that were α,β-meATP
insensitive were likely to be P2X1 receptors [34], whereas
the minority of rapidly desensitising receptors were probably
P2X2 receptors. The fast excitatory postsynaptic potentials
(EPSPs) mediated in part by P2X receptors were prominent
in myenteric neurons along the small and large intestine, but
were rare in the gastric corpus [435]. P2X and nicotinic
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receptors were shown to be linked in a mutually inhibitory
manner in guinea pig myenteric neurons [758]. P2X2 recep-
tors are expressed by subtypes of guinea pig enteric neurons,
namely inhibitory motor neurons, vasomotor neurons, cholin-
ergic secretomotor neurons, intrinsic sensory neurons and the
endings of vagal afferent fibres in the stomach [120, 482].
Studies using P2X2 receptor knockout mice showed that
P2X2 receptors contribute to fast synaptic excitation of
myenteric neurons in small intestine [572]. P2X2 homomeric
receptors appear to be the predominant receptors mediating
fast synaptic excitation in the gut [248, 250, 524]. Intrinsic
sensory neurons in the gut, identified as Dogiel type II neu-
rons, express P2X2 receptors [237].

P2X3 receptors are expressed by excitatory and inhibitory
motor neurons, ascending interneurons and cholinergic
secretomotor neurons [557], but were claimed not to be
expressed by intrinsic sensory neurons in guinea pig ileum
[675]. Peristalsis was impaired in the small intestine of mice
lacking P2X3 receptors [57]. The distribution of the mRNA
and protein of P2X2 and P2X3 receptors has been described in
the rat enteric nervous system [722]. It was shown that the
P2X2 receptor was the dominant P2X receptor subtype in the
myenteric plexus. Most myenteric S neurons in guinea pig
small intestine expressed P2X3 receptors with about half of
these being inhibitory motoneurons [571]. P2X5 receptors
were present on nerve fibres that envelop ganglion cell bodies
in the myenteric and submucous plexuses in mouse intestine,
probably as heteromultimers with P2X2 receptors on enteric
sensory neurons [587].

Studies of purinergic signalling in dispersed primary cul-
tures of guinea pig myenteric plexus were carried out by the
group of Mulholland. Extracellular ATP was shown to medi-
ate Ca2+ signalling in primary cultures of neurons from guinea
pig myenteric plexus via a PLC-dependent mechanism [393].
Different enteric neurons responded to combinations of ATP
with ACh, ATP with substance P (SP), ATP with ACh, ATP
with ACh and SP, ATP with bombesin or ATP with ACh and
bombesin [392].

Two distinct types of P2 receptors are linked to a rise in
[Ca2+]i in guinea pig intestinal myenteric neurons. Both intes-
tinal AH and S neuronal phenotypes responded to ATP by
increases in [Ca2+]i [139, 140]. ATP regulates synaptic trans-
mission by both pre- and post-synaptic mechanisms in guinea
pig myenteric neurons. Where ACh and ATP act as
cotransmitters, there is an interaction between nicotinic and
P2X receptors [173]. In the C-terminal tail of P2X2 receptors,
there is cross-inhibition between α3β4 nicotinic and P2X2
receptors [173]. ATP augments nicotinic fast depolarisations,
but inhibits muscarinic and SP-mediated depolarisations in
both AH and S neurons [374].

Exogenous and endogenous ATP released during increases
in intraluminal pressure inhibit intestinal peristalsis in guinea
pig [318]. A major role is played by ATP in excitatory neuro-

neuronal transmission in both ascending and descending reflex
pathways to the longitudinal and circular muscles of the guinea
pig ileum triggered by mucosal stimulation [143, 638]. De-
scending inhibitory reflexes involve P2X receptor-mediated
transmission from interneurons to motor neurons in guinea
pig ileum [58, 70]. Distension-evoked descending contractile
responses of the circular and longitudinal muscle layers are
regulated by separate sympathetic pathways, one mediated by
P2 receptors, the other by 5-HT3 receptors [486]. Inhibitory
interactions occur between P2X and γ-aminobutyric acid
(GABA)-A receptors on myenteric neurons from the guinea
pig small intestine [377].

IGLEs have been identified as specialised mechanosensitive
endings of vagal afferent neurons arising from the nodose
ganglion. P2X2 receptors are present on IGLEs in the mouse
gastrointestinal tract, mainly in the stomach, some in the intes-
tine [121]. IGLEs were first demonstrated at birth showing
strong immunostaining for P2X3 receptors, and P2X3 receptors
expressed on extrinsic nerves appeared as early as E12 in
developing rat stomach in the trunk and branches of the vagus
nerve [721].

Neuron cell bodies in the myenteric ganglia appear in the
first trimester. Neurons expressing P2X3 receptors peaked at
45 % during development, but at P60 only 11 % were P2X3
receptor immunoreactive. Several enteric neurotransmitters
have been claimed to modulate ATP release by acting on
NANC neuronal cell bodies in the myenteric plexus. For
example, morphine or enkephalin inhibition of NANC-
evoked relaxations was reversed by nalaxone [356, 616].
Enkephalin is very effective in inhibiting NANC IJPs evoked
in human colon [339]. ATP transiently facilitates ACh release
from myenteric motoneurons via prejunctional P2X2 recep-
tors, and following breakdown to ADP and adenosine, there is
inhibition of ACh release via P2Y1 and P1 receptors [192].
Evidence has been presented that 5-HT released ATP from
nerve varicosities isolated from the myenteric plexus of the
guinea pig ileum [8, 247]. GABA receptors mediate relaxation
of rat duodenum by activating intramural NANC neurons in
guinea pig intestine [410], rat duodenum [454], dog
ileocolonic junction [64] and guinea pig distal colon [481].

Myenteric ganglia. P2Y receptors Evidence for the expres-
sion of P2Y receptors on enteric neurons in addition to P2X
receptors has been presented [255, 676, 710, 723, 724]. In the
mouse gastrointestinal tract, P2Y1 receptors on NANC
myenteric neurons mediate relaxation [271]. In the guinea
pig enteric nervous system, slow excitatory synaptic transmis-
sion on S-type neurons is mediated by P2Y1 receptors [341].
P2Y1 receptors mediate slow excitatory synaptic potentials on
interneurons during descending inhibition in guinea pig ileum
[661]. P2Y2 receptors are expressed by S-type (Dogiel type I)
neurons in both the myenteric and submucosal plexuses
throughout the guinea pig gut. In the myenteric plexus, 40–
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60 % of P2X3 receptor-immunoreactive neurons were immu-
noreactive for P2Y2 receptors and all P2X3 receptor-
immunoreactive neurons expressed P2Y2 receptors in the
submucosal plexus [723]. Thirty to 36% of neurons in ganglia
in the myenteric, but not submucosal plexus of the guinea pig
gut, expressed P2Y6 receptors [724]. Forty to 46 % of the
neurons in both myenteric and submucosal plexuses were
immunoreactive for P2Y12 receptors. Twenty-eight to 35 %
of P2Y6 receptor-immunoreactive neurons coexist with NOS,
while all P2Y12 receptor-immunoreactive neurons were
immunopositive for calbindin, probably AH intrinsic sensory
neurons. In the rat distal colon, P2Y1 and P2Y6 immunoreac-
tivity was located on smooth muscles, P2Y4 and P2Y6 recep-
tor immunoreactivity on glial cells in both plexuses, P2Y4

receptors on ICCs, while P2Y2 and P2Y12 receptors were
identified on enteric neurons [676]. There is a shift from
contraction to relaxation via P2Y1 receptors during postnatal
development of mouse intestinal smooth muscle 1 week be-
fore weaning, perhaps associated with the change from ma-
ternal milk to solid food [272]. The role of both P2X and P2Y
receptors in sympathetic transmission at functionally identi-
fied synapses in the enteric nervous system has been reviewed
[310].

Myenteric ganglia. Adenosine (P1) receptors P1 (adenosine)
receptors on myenteric neurons were claimed following the
demonstration that in the guinea pig ileum, methylxanthines
(P1 receptor blockers) antagonised the dipyridamole (adenosine
uptake inhibitor)-induced inhibition of peristaltic activity [618,
678]. Adenosine inhibited forskolin-induced excitation of
myenteric nerves suggesting that adenosine acts to prevent acti-
vation of adenylate cyclase by substances mediating slow EPSPs
[745]. Adenosine applied to AH (type II) neurons, but not to S
(type I) neurons, resulted in membrane hyperpolarisation and
decreases in input resistance following opening of K+ channels
[537]. Adenosine suppressed nicotinic synaptic transmission in
myenteric ganglia of the guinea pig gastric antrum and small
intestine, by interacting with presynaptic P1 receptors on AH
type II neurons [134–137]. Aminority subset ofAHneurons also
express A2 subtype receptors coupled to adenylate cyclase me-
diating excitation of these neurons [138]. Adenosine acting at A1

presynaptic receptors suppressed slowEPSPs and amplified slow
inhibitory postsynaptic potentials in myenteric neurons [134,
374].

Adenosine suppressed cyclic AMP (cAMP) formation in
myenteric ganglia in vitro [720]. Reduction of cholinergic
synaptic transmission via prejunctional A1 receptors involves
the activation of pertussis toxin-insensitive G proteins [35].
Differential gene expression of A1, A2A, A2B and A3 receptors
in human enteric neurons has been reported [141]. Fine-tuning
modulation of myenteric and submucosal motoneuron activity
by adenosine has been claimed acting via presynaptic A1

receptors [153, 256]. Synaptosomal preparations from the

guinea pig ileum myenteric plexus have been described [74,
189]. Adenosine inhibited the nicotinically induced release of
[3H]ACh from synaptosomes [565, 617]. Both A1 and A2

subtypes appear to be involved [131, 132].
A neuroprotective role for adenosine in ischaemia has

been pos tu l a t ed [178] . The P1 agon i s t , 5 ′ -N -
ethylcarboxamidoadenosine (NECA), is a potent inhibitor of
morphine withdrawal-induced diarrhoea in rats [664]. A2B

receptors mediate inhibition of secretion and it was suggested
that A2B adenosine agonists may be of clinical value in the
management of some types of diarrhoea [312].

Submucosal ganglia Adenosine depolarised submucosal neu-
rons by acting at P1 (A2-like) receptors and to act presynap-
tically via P1 (A1) receptors to inhibit the release of ACh from
intramural nerves and of NA from sympathetic nerves in the
submucosal plexus [31, 32].

Slow postsynaptic inhibitory and excitatory potentials in S
neurons of the submucous plexus of the guinea pig caecum
were mimicked by various transmitters, the non-reversing
type of slow excitatory postsynaptic potential was mimicked
only by ATP [478]. ATP-induced fast transient depolarisation
of most AH-type neurons and fast transient depolarisation
followed by slower onset, longer lasting depolarisation of S-
type neurons was reported [33], mediated by P2X and P2Y
receptors, respectively [37]. Many neurons in the submucous
plexus were immunopositive for P2X3 receptors and were
colocalised with calretinin and calbindin, indicating labelling
of intrinsic sensory neurons [722]. Using whole-cell patch
recording, superfusion of ATP and analogues was shown to
evoke rapidly desensitising inward current, and ATP-induced
single channel currents were also recorded [33, 285], perhaps
involving P2X4 or P2X6 receptors (see [90]). Functional
interactions between nicotinic and P2X receptors have been
demonstrated in freshly dissociated guinea pig submucosal
neurons in primary culture [36, 285, 758]. Later, two subtypes
of P2X receptors were identified in neurons of guinea pig ileal
submucosal plexuses [286]. Fast inhibitory interactions be-
tween P2X and 5-HT3 receptors in guinea pig submucosal
neurons were described [38]. Fast, slow and intermediate
EPSPs were recorded in neurons of the submucous plexus of
the guinea pig ileum [487]. P2X receptors mediated a subpop-
ulation of fast EPSPs. The slow EPSPs and intermediate
EPSPs were blocked by MRS2179, a P2Y1 selective antago-
nist. A P2Y1 receptor has been cloned and characterised from
guinea pig submucosa. P2Y1 receptor signalling involved in
synaptic transmission in the human submucous nerve plexus
is a predominant pathway, and the A3 receptor inhibits
purinergic and cholinergic transmission in the human enteric
nervous system [717].

Intrinsic sensory neurons Both intrinsic and extrinsic sensory
nerves are present in the enteric nervous system (see [62,
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412]). Intrinsic sensory neurons are located in both the sub-
mucosal and myenteric ganglia [236]. Their terminals are
largely in a subepithelial plexus. They mediate enteric reflex
activities, including peristalsis. Extrinsic sensory nerves also
have terminals in the subepithelial plexus. Their cell bodies
are in dorsal root and nodose ganglia. They, too, can evoke
enteric reflex activities via the spinal cord and brainstem and
they mediate visceral pain. Most of the data about intrinsic
enteric sensory nerve activities has been reported for the
guinea pig ileum. However, this may or may not represent
comparable activities in other species and regions of the
gastrointestinal tract.

The intrinsic sensory neurons have been identified electro-
physiologically as AH-type and morphologically as Dogiel type
II cells, while S-type (that include Dogiel type I neurons) are
motoneurons or interneurons. Depending on the species, most
AH cells express calbindin and/or calretinin. Adenosine acts
presynaptically via A1 receptors and postsynaptically via A1,
A2A and A3 receptors on intrinsic sensory neurons [129]. Syn-
aptic transmission to intrinsic sensory neurons is mediated by
P2X receptors [54], perhaps of the P2X2 subtype in guinea pig
intestine [120]. Postsynaptic inhibition via P2Y receptors has
also been claimed to be present on intrinsic sensory nerves [52,
53]. P2X3 receptors are expressed by intrinsic sensory nerves in
rat ileum and distal colon [722] and on sensory neurons in human
myenteric plexus. P2Y12 receptors are expressed by sensory
neurons in guinea pig myenteric plexus [724].

Mucosal terminals of intrinsic sensory neurons in the guin-
ea pig intestine are activated by ATP and α,β-meATP [54],
which supports the hypothesis of Burnstock [91, 93] that ATP
released from mucosal epithelial cells has a dual action on
P2X3 and/or P2X2/3 receptors on subepithelial sensory nerve
terminals. It was proposed that ATP acts on the terminals of
low-threshold intrinsic enteric sensory neurons to initiate or
modulate intestinal reflexes, while it acts on the terminals of
high-threshold extrinsic sensory fibres to initiate pain. Support
for this hypothesis was gained from a rat pelvic sensory
nerve–colorectal preparation [718]. Distension of the
colorectum led to an increase in the release of ATP from
mucosal epithelial cells and also evoked pelvic nerve excita-
tion, which was mimicked by application of ATP and α,β-
meATP and attenuated by the selective P2X3 and P2X2/3
antagonist, 2′(3′)-O -(2,4,6-trinitrophenyl) ATP (TNP-ATP),
and by PPADS. Purinergic mechanosensory transduction has
also been implicated in reflex control of intestinal secretion
[149, 726]. Extrinsic and possibly intrinsic sensory nerves
associated with mucosal epithelial cells appear to be sensitive
to pH, involving P2X2 and P2X2/3 receptors [329].

Enteric glial cells

Enteric glia, in about a 2:1 ratio with enteric neurons
(depending on species) [240], display morphological and

molecular similarities to astrocytes in the central nervous
system (CNS) and they stain for glial fibrillary acidic
protein [362, 505, 588]. They respond to ATP and UTP
via P2 receptors by increasing intracellular calcium, prob-
ably via P2Y2 or P2Y4 receptors [393]. Later evidence
showed release of Ca2+ from intracellular stores
supporting the involvement of P2Y receptors [598]. Cul-
tured enteric glia responded to ATP [288, 755]. Immuno-
histochemical studies showed expression of P2X7 recep-
tors on enteric glial cells [679] as well as P2Y4 receptors
[677]. Ectonucleotide NTPDase2 is exclusively localised
on the surface of enteric glial cells, suggesting that enteric
glia regulate the responses to ATP and UTP [72]. Evi-
dence was presented to suggest that enteric glia release
ATP, to participate in intercellular propagation of Ca2+

waves between enteric glial cells and Ca2+ wave-induced
ATP release was shown to elicit neuronal responses [755].
ATP release from enteric glia was also proposed to pro-
duce a feedback system for ICCs to modulate slow wave
activity [101]. It has been suggested that ATP released
from sympathetic nerves activates enteric glia [301].
Purinergic neuron–glia interactions in the enteric nervous
system have been described, reflecting similar mecha-
nisms in the CNS [300]. It was shown that stimulation
of enteric neurons elicited increased [Ca2+]i in enteric
glial cells, mimicked by exogenously applied ATP, prob-
ably by P2Y4 receptors. Parasympathetic and sympathetic
varicosities in the myenteric plexus co-release ATP with
ACh and NA, respectively ([8, 515]; see [98]). It was
concluded from an electrophysiological study of a mouse
enteric neuron–glial culture preparation that neuronal cells
primarily express P2X receptors, while glial cells primar-
ily express P2Y receptors [241].

Interstitial cells of Cajal and fibroblast-like cells

ICCs are a specialised cell type that act as pacemakers to
regulate the activities of smooth muscle cells in the gut.
P2X2 and P2X5 receptors were shown to be expressed on
ICC’s in guinea pig intestine [101] and more recently P2Y4

receptors were also identified on ICCs in guinea pig gastroin-
testinal tract mediating modulation of intracellular Ca2+ oscil-
lations [677]. This is consistent with ATP being released as a
cotransmitter from enteric nerves and glial cells to regulate the
activities of these cells [101]. Purinergic modulation of pace-
maker [Ca2+]i activity in ICC’s was mediated by P2X recep-
tors [239]. ICCs in human and murine small intestine express
P2Y1 and P2Y4 receptors [126].

P2Y1 receptors have been identified on ‘fibroblast-like
cells’ that form a network of cells distinct from ICCs located
between intestinal circular and longitudinal smooth muscle,
near terminals of enteric motor neurons and with gap junction
connectivity with muscle cells [414]. Apamin and MRS2500,
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a selective P2Y1 antagonist, blocked the activation of currents
and increase in [Ca2+]i by purine nucleotides (see Fig. 3). The
majority of subserosal interstitial cells, probably fibroblast-
like cells, in the guinea pig proximal colon respond to ATP via
P2Y1 receptors and may thereby contribute to smooth muscle
relaxation [652]. Three cell types form a syncytium in mouse
colon, namely smooth muscle cells, ICCs and platelet-derived
growth factor receptor α-positive cells, and these cells are
claimed to show differential expression of genes related to
purinergic signalling [553].

Mucosal epithelium

There are a wide variety of signalling roles for purines and
pyrimidines in mucosal and glandular epithelial cells in most
regions of the gastrointestinal tract [69, 130, 133, 583]. ATP
modulates gastric acid and intestinal secretion and both P2Y

and P2X receptors are expressed by mucosal epithelial cells
and gastric glands ([280, 298, 672]; see [91]). ATP and aden-
osine are potent stimulants of fluid and electrolyte secretion in
the colon following release from both local cells and nerves
(see [91, 233, 583]).

Epithelium of oesophagus

Extracellular ATP has long been recognised as a stimulant of
ciliary activity in frog oesophagus and in water and mucous-
transporting epithelia (see [437]). Other studies have been
carried out on monolayer tissue cultures of epithelial cells
grown from frog oesophagus [534, 695]. ATP enhances ciliary
beat frequency two- to threefold and induces pronounced
changes in the metachronal wave parameters [269]. In addi-
tion, membrane fluidisation was induced, and increases in
cytosolic Ca2+, principally from internal stores, coupled to
membrane hyperpolarisation were necessary to activate all
these cellular effects [9, 655]. Studies from this group have
also established the existence of two P2 receptors, one of
which is probably a P2Y receptor [270] and that the actions
of ATP depends on PKC producing sustained enhancement of
ciliary beat frequency via activation of calcium influx through
non-voltage-operated Ca2+ channels [437]. HCl-induced acti-
vation of transient receptor potential vanilloid (TRPV) 1
causes ATP release from oesophageal epithelial cells [450].

�Fig. 3 a Effects of ATP on fibroblast-like cells were concentration-
dependent and repeatable. a Brief exposures (20 s) to ATP (0.1, 1 and
10 μm and 1 mm) at a holding potential of −50 mV (approximate resting
potential of murine colonic muscles) caused large outward currents,
resolved at 0.1 μm and nearly maximal at 10 μm. b ATP concentration
vs. current response in six cells. The X-axis is the log of ATP concentration
(metre), and the Y-axis is the integral of ATP response current (area under
the curve; AUC) normalised to the maximum response integral. Data were
fitted with a Boltzmann function and EC50 was calculated to be 1.96 μm
(Hill slope=1.19). Averaged AUC at maximal ATP concentration (1 mm)
was 55.19±33.1 pAmin (n=6). c, d Outward currents elicited in a platelet-
derived growth factor receptor α-positive (PDGFRα+) cell by alternating
exposures to ATP (10 μm) and ADP (10 μm). ATP and ADP had similar
effects and repetitive application yielded reproducible responses. Note
responses were often spontaneous transient outward current-like and
often extended past the period of exposure. d Averaged current responses
to ATP and ADP in seven cells. There were no significant difference in
maximum current elicited by either ATP or ADP (ATP=47.8±
20.0 pA pF−1 and ADP=47.8±20.3 pA pF−1; P=0.4337) or in integrated
current responses (ATP=165.9±82.7 pA min and ADP=133.5±
60.1 pA min; P=0.6416; n=7). b Blockade of ATP responses by small
conductance Ca2+-activated K+ channel blocker and P2Y1 antagonist. a
Brief exposures (20 s) to ATP (10 μm) elicited reproducible large outward
currents in PDGFRα+ cells (average 26.0±5.8 pA pF−1, n=6) that were
reduced by apamin (300 nm) (7.8±6.1 pA pF−1, n=6; P=0.0008). b
MRS2500 (1 μm) blocked outward currents elicited by ATP (control
ATP response 37.5±19.2 pA pF−1; after MRS2500 1.0±1.0 pA pF−1, n=
8; P <0.0001) (reproduced from [414], with permission from The
Physiological Society)
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Gastric acid secretion

Purinergic modulation of gastric acid secretion was first re-
ported by Kidder [388], who showed that ATP or the ATP
analogue 5′-adenylyl methylene diphosphonate added to the
serosal bathing solution of the bullfrog gastric mucosa
inhibited gastric acid secretion, although they were unaware
at that time of purinergic receptors and did not explain their
findings in these terms. Another study at this time of the effect
of vagal nerve stimulation on gastric acid secretion in
anaesthetised dogs led to the conclusion that, in addition to
cholinergic nerves, an unsuspected second neural pathway
existed which was capable of influencing gastric acid secre-
tion [654]. Gastric hypersecretion of pylorus-ligated rats was
inhibited dose-dependently by ADP and AMP [489]. ATPases
are involved in the regulation of the gastric acid secretory
process [227, 490, 504, 591]. NTPDase has been localised in
the gastric mucosa and probably plays a role in the control of
acid and pepsin secretion and mucous production, as well as
contractility of the stomach [603].

There were also early suggestions that extracellular recep-
tors to adenosine were responsible for modulation of acid
secretions to the secretagogues, histamine and methacholine
[261, 262, 624] using a dog gastric fundus preparation; the-
ophylline was shown to block the adenosine actions. In a
study of basal acid secretion in whole rat stomach, it was
shown that, while adenosine caused a significant reduction
in basal acid secretion, ATP and ADP significantly increased
basal acid secretion [253]. Vagally mediated stimulation of
gastric acid secretion by intravenously administered adeno-
sine derivations was demonstrated in anaesthetised rats [561].
The authors took this to indicate that adenosine can stimulate
gastric acid secretion by activating the vagus nerves via aden-
osine receptors in afferent pathways. The potent effects of the
adenosine analogue N6-phenylisopropyladenosine (R-PIA)
on inhibitory gastric acid secretion in the rat was taken to
indicate that the P1 receptor involved was of the Al subtype
[606]. Gastric acid secretion was measured in conscious rats
with an indwelling gastric cannula [284]. The potent P1
receptor antagonist 8-phenyltheophylline augmented gastric
acid output, supporting a role for adenosine as a regulator of
gastric acid secretion. Data was presented to suggest that
endogenous adenosine generated by gastric cells interacts
with parietal cell adenosine receptors to mediate acid secretion
to histamine [260, 262].

Following up their earlier study of the effect of intravenous
adenosine in anaesthetised rats, Puurunen and Huttunen [560]
presented evidence to indicate that adenosine inhibits gastric
acid secretion by a decrease in stimulation of vagal impulses
to the stomach and that it acts in the brain via P1 receptors
insensitive to xanthine. Another study, using unanaesthetised
rats with indwelling gastric cannulas, showed a rank order for
P1 receptor agonists in decreasing gastric acid output of

NECA=R-PIA>2-chloroadenosine>S-PIA [699]. NECA de-
creased the volume of gastric secretion, whereas R-PIA had
no effects on volume, but significantly increased the pH of the
secretions. In an attempt to characterise the effects of adeno-
sine, ATP and ADP on acid secretion in isolated rabbit gastric
cells, it was claimed that there were stimulating receptors to
adenosine that were inhibited by methylxanthines, perhaps
mediated via P1 receptors, and inhibitory receptors to ATP,
α,β-meATP and ADP, which were reduced by indomethacin,
perhaps mediated via P2 receptors [6, 7, 279]. It was claimed
that there were P1 (A2 subtype) receptors on rabbit parietal
cells which mediate the stimulatory effects of adenosine and
analogues on gastric acid production [7, 530]. Data was also
presented to suggest that ATP selectively inhibits histamine-
stimulated gastric acid secretion by acting directly on parietal
cells, perhaps mediated by P2Y receptors with some part due
to prostaglandin production [281].

Adenosine has been shown to decrease or increase produc-
tion of gastrin, a known stimulant of gastric secretions,

Fig. 4 a Dose-dependent effect of ATP on mucous secretion from rabbit
gastric mucous cells in primary culture. Cells pre-labelled with [3H]glu-
cosamine were incubated with ATP for 30 min. Secreted proteins
(solubilised in with NaOH and neutralised with 1 N HCl) were measured
using a scintillation counter and expressed as counts per minute per well.
Values are means±SEM for four determinations (reproduced from [531],
with permission from Elsevier). b Time course of the change in potential
difference across the wall of the rat jejunum following the addition of
l mmol/l ATP to the mucosal bathing medium. Positive values for
potential indicate that the serosal side is positive with respect to the
mucosal side (reproduced from [400], with permission from Wiley)
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perhaps via A1 or A2 subtypes, thereby indirectly modulating
gastric acid secretion [608, 698]. It was later shown that
adenosine may suppress immunoreactive gastrin release by
activating A1 receptors on G cells, leading to inhibition of
gastric acid secretion [739]. Adenosine may also act via A2A

receptors to augment somatostatin release and consequently
influence gastric acid secretion [732, 738].

It has been suggested that muscularis mucosae may aug-
ment gastric acid secretion, and in a study designed to test this
hypothesis, it was shown that there are contractions of the
muscularis mucosae to ATP and ADP, but it was concluded
that muscularis mucosae relaxation, rather than contraction,
might be allied to acid secretion [549].

Gastric mucous secretion

ATP stimulated mucous glycoprotein secretion by rabbit gas-
tric mucous cells in primary culture (Fig. 4a) [531]. The order
of potency of ATP analogues was α,β-meATP>ATP>2-
MeSATP; the efficacy of ATP analogues to increase [Ca2+]i
was similar. A study of mucin secretion in the goblet cell line,
HT29-C1.16E, suggested that both ATP and carbachol pro-
duce exocytotic release of mucin by acting on the same
granular pool [51]. P1 receptor agonists had no effect. P2
receptor-mediated stimulation of mucous secretion appeared
to be mediated by intracellular calcium, not by endogenous
prostaglandin E2. An autoradiographic study of sections of
rabbit fundus with [35S]2′-deoxy adenosine-5′-O -(1-
thiotriphosphate), regarded as a radioligand for P2Y receptors,
shows a selective distribution over the mucosa, but not muscle
layer, and was paralleled by high-density binding on gastric
gland plasma membranes [672].

Intestinal secretion

The first hint that extracellular ATP might be involved in
electrolyte secretion in the intestine was the observation that
ATP, either in the mucosal or the serosal fluid, caused a
transient increase in the potential difference and short circuit
current across the wall of rat small intestine or colon (Fig. 4b)
[400]. Later, ATP, ADP and AMP, but not adenosine, were
shown to increase cAMP-mediated stimulation of active ion
transport in dispersed enterocytes prepared from the guinea
pig small intestine [407], and later, ATP was shown to stim-
ulate Ca2+ uptake in isolated rat intestinal epithelial cells
[577].

Rabbit ileal mucosa, when mounted in a flux chamber and
subjected to electrical field stimulation, secreted Cl−, a change
reflected in an increase in short circuit current, and it was
suggested that the mediator was likely to be a combination of
ACh and NANC neurotransmitters released from nerves lying
close to the secretory epithelium [342], the major NANC
transmitter involved being VIP [233]. Differential effects of

apical and basolateral UTP on intestinal epithelial Cl− secre-
tion have been described [626]. There is a loss of regulation of
Cl− transport by ATP and UTP in the jejunum of P2Y4-null
mice [580]. Mechanical stimulation releases nucleotides to
activate neural P2Y1 and P2X1 or P2X3 receptors to trigger
neural reflex Cl− secretion in guinea pig distal colon [150]. In
another study from this group, mechanically evoked reflex Cl−

secretion in rat distal colon was claimed to be triggered by
endogenous nucleotides acting via P2Y1, P2Y2 and P2Y4

receptors [142]. In a later study, using P2Y4 knock-out mice,
it was shown that the P2Y4 receptor fully mediates the
chloride-secreting response to UTP in both small and large
intestines, except on the basolateral side of the jejunum, where
both P2Y2 and P2Y4 receptors are involved [268]. Apical
targeting of the P2Y4 receptor is controlled by hydrophobic
and basic residues in the cytoplasmic tail [193]. Further, K+

secretion was activated via luminal P2Y2 and P2Y4 receptors
in mouse colon [462]. Activation of P2Y2 receptors on mouse
duodenocytes enhances bicarbonate secretion via elevation of
[Ca2+]i [185].

Experiments carried out by Cuthbert and Hickman [165]
confirmed the earlier reports about the effects of ATP on
transepithelial ion transport but, since they found that TTX
virtually abolished the effects of ATP on electrogenic chloride
secretion, they suggested that the effects of ATP were indirect,
via neural elements in the intramural plexus.

Under resting conditions, the mammalian distal colon has a
NaCl− absorptive epithelium, the absorption occurring at sur-
face cells in colonic crypts, and intracellular Ca2+ or cAMP
are important secondmessengers that activate NaCl− secretion
[60]. ATP released from the luminal side of epithelial cells in
guinea pig colon by hypotonic stimulation appears to exert an

Fig. 5 ATP-induced (10 μmol/l) [Ca2+]i increase in the rat isolated, intact
colonic crypt was measured with the Ca2+-sensitive dye fura-2 and a
video imaging set-up along the axis of the crypt. The cells were classified
as basal, middle and surface cells according to their location. Base refers
to the very base, middle refers to 50 % of total length in the middle of the
crypt and surface refers to only cells at the very surface. Both the ATP-
induced [Ca2+]i peak and plateau decrease along the crypt axis. Asterisks
indicate significant differences of peak and plateau [Ca2+]i increases
compared between basal and middle and middle and surface cells
(reproduced from [431], with permission from Springer)
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inhibitory effect on electrogenic Na+ absorption, probably via
P2Y2 receptors on the apical membranes [731]. P2Y6 recep-
tors mediate colonic NaCl secretion in rat colon, as evidenced
by RT-PCR localisation of P2Y6 receptor mRNA and activa-
tion by UDP [409]. Activation of P2Y receptors may improve
the absorption of water-soluble and high molecular weight
compounds from the rat ileum [397]. Distal colonic Na+

absorption is inhibited by P2Y2, but not P2Y4, receptors
[463]. A study of ATP actions in isolated crypts of rat distal
colon, using the fura-2 technique to measure [Ca2+]i (Fig. 5)
[431] led to the following conclusions that basolateral ATP
induces [Ca2+]i in isolated crypts and acts as a secretagogue in
the distal rat colon; basolateral P2Y receptors are responsible
for this ATP-induced NaCl secretion; ATP action is not me-
diated by adenosine; and ATP-induced [Ca2+]i signals are
mostly located at the crypt base, which is the secretory part
of the colonic crypt. The rank order of potencies for these
actions was 2-MeSATP>ADP>ATP >>UTP, suggesting that
a P2Y1 receptor might be involved. In a later abstract, this
group reported that luminal ATP induces K+ secretion via a
P2Y2 receptor in rat distal colonic mucosa [385]. It is inter-
esting that TNP-ATP, which has since been identified as a
potent antagonist at P2X1 and P2X3 receptors [686], was
shown to block colonic Cl− channels [682], although there
do not appear to be reports of the effects of TNP-ATP on P2Y
receptors. In situ hybridisation studies have shown that the
mRNA for P2X4 receptors is localised in rat intestinal crypts
[653].

ATP regulation of Cl− secretion has also been demonstrated
in a human intestinal epithelial cell line, Caco-2, grown on
permeable membrane supports and assayed for Cl− secretion
bymeasuring short circuit current [353]. The potency order on
the apical side was UTP>ATP>UDP>2-MeSATP=ADP and
on the basolateral side UTP=2-MeSATP=ATP>ADP >>
UDP, suggesting that two different P2Y receptor subtypes
are involved. UDP increases [Ca2+]i, leading to increase in
Cl− secretion from mouse intestinal epithelium [76], suggest-
ing that P2Y6 receptors might be involved.

The strong presence of ecto-diphosphohydrolase (apyrase)
in rat small intestinal brush-border membranes has been dem-
onstrated [611], consistent with the view that nucleotides have
potent actions in mucosal epithelial cells. A study of goblet
cell-like clone derived from colonic HT-29 cells led to the
conclusion that ATP-stimulated increase in Cl− current does
not require an increase in [Ca2+]i suggesting the involvement
of either another signalling pathway or direct activation of Cl−

channels via purinergic receptors [305]. ATP-stimulated elec-
trolyte and mucin secretion by this human intestinal goblet
cell line has been reported [474]. Exogenous ATP added to the
medium bathing the mucosal surface of the intestine inhibits
calcium transport to reduce the unidirectional flux of Ca2+

from the mucosal to serosal side [715]. Inhibition of uptake of
amino acids (including leucine, lysine, alanine, valine and

isoleucine) from isolated intestinal epithelial cells by extracellular
ATP has been demonstrated [568] as well as regulation of Na+-
dependent sugar transport [394]. ATP synthase generates extra-
cellular ATP to regulate bicarbonate secretion in rat duodenum
[694], via P2Y1 receptors in guinea pig duodenum [215]. ATP-
induced muscularis mucosae contraction evokes epithelial secre-
tion in rabbit distal colon via NANC secretomotor nerve stimu-
lation and prostaglandin synthesis [550]. ATP is released as a
neurotransmitter to stimulate mucosal secretion of electrolytes
andH2Ovia P2Y1 receptors expressed byVIPergic secretomotor
nerves [213, 712]. ATP is released by mechanical deformation
from enterochromaffin cells to act as an autocrine or paracrine
messenger to stimulate release of 5-HT from enterochromaffin
cells via P2Y1 receptors or on P2X3 receptors on sensory nerve
subepithelial nerve terminals [726].

Adenosine was claimed to stimulate electrolytic secretion
in isolated epithelia of rabbit colon [295] and the P1 receptor
antagonist, theophylline, caused an increase in short circuit
current and reversed the direction of net Cl− movement in
rabbit ileum [5]. An examination of the effects of various
analogues of adenosine led to the conclusion that the A1

receptor subtype is present in rat jejunal mucosal epithelial
cells [575]. Earlier studies showed that increases in short
circuit current, in both small and large intestine, were prefer-
ential to ATP, with adenosine having significantly less effect
[165, 400]. Adenosine has been shown to inhibit intestinal
fluid secretion and a study of the relative actions of various
adenosine agonists and antagonists led to the conclusion that
the P1 (A2B) receptor subtype is involved [312]. Neutrophil–
epithelial cross-talk at the intestinal lumen surface is mediated
by secretion of adenosine and interleukin (IL)-6 from in-
flamed epithelial cells [622]. A2B receptors mediate signalling
through the adenylate cyclase 6 isoform in intestinal epithelial
cells and the authors suggest that this may have therapeutic
implications for intestinal inflammation and diarrhoea, where
the A2B receptor is upregulated [402]. Luminal adenosine
stimulates chloride secretion through A1 receptors in mouse
jejunum [267] and rapidly increases glucose transport [395].
Adenosine is a negative regulator of mitogen-activated protein
kinase (MAPK) and pro-inflammatory signalling in human
epithelial cells [364]. Clostridium difficile causes widespread
infection by releasing toxins that break down epithelial tight
junctions and compromising the intestinal epithelial barrier.
CD73-mediated liberation of adenosine has been shown to
protect intestinal epithelial cells from C. difficile toxin-
induced damage [607]. Neurotensin stimulates Cl− secretion
in human colonic mucosae, involving mucosal nerves, aden-
osine and prostaglandins [579]. Mechanical stimulation of
human enterochromaffin cells releases ATP which breaks
down to adenosine to act via A3 receptors to modulate 5-HT
release [716]. In addition to roles in secretion, UDP has been
shown to promote intestinal epithelial cell migration via the
P2Y6 receptor [503].
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Purinergic vascular control in gut

The possibility that nucleotides were responsible for the initial
rapid response, particularly at low frequency stimulation of
sympathetic nerves, of the perfused intestinal microcirculation
of anaesthetised cats was first raised by Taylor and Parsons
[656], a secondary, slower phase being mediated by
adrenoceptors. The initial rapid phase was completely
abolished by selective desensitisation of the ATP receptor with
α,β-meATP. In a follow-up study, these authors demonstrated
that functional P2X receptors were present in both arterial and
venous blood vessels of the cat intestinal circulation [657].

An important paper was published in 1992 in which it was
shown that the postjunctional responses (EJPs as well as
constrictions) of guinea pig submucosal arterioles to sympa-
thetic nerve stimulation were mediated solely through the
activation of P2X receptors by ATP or a related purine nucle-
otide (Fig. 6); the function of neurally released NAwas to act
through prejunctional α2-adrenoceptors to depress transmitter
release [209]. The finding was confirmed and extended by
another laboratory, which examined the relative potencies of a
number of purinergic agonists on guinea pig submucosal
arterioles and showed that the constrictions were antagonised

by suramin and PPADS [251]. Surprenant and her colleagues
speculated in review articles [648, 681] that sympathetic
purinergic control of arterioles is involved in extrinsically
mediated mucosal reflex activity, particularly during inflam-
matory conditions. In another paper, it was considered that
ACh inhibits neurogenic constriction of guinea pig interstitial
submucosal arterioles by prejunctional modulation of ATP
release from the perivascular sympathetic nerves with no
major role for endothelial paracrine factors [408].

It has been known for some time that ATP, when injected
inter-arterially, elicited pronounced vasodilatation in the de-
nervated cat small intestine [225]. In terms of current knowl-
edge, this could be due to several possible mechanisms, such
as action of ATP on endothelial P2Y receptors leading to
release of NO, a direct action on P2Y receptors located on
vascular smooth muscle or breakdown of ATP by
ectoenzymes to adenosine to act on P1 receptors (see [102]).
ATP applied to equine colonic arterial and venous rings in-
duced a biphasic response, contraction followed by sustained
relaxation [660]. The relaxant response was reduced, but not
eliminated in endothelium-free preparations, suggesting that a
mechanism other than NO was involved.

Adenosine acting through P1 receptors can increase blood
flow in interstitial vessels in two ways: by direct action on A2-
like receptors on vascular smooth muscle to produce vasodi-
latation; and by indirect action on A1 prejunctional receptors
on sympathetic vasoconstrictor nerves to inhibit release of the
cotransmitters NA and ATP [293, 547, 559, 604]. A1 and to a
lesser extent A2A and A2B receptors contribute to adenosine-
mediated vasodilatation of vessels in the rat jejunum [438].

Sensory nerves mediate protective vasodilatation in rat
gastric mucosa [330], and there was an earlier report that
ATP causes an increase in gastric blood flow [734]. This is
of interest since ATP is a cotransmitter in sensory motor
nerves and, upon release, acts on P2Y receptors present in
the vascular smooth muscle [104].

Mesenteric arteries supplying the gastrointestinal tract of
rat, guinea pig, rabbit and dog have been shown to be inner-
vated by sympathetic nerves in which ATP is a major
cotransmitter with NA [78, 79, 187, 357, 411, 453, 493,
528, 623, 689]. For the sympathetic nerves in the jejunal
branches of the rabbit mesenteric artery, like those supplying
submucosal arterioles, ATP appears to be the sole transmitter,
while NA acts prejunctionally [564]. In a later paper [208], it
was concluded that, while contraction of the rabbit jejunal
artery to short trains of stimuli is predominantly purinergic, a
noradrenergic component can be revealed at higher frequen-
cies of stimulation or during longer trains of stimuli.

Pathophysiology

A limited number of studies have been conducted to date on
changes in purinergic signalling in the diseased gut. ATP and

Fig. 6 Constrictions of submucosal arteries of guinea pig in response to
nerve stimulation are not mediated by noradrenaline but through the
activation of P2 receptors. a Nerve-evoked constrictions (NS, 100 pulses
at 10 Hz) were unaffected by the α1-adrenoceptor antagonist, prazosin
(0.1 μmol/l). b Constrictions to exogenously applied ATP (3 μmol/l)
were abolished by the P2 receptor antagonist, suramin (100 μmol/l). c
Suramin (100 μmol/l) had no effect on the contraction evoked by the
exogenous application of noradrenaline (NA , 3 μmol/l). Vessel diameter
of isolated superfused submucosal arteries was measured using an on-line
computer analysis of TV images with an Imaging Technology system,
sampling data at 10–20Hz with a resolution of less than 1 μm
(reproduced from [209], with permission from John Wiley and Sons)
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adenosine have been implicated in the development of gastric
ulcers, Hirschsprung's and Chagas diseases, ischaemia and
colonic tumours [91]. Extracellular nucleotides and their re-
ceptors have been implicated in the pathogenesis of inflam-
matory bowel disease (IBD) [634]. P2Y receptors on smooth
muscle and ATP production in myenteric neurons increase in
postoperative ileus, probably contributing to delayed colonic
transit [691]. Several reviews have highlighted the potential of
purinergic drugs for the treatment of functional bowel disor-
ders [99, 249, 327, 398]. Malnutrition affects millions of
people. In an undernourished rat model, the density of P2X2
and P2X7-immunoreactive neurons in the enteric plexuses
was increased, and these changes were reversible in re-fed
rats [282]. The P2X2 and P2X7 receptors were expressed on
NOS-positive inhibitory neurons, intrinsic sensory neurons
and cholinergic secretomotor neurons. There are reviews of
the purinergic literature about gut disorders [13, 17, 91, 96, 99,
103, 299, 327].

Inflammatory bowel disease

Acid sensing is of critical importance for the survival of the
epithelial cells throughout the gastrointestinal tract, and its
importance for mucosal defence, lipid uptake and cystic fibro-
sis has been discussed [379]. Nearly all the acid sensors occur
on intrinsic sensory neurons and P2X3 receptors are upregu-
lated in inflammation and hypersensitivity [719]. This has
been taken to suggest that the aberrant function of molecular
acid sensors may contribute to abnormal hyperalgesia and
pain [329]. Intestinal inflammation increases the expression
of P2Y6 receptors on epithelial cells and the release byUDP of
CXCL8 (a chemokine known for its chemoattraction ability to
recruit neutrophils during the acute phase of colitis) [296,
297]. Intraduodenal administration of ATP concomitantly
with ingestion of non-steroidal anti-inflammatory drugs
(NSAIDs) attenuated the NSAID-induced increase in intesti-
nal permeability in healthy humans, and it was suggested that
ATP may also be beneficial in the treatment of intestinal
disorders where intestinal permeability changes were involved
[71]. P2Y2 receptor expression is upregulated in intestinal
epithelial cells by the transcription factor C/EBPβ during
inflammation [174].

Nucleotides and their receptors have been explored in the
pathogenesis of IBD. P2X3 receptor expression was increased
in enteric plexuses of human IBD, suggesting a role in
dysmotility and pain [737]. The possibility that P2X receptor
antagonists could be used for the treatment of IBS was raised
[249]. P2X receptors on intrinsic enteric neurons may elicit
enhanced gastrointestinal propulsion and secretion, and it has
been suggested that they might be used for treating
constipation-predominant IBS, while P2X antagonists might
be useful for treating diarrhoea-predominant IBS. Peripheral
sensitisation of P2X3 receptors on vagal and spinal afferents

in the stomach may contribute to the development of visceral
hyperalgesia [168]. During chronic interstitial inflammation
induced by infection of mice with the parasite Schistosoma

mansoni , purinergic modulation of cholinergic nerve-
mediated effects was impaired [172]. In inflamed gastrointes-
tinal tract, glial cells proliferate and produce cytokines, sug-
gesting that P2X7 receptors may play a role in the response of
enteric glia to inflammation [679].

In trinitrobenzene sulfonic acid (TNBS)-induced colitis in
mice, the purinergic component of sympathetic cotransmission
to colonic submucosal arterioles was reduced, perhaps due to
increased degradation of extracellular ATP and P2X1 receptor
expression was increased [447]. Propulsive motility is attenu-
ated in the ulcerated region of the TNBS-inflamed colon, and
this is associated with a decrease in the purinergic component
of the descending inhibitory limb of the peristaltic reflex circuit
[645]. P2X3 receptor mRNA expression in dorsal root ganglia
(DRG) was significantly decreased in the ovariectomised rat
model of colitis, an effect that was reversed by oestrogen [212].
It has been suggested that ATP is a critical autocrine regulator
of mechanosensitive 5-HT release, which is involved in the
pathogenesis of IBD and that P2X3 receptors on enterochro-
maffin cells are downregulated in ulcerative colitis [442]. CD39
(NPTDase1) was upregulated in the submucosa during colitis
that contributed to impaired sympathetic regulation of gastro-
intestinal blood flow, compromising epithelial barrier function
[506]. Increase in sympathetic innervation of the mesenteric
arteries supplying the colon was reported in inflamed human
bowel [61]. Dysregulation occurs in 59 % of purinoceptor
genes in IBD, including P2Y6, P2Y13, P2Y14, P2X5, A2A and
A2B receptors [589].

P2X7 receptors play a pivotal role in intestinal inflammation
and are involved in the development of visceral hypersensitivity
[381]. P2X7 receptors on epithelial and immune cells are impli-
cated in the pathogenesis of diseases based on the dysregulation
of immune responses in inflammatory bowel disease [170].
Activation of neuronal P2X7 receptor/pannexin 1mediates death
of enteric neurons during colitis [302]. This supported an earlier
study of TNBS-induced colitis, using high-density oligonucleo-
tide microassay analysis, and oral N6-(3-iodobenzyl)-5′-N-
methylcarboxamidoadenosine blocked the colitis-induced upreg-
ulation of P2X1, P2X4, P2X7, P2Y2 and P2Y6 receptors [309].
Extracellular ATP evokes cell death in human intestinal epithelial
cells, largely via P2X7 receptors, and the implications of this in
inflammatory conditions and immune responseswere considered
[635]. It has also been reported that ATP mediates mast cell-
dependent intestinal inflammation via P2X7 receptors [415]. An
adenosine A3 agonist has been claimed to be protective in two
murine models of colitis [452].

Tumour necrosis factor-α upregulates A2B receptor expres-
sion and signalling in intestinal epithelium in colitis [401].
Blockade of A2B receptors ameliorates mouse colitis [403] as
does A2B gene deletion [404]. The inhibitory effects of
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adenosine on enteric neuromuscular activities are reduced
in inflamed colon [12]. It has been reported that oxidative
stress disrupts purinergic neuromuscular transmission in
the inflamed colon [581]. It was claimed that this can be
prevented by treatment with a free radical scavenger,
resulting in improved motility. It has been suggested that
A2B receptors play a role in the control of T cell-mediated
colitis by suppressing the expression of pro-inflammatory
cytokines, while sparing anti-inflammatory activity medi-
ated by IL-10 and transforming growth factor-β [498].
A2A receptors also mediate the inhibitory effects of aden-
osine on colonic motility in the TNBS model of experi-
mental colitis [13, 563]. Inhibition of adenosine deami-
nase attenuates inflammation in experimental colitis [14].
Adenosine, acting via A3 receptors, has been implicated
in intestinal anti-inflammation activities [265, 309]. A2A

receptors have also been implicated in the anti-
inflammatory actions of adenosine [519], and A2A recep-
tor agonists have been developed for the treatment of
inflammatory bowel disease [201]. A2B receptors mediate
regulation of 5-HT synthesis and release from hypoxic
enterochromaffin cells in IBD [167]. A2B receptor antag-
onists appear to be effective against murine colitis [405].
The involvement of adenosine A1 and A2A receptors [16]
and A3 receptors [573] in colitis has been described.
Reviews of the roles of adenosine signalling in gastroin-
testinal inflammation are available [146, 207]. Blockade
of adenosine deaminase reduces chronic experimental co-
litis through the recruitment of A2A and A3 receptors [15].
There has been an investigation of adenosine deaminase
in patients with Crohn's disease [458]. The inhibition of
adenosine kinase by GP515 has been explored as a po-
tential target for the treatment of colitis [621]. In a review
about purinergic receptors in gastrointestinal inflamma-
tion [403], it was concluded that P1 (A2A and A2B) and
P2Y receptor-based therapy is highly promising for the
treatment of inflammatory conditions of the gut, as well
as for fibrotic liver diseases (see [477]). Serum adenosine
deaminase activity has been claimed to be a predictor of
disease severity in ulcerative colitis [55]. It has been
reported that ENTPase 7 is preferentially expressed in
epithelial cells of mouse small intestine [417]. ATP re-
leased from colonic mucosal epithelial cells of IBS pa-
tients excites enteric cholinergic motor neurons via P2X
receptors [29]. The role of adenosine as an immune mod-
ulator of IBD has been reviewed [736]. Genetic polymor-
phisms of CD39 have been linked to Crohn's disease
[413]. A large migration of neutrophils into the intestinal
mucosa is a feature of IBD. It has been shown that release
of ATP by activated neutrophils and necrotic intestinal
epithelial cells stimulates epithelial cell P2X7 receptors
leading to activation of caspase 1 and secretion of pro-
inflammatory cytokines, such as IL-1β [123]. P2X7

receptor expression was shown to be weak in intestinal
biopsies obtained during the active phase of IBD.

Chagas disease

Chagas disease is caused by the protozoan parasite,
Trypanosoma cruzi . Transmission to humans occurs through
blood-sucking reduviid bugs, but it may also occur through
blood infusion or organ transplant. Little is known about the
neurotransmitters most affected in Chagas disease, but there are
hints that purinergic signalling might be impaired and there is
evidence for a preferential destruction of intrinsic inhibitory
neurons [166]. Both low affinity Mg2+-activated ATPase and
high affinity (Ca2+-Mg2+) ATPase [122, 228] as well as adeno-
sine kinase [389] are present in T. cruzi , which rapidly break
down extracellular nucleotides. E-NTPDase (CD39) and ecto-
adenosine deaminase activity are decreased in lymphocytes of
patients with the indeterminate form of Chagas disease [637].
Regulation of these extracellular nucleotides through
ectonucleotidase activities on the platelets of patients with the
indeterminate form of Chagas disease represents control of
purine-mediated thrombogenic function in the cardiovascular
system [636]. Enhancement of P2X7 receptor-associated cell
permeabilisation occurs during the acute phase of Chagas dis-
ease [155]. Purinergic signalling through other P2X receptor
subtypes and P2Y receptors may also be impaired, perhaps
because the parasite protozoan that causes the disease contains
high levels of ATPases. Thymus atrophy induced by T. cruzi

infection may involve ATP-induced cell death via P2X7 recep-
tors [456]. However, experiments using P2X7 knockout mice
suggested that P2X4 and P2Y receptors may also be involved
[119].

Hirschsprung's disease

Hirschsprung's disease is a congenital abnormality of the
enteric nervous system and is characterised by the absence
of ganglion cells in the submucosal and myenteric plexuses of
the hind gut and by chronic constriction of the aganglionic
region. There is hyperinnervation of the Hirschsprung's hu-
man gut by extrinsic sympathetic nerves and preganglionic
parasympathetic nerves (see [254, 350]). Enteric nerves aris-
ing from intrinsic neurons containing various neurotransmit-
ters including ATP show substantial reductions in density in
aganglionic segments [421, 422, 582]. IJPs were not recorded
in aganglionic segments of human colon [230, 525], and ATP
caused contraction of the muscle [749]. IJPs were also not
evoked in aganglionic segments of piebald-lethal mouse colon
[116, 525, 578]. In the aganglionic intestine, there was only
weak P2X3 receptor immunostaining in the myenteric and
submucous plexuses compared to normal intestine [210]. The
absence of expression of P2Y1 and P2Y2 receptors in the
aganglionic intestine in Hirschsprung's disease has been
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described [518], which suggests that purinergic inhibitory
neurotransmission is absent and may account for the
contracted state of the aganglionic gut in Hirschsprung's
disease.

Motility disorders

Bile evokes ATP depletion and contributes to the early muco-
sal permeability alteration and barrier lesions that occur during
experimental oesophageal reflux [649]. It has been suggested
that purinergic signalling might be involved in achalasia or
symptomatic diffuse oesophageal spasm [182, 222]. ATP
production in myenteric neurons and P2Y receptor expression
on smoothmuscle in postoperative ileus increase, contributing
to delayed colonic transit [691]. Agonists acting on P2X
receptors on intrinsic enteric neurons may enhance gastroin-
testinal propulsion and might be useful for treating constipa-
tion, while P2X antagonists might be useful for treating diar-
rhoea. P2Y receptor stimulation has been proposed to be
beneficial for the treatment of constipation [249]. Increased
apoptotic cell death in enteric neurons and ICCs from the
colon of patients with slow transit constipation has been
reported [275], probably as the result of activation of P2X7
receptors. Prejunctional P2Y1 receptors modulate the activity
of excitatory enteric motoneurons and might be therapeutic
targets for patients with functional disorders affecting colonic
motility [21]. Disturbed motility occurs with intestinal ana-
phylaxis. Allergic diarrhoea, in a model of food allergy, was
accompanied by chronic inflammation and mast cell hyper-
plasia in the colon [434], and it was suggested that sustained
alteration in purinergic neurotransmission contributed to the
disturbed motility characterised by this condition. Herpes
simplex virus type-1 infects the enteric nervous system and
affects gut motor function; contractions mediated by adeno-
sine acting via A1 or A2A receptors on smoothmuscle and A2A

and A3 receptors in the myenteric plexus were impaired in
virus-infected rats [764].

Gastric ulcers

Helicobacter pylori infection and gastric hyperacidity results
in the development of gastric ulceration [287, 465]. ATP was
shown to be involved in the development of gastric hyperse-
cretion and ulceration in pylorus-ligated rats [489]. It was
shown that in pylorus-ligated rats, gastric acid secretion was
an ATP-dependent process and that adenosine acting via P1
receptors inhibited the development of ulceration. Methylxan-
thines, which blocked the action of adenosine, stimulated the
acid content of gastric secretions [365] and promoted gastric
ulceration [204, 319]. Dipyridamole, which leads to an in-
crease in extracellular adenosine, significantly reduced the
extent of gastric bleeding and ulcer formation [538]. Intrace-
rebral or subcutaneous administration of adenosine increased

stress-induced gastric lesions [670]. However, in contrast, it
was reported that adenosine receptor activation in the brain
reduced stress-induced ulcer formation [259, 697].

Diabetes

Relaxations in response to NANC nerve stimulation were
reduced in longitudinal strips of gastric fundus from 8-week
streptozotocin-induced diabetic rats [360], but NANC con-
tractions were enhanced [361]. IJPs of reduced amplitude
were observed in gastric smooth muscle from streptozotocin-
induced diabetic rats [727]. The rate of hyperpolarisation of
single IJPs was slower in the circular muscle of the caecum of
streptozotocin diabetic (8-week) rats [338]. Maximum relax-
ant responses and sensitivity of the colon to ATP were un-
changed in 8-week streptozotocin diabetic rats, but the re-
sponses to adenosine were reduced [307]. Diabetic enteric
neuropathy was associated with apoptosis in the myenteric
plexus of the rat colon [304].

Fig. 7 Schematic of a novel hypothesis about purinergic mechanosensory
transduction in the gut. It is proposed that ATP released from mucosal
epithelial cells during moderate distension acts preferentially on P2X3 and/
or P2X2/3 receptors on low-threshold subepithelial intrinsic sensory nerve
fibres (labelled with calbindin) to modulate enteric reflexes. ATP released
during extreme (colic) distension also acts on P2X3 and/or P2X2/3 recep-
tors on high-threshold extrinsic sensory nerve fibres (labelled with isolectin
B4 (IB4)) that send messages via the dorsal root ganglia (DRG) to pain
centres in the central nervous system (reproduced from [94], with permis-
sion from Wiley-Liss, Inc.)
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Nociception

Submucosal intrinsic sensory neurons and extrinsic sensory
nerves both show positive immunoreactivity for P2X3 recep-
tors [722]. It has been proposed that during excessive intesti-
nal distension, high-threshold extrinsic enteric sensory fibres
are activated via P2X3 and P2X2/3 receptors by ATP released
from mucosal epithelial cells, leading to initiation of nocicep-
tive impulses that pass messages through the DRG to pain
centres in the CNS [93]. This hypothesis was supported by
experiments on a rat pelvic sensory nerve–colorectal prepara-
tion ([718]; Fig. 7). Colorectum distension led to pressure-
dependent increase in the release of ATP from mucosal epi-
thelial cells and evoked pelvic sensory nerve excitation. This
excitation was mimicked by application of ATP and attenuat-
ed by the selective P2X3 and P2X2/3 antagonist, TNP-ATP,
and by PPADS. The sensory activity in the nerves was poten-
tiated by ARL-67156, an ATPase inhibitor. It has been
claimed recently that subepithelial fibroblasts in rat ductal villi
also release ATP by mechanical stimuli, which has actions on
P2Y1 receptors expressed by the fibroblasts, as well as acti-
vating P2X3 receptors on subepithelial sensory neurons [238].
ATP release and P2X3 and P2X2/3 receptor-mediated noci-
ceptive sensory nerve responses were enhanced in the rat
TNBS model of colitis [719]. Different mechanosensory in-
formation from the colon to the spinal cord is conveyed by
lumbar splanchnic (LSN) and sacral pelvic (PN) nerves. Forty
percent of LSN afferents responded to α,β-meATP compared
to 7 % of PN afferents [73]. Enhancement of P2X3 receptor-
mediated signalling in an animal model of colonic inflamma-
tion has been reported. This was due, at least in part, by the
appearance of P2X3 receptor expression in a greater number
of calcitonin gene-related peptide-labelled small nociceptive
neurons in the DRG [719]. Purinergic mechanosensory
transduction has also been shown to contribute to post-
infectious mechano-hypersensitivity [585]. P2X3 receptor
expression was increased in human IBD enteric plexuses
suggesting a potential role in dysmotility and pain [737].
Substances are released from various sources under these
conditions that often act synergistically to cause sensiti-
sation of afferent nerves to mechanical or chemical stim-
uli. Receptors to a variety of substances (including ATP
released during gut distension) represent potential targets
for drug treatment for abnormal bowel function and vis-
ceral pain (see [327, 398]). The sensitising effects of
P2X3 receptor agonists on mechanosensory function were
demonstrated in oesophagitis [536]. Visceral hyperalgesia
is associated with an increase in ATP activity and en-
hanced expression of P2X3 receptors in colonic sensory
neurons [725]. Selective P2X3 and P2X2/3 receptor an-
tagonists that are orally bioavailable and do not degrade
in vivo are in clinical trials for the treatment of pain (see
[186, 266]).

Ischaemia

Purinergic signalling has been identified in the development
of intestinal ischaemia–reperfusion injury. For example, aden-
osine acts via both A2A and A2B receptors, and A2A receptors
provide potential protection and is a novel therapeutic target
for intestinal ischaemia–reperfusion injury [180, 203, 314].
ATP attenuated intestinal dysfunction produced by ischaemia,
but not that caused by reperfusion in rabbits [650]. In ischae-
mia–reperfusion of the intestine, there was a decrease in P2X2
receptor expression in the myenteric and submucosal plexus
[545].

Injury

P2Y1 receptor signalling has been shown to mediate wound-
induced cyclooxygenase (COX)-2 expression through both
p38 MAPK and PKC pathways in intestinal subepithelial
myofibroblasts [359]. It was suggested that this might indicate
a novel treatment for intestinal barrier dysfunction during
inflammation.

Cancer

Colorectal cancer is a major disease. [Ca2+]i was increased in
the HT-29 human colonic adenoma cell line by ATP and ADP
[325]. HT-29 cells were depolarised by UTP>ATP>ADP>
adenosine [446]. Cultured human colonic tumour cells (LoVo)
were resistant to ATP cytotoxicity, but verapamil increased
sensitivity to ATP [152]. P2U (i.e. P2Y2 and/or P2Y4) recep-
tors are expressed by HT-29 cells [160, 516, 542].

ATP transiently increased Cl− conductance in the highly
differentiated sub-clone of the HT-29 colonic cancer cell line,
HT-29-C116E [305, 306]. ATP activation of Cl− conductance
was also reported in the T84 human colonic adenocarcinoma
cell line [179]. A decrease of intracellular Cl− and Na+ and an
increase in Ca2+ in HT-29 cells response to both ATP and UTP
via P2U (P2Y2 and/or P2Y4) receptors was shown [754]. P2U
receptor mRNA in both primary cultures of human colorectal
carcinoma cells and HT-29 cells was reported, where they play
a role in the regulation of cell proliferation and apoptosis
[331]. Resistance to ursolic acid-induced apoptosis in HT-29
cells was mediated by P2Y2 receptors [441]. ATP induced
apoptosis and inhibited growth of primary cultures of colo-
rectal carcinomas [331], probably via P2Y2 receptors [332].
P2Y2, P2Y4 and P2Y6 receptor mRNAs were located on the
apical membranes of human colonic Caco-2 adenocarcinoma
cells [114, 464]. The hypotonicity-induced release of ATP
from basolateral, but not apical, membranes of Caco-2 cells
was facilitated by caveolin-1 [668]. P2Y2 and P2Y4 receptors
were upregulated in human colon cancer [517]. Gβγ-
Subunits mediate regulation of increase in [Ca2+]i during
P2Y2 receptor activation [340]. P2Y2 receptors have
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oncogenic potential mediating transformation of colorectal
RKO cancer cells [315]. Proliferation of Caco-2 cells is
evoked by ATP acting via P2Y receptors [115]. Tissue from
patients with colorectal cancers showed increased expression
of an ATP-binding cassette super-family transporter, multi-
drug resistance protein-2 [323]. CD39 (NTPDase1) modulat-
ed colorectal tumour growth and liver metastasis and the
expression of both P2Y2 and P2X7 receptors [413]. The
activities of CD73 and adenosine deaminase were higher in
primary human colorectal tumours [205] and in human colo-
rectal adenocarcinomas [658]. Gene expression of adenosine
kinase is significantly increased in human colorectal cancer
[276]. There is heterogeneity of chemosensitivity of colorectal
adenocarcinoma, and this may be used to identify patients
who would benefit from specific chemotherapeutic agents
alone or in combination [128, 343, 701]. Surgeons often wash
the abdominal cavity with distilled water to lyse colorectal
cancer cells remaining after surgery, and it has been shown
that water induces release of ATP from epithelial cells, which
then causes cell death of tumour cells via P2X7 receptors
[613].

Adenosine facilitates tumour survival [443, 641]. Prolifer-
ation in poorly differentiated HT-29 cells is promoted by
adenosine via A1 receptors and there is inhibition of tumour
growth by adenosine deaminase or A1 receptor antagonists
[432]. However, adenosine had less effect on more differenti-
ated cells [433]. It has been claimed that adenosine suppresses
growth of CW2 human colonic cancer cells by inducing
apoptosis via A1 receptors [594]. A2B receptor expression is
enhanced in proliferating colorectal cancer cells and A2B

receptor antagonists are being explored for the treatment of
colorectal cancer therapy [449]. There is significant inhibition
of the growth of xenografted subcutaneous human colon
adenocarcinoma cell line, HCT116, in nude mice by a single
low-level intravenous dose of [32P]ATP [127]. Growth of
colorectal cancer cell lines HCT116 and 80514 were inhibited
in vitro and in vivo by 8-chloro-adenosine [117]. Primary
colon carcinoma growth was inhibited byA3 receptor agonists
[223, 520], although a later paper claimed that A3 receptors
mediated proliferation of Caco-2, DLD1 and HT-29 colorectal
tumour cell lines [264]. The A3 receptor agonist CF101
stabilised the tumour in 35 % of the patients with refractory
metastatic colorectal cancer in a phase II, multi-centre study
[642]. Adenosine has been claimed to induce apoptosis in
Caco-2 colonic cancer cell [735]. Adenosine upregulates
CXCR4, which is a chemokine receptor that plays a crucial
role in determining the ability of cancer cells to metastasize
from the primary tumour. CXCR4 enhances the proliferative
and migratory responses of HT-29 cells [576]. Adenosine can
stimulate migration of colon cancer cells and caffeine signif-
icantly inhibits this action [473].

ATP produces hyperpolarisation of the human gastric sig-
net ring cell carcinoma cell line (JR-1), probably mediated by

P2Y receptors [311]. Proliferation was reduced and apoptosis
induced in the human gastric carcinoma cell line (HGC-27) by
ATP and adenosine [593, 692]. The benefits of chemothera-
peutic drugs in patients with gastric cancer have been exam-
ined using an ATP-based chemotherapy response assay [426,
540]. Infection of the gastric body by Heliobacter pylori

contributes to the progression of gastric carcinoma [592].
Gastric cancer cells show a loss of A3 receptors [151]. Kyse-
140, a human oesophageal squamous carcinoma cell line, and
cancer cell primary cultures both expressed P2Y2 receptors,
which mediated inhibition of growth [451]. Using the ATP-
tumour chemosensit ivity assay, heterogeneity of
chemosensitivity in oesophageal cancer has been reported
[444]. Neuroendocrine tumours are a heterogeneous group
of neoplasms originating from enteric chromaffin cells and
these tumours express A2A and A2B receptors, the activation
of which leads to increased proliferation [372], a potential
target for therapy [373]. Gastrointestinal stromal tumours that
originate from pacemaker cells of the gastrointestinal tract
release ATP, which may be important for tumour homeostasis
and immune surveillance escape [50].

Salivary glands

Salivary acinar and ductal epithelial cells are responsible for
the controlled secretion of fluid and electrolytes and of spe-
cific proteins and growth factors [148]. There are several
Ca2+-mobilising receptors involved in these activities, includ-
ing muscarinic receptors, α-adrenoceptors and SP receptors,
but it is now well recognised that there are also Ca2+-
mobilising receptors for extracellular ATP in rat and mouse
parotid acini [232, 242, 470, 631] and in rat, mouse and
human submandibular acinar and duct cells [273, 347, 416,
665, 666, 740]. Stimulation of the NANC component of
parasympathetic nerves produced increased production of
saliva from parotid, submandibular glands [199]. Potassium-
evoked release of purines from rat submaxillary gland has
been demonstrated, although it was not possible in the exper-
iments described to discriminate between neuronal and non-
neuronal elements as the source of purines released by
depolarisation [220]. Zinc ions are present in high concentra-
tions in acinar secretory vesicles. They are co-released during
salivation and play a physiological role in salivary secretions.
The zinc sensing receptor enhances secretion of ATP from
ductal cells [614]. Intra-arterial administration of various nu-
cleotides, including ATP and ADP, to the cat submandibular
salivary gland led to an increase in blood flow, possibly
mimicking neurally released ATP as a cotransmitter in para-
sympathetic and/or sympathetic nerves [368]. NTPDase3 was
co-expressed with NTPDase2 and 5′-nucleotidase in subpop-
ulations of epithelial cells in the salivary glands of mice and
guinea pigs [423]. Reviews of the distribution and function of
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P2 nucleotide receptors in salivary glands are available [513,
667].

Parotid gland

In a seminal paper, Gallacher [242] showed that in acinar cells
of the parotid gland, ATP evoked a marked increase in mem-
brane conductance, K+ efflux and amylase secretion; a P2
receptor was implicated, since adenosine had no effect and
the responses could be blocked by quinidine, but not by
theophylline. Extracellular ATP was later shown to elevate
intracellular free calcium in rat parotid acinar cells and the
possibility that ATP plays a neurotransmitter role in the parot-
id gland raised [470]. In fact, ATP was found to be more
effective than muscarinic and α-adrenergic agonists and SP
as a stimulus for elevating [Ca2+]i levels [471]. ATP induces
oscillatory changes in [Ca2+]i in HSY cells, a salivary ductal
cell line from human parotid [663]. Purinoceptors mediate
spontaneous Ca2+ oscillations and associated cell swelling in
rat parotid ductal cells and regulation of electrolyte reabsorp-
tion from the primary saliva in the resting state [619].
Coomassie brilliant blue G was a more potent antagonist of
P2 receptor-mediated responses of rat parotid acinar cells than
Reactive blue 2 (Cibacron blue 3GA) [630]. Further studies by
this group led them to suggest that ATP may function as a
neurotransmitter to modulate salivary fluid secretion by stim-
ulating Ca2+-sensitive Cl− and K+ channels and multiple Na+

uptake pathways in the rat parotid acinar cell [631]. They
showed that some of these pathways were similar to those
activated by carbachol while others were unique to ATP.
Extracellular ATP increases the conductance to both Na+ and
Cl− in parotid acinar cells through independent mechanisms
[19]. A later paper showed that P2X7 receptors were essential
from anion activation and that Na+ regulates anion conductiv-
ity and permeation through this receptor [574]. It was sug-
gested that the source of the ATP could be as a cotransmitter
from nerves or directly from acinar vesicles or secretory
granules into the lumen following muscarinic stimulation
[513].

Two distinct [Ca2+]i responses to ATP were distinguished
in rat parotid acinar cells raising the possibility that both P2X7
and P2Y receptors were implicated [469, 632]. To learn more
about the ATP-binding site of the P2X7 receptor in these acinar
cells, the isothiocyanate compound, 4,4′-diisothiocyanato-stil-
bene-2,2′-disulfonic acid, was examined and found to be an
effective antagonist at the parotid P2X7 receptor [633]. A study
by another group showed an inhibitory effect of ATP4− on the
ACh-mediated response of rat parotid acini and presented evi-
dence to suggest that this was due to interactions of the activat-
ed P2X7 receptor with the PLC-coupled processes underlying
the muscarinic cholinergic response [369]. 2′(3′)-O -(4-
benzoylbenzoyl) adenosine 5′-triphosphate (BzATP), acting
via P2X7 receptors on rat parotid acinar cells, leads to the

formation of large pores [274]. ATP, acting through P2X7
receptors, causes Na+ entry by opening cation-permeable chan-
nels, and thereafter, the increase in [Na+]i triggers Ca

2+ release
from intracellular ryanodine-sensitive stores, while UTP acting
through P2U (= P2Y2 and/or P2Y4)-type receptors caused Ca

2+

release independent of external Na+ [232]. In a somewhat
conflicting paper, activation of P2X7 receptors on rat parotid
acinar cells was claimed to cause a large entry of Ca2+ into the
cells [662]. In an abstract, a P2X7 receptor was identified in rat
parotid salivary glands which was modulated by Mn2+ and
Ni2+, but not by Cd2+ [18]. Activation of P2X7 receptors by
ATP in mouse parotid acinar cells occurs in two steps: slow
assembly (which requires an intact cytoskeleton) and rapid
gating (which does not) [439]. Duct cell P2X7 receptors are
pre-assembled and therefore continuously subject to rapid gat-
ing by ATP. A study of P2X7 receptor knockout mice led to the
conclusion that cholinergic stimulation leads to the release of
ATP that can, via P2X7 receptors, upregulate parotid salivary
secretion [514].

The results of a study using RT-PCR showed strong expres-
sion of P2X4 and P2X7 receptormRNA in parotid glands, which
correlated well with the responses of the parotid acinar cells to
extracellular ATP [659]. It was further shown that parasympa-
thetic denervation of the parotid gland increased the number of
cells with P2X4 responses and the levels of P2X4 mRNA,
opening up important general issues about trans-synaptic regula-
tion of P2X receptor expression. Another study describes how
ATP, acting through P2X7 receptor-mediated PLD, may produce
a Ca2+-independent PKC to account for the finding that ATP
shortened the duration and decreased the magnitude of ACh-
induced Ca2+ release from rat parotid acinar cells [231]. Func-
tional interactions between P2X4 and P2X7 receptors in mouse
parotid acinar cells have been described [118, 556].
Ectonucleotidase and 5′-nucleotidase levels in parotid acini have
been reported [188]. A recent study claims that P2X4 receptors
are largely localised on the basal and basolateral surfaces of
mouse parotid acinar cells, activated by ATP released as a
cotransmitter from autonomic unmyelinated nerve fibre varicos-
ities that surround acini, while P2X7 receptors are located largely
on the apical surface of acini cells, activated by autocrine/
paracrine ATP release from acinar cells ([56]; Fig. 8).

Using a rat parotid secretory granule preparation, ATP was
shown to activate Ca2+-independent membrane-associated
PLA2 [484]. ATPγS was active to a lesser extent, while UTP,
cytosine triphosphate and cytosine 5′-O -(thiotriphosphate)
showed little activation. It was suggested that the PLA2 located
in the granular membranes may participate in the liberation of
arachidonic acid in parietal cells that is regulated through a
mechanism mediated by ATP. Nucleotides are important
modulators of Ca2+ release from parotid salivary glands
under physiological conditions and a decrease in ATP
levels may impact Ca2+ signalling in pathological
situations [539].
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Submandibular gland

The effect of ATP on various types of preparations from
submandibular salivary glands has been reported, including

the human submandibular duct cell line, HSG-PA [390, 416,
740], rat submandibular gland acini [345–347], crude cell
suspensions of whole rat submandibular glands [175, 418,
475, 665, 752] or ductal cells [10], a mouse submandibular

Fig. 8 a–d P2X receptor [Ca2+]i-evoked changes exhibit similar kinetics
in mouse parotid acinar cells. a Acinar cells were loaded with fura-2 AM
and ratio images were obtained at 2 Hz. The ratio images depict [Ca2+]i
rise following a sequential application of ATP (1 mm) stimulation in the
same acinar cell cluster. Scale bar for the acinar unit, 17 μm. b Repre-
sentative line trace depicting [Ca2+]i responses in parotid acinar clumps
evoked by ATP (1 mm). Scale bar indicates fluorescence ratio units (r.u.)
and time in seconds. c Peak [Ca2+]i amplitudes evoked by 1 mm ATP
compared with that evoked by treatment with 300 μm UTP (n =3),
100 μm α-methylthio-ATP (2-MeSATP; n =7). The results are represent-
ed as a fold change in peak [Ca2+]i amplitudes. Asterisks denote

significant difference from control values. d Peak [Ca2+]i amplitudes
evoked following selective P2X7 receptor activation using 500 μm
2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) with
(n =5) or without (n =5) prior Ca2+ store depletion using 30 μm
cyclopiazonic acid. e Confocal images from mouse parotid gland slice
preparations (10 μm thickness) labelled with P2X4 (red) and P2X7
(green) receptor antisera and F-actin (cyan) using Alexa Fluor 647-
conjugated phalloidin. Asterisks mark ducts in the parotid lobules. Scale
bar is 25 μm (reproduced from [56], with permission from The Physio-
logical Society)
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epithelial salivary cell line, ST885 [273], and an immortalized
cell line SMG C10 cells, originally obtained from the rat
submandibular salivary gland [22].

The presence of a P2U-like receptor, where the agonist
profile was UTP=ATP>ATPγS>ADP>ADPβS with both
α,β-meATP and 2-MeSATP having little or no effect, was
identified in a human submandibular duct cell line HSG-PA
[740]. The cells challenged by UTP hyperpolarised which
provided the driving force for net Cl− efflux [390]. In the most
recent paper on HSG cells, in addition to a P2U receptor
mediating InsP3 formation to nucleotides, the authors sug-
gested that Ca2+ influx might be mediated by a second,
perhaps P2X receptor [416].

Studies of rat submandibular gland acini identified, as for
parotid acini, a P2X7 receptor activated by ATP4− which
promoted Ca2+ and Na+ influx, but not release, from intracel-
lular stores [345–347]. A later paper showed activation of
PLD by P2X7 agonists in rat submandibular gland acini
[552] and ductal cells [555]. Activation of P2X7 receptors in
mouse submandibular glands triggers an intracellular signal-
ling cascade involving PKC andMAPK leading to stimulation
of NADPH oxidase and the subsequent generation of reactive
oxygen species [612]. ATP also acts via P2X7 receptors to
inhibit muscarinic-induced fluid secretion in murine subman-
dibular glands [501]. The presence of two populations of
P2X7 receptors in the plasma membrane of rat subman-
dibular gland has been claimed, in raft and non-raft com-
partments [258]. There is also an unusual report that P2X7
receptors mediate depolarisation of mitochondrial as well
as plasma membranes [257], which is interesting in view
of earlier reports of intracellular immunolocalisation of
P2X7 receptors [20]. ATP via P2X7 receptors increased
the production of reactive oxygen species in rat subman-
dibular glands, and the authors speculate that purinergic
receptors could be regulators of the bactericidal properties
of saliva by promoting the secretion of peroxidase from
acinar cells and by activating Duox2 [226]. It was reported
that P2X7 receptor activation induces inflammatory re-
sponses in mouse submandibular gland cells [714].

For mixed duct and acinar cell suspensions, again a P2X7
receptor coupled to a non-selective cation channel was de-
scribed, occupation of which byATP potentiates the responses
to both carbachol and SP [418, 475]. In a subsequent paper
from this group, using suspensions of submandibular ductal
cells only, two purinergic receptors were identified, a metab-
otropic, probably P2Y1 receptors and a P2X ionotropic recep-
tor coupled to a manganese-permeant calcium channel and to
kallikrein secretion [10]. In the most recent study by another
group, coordinated actions of P2X7 (luminal) and P2U-like
(basolateral) receptors were proposed that mediate part of the
transcellular cystic fibrosis transmembrane regulator (CFTR)-
like Cl− transport by acinar and duct cells to determine the
final electrolyte composition of salivary fluid [752]. P2Y2

receptors (= old P2U receptor, including P2Y4 receptors)
identified in both acinar and ductal cells of rat submandibular
gland increased with time in culture, and it was speculated that
changes in expression of the P2Y2 receptor on salivary gland
cells may be related to pathological challenges to the gland
in vivo [665]. This group included a review of the field in an
experimental paper, their main observations being:

1. P2Y1 receptor activity is present in submandibular glands,
although it tends to decline with age.

2. P2Y2 receptors are present in cell lines and are upregulat-
ed during short-term culture of normal glands and follow-
ing ligation of the main secretory duct of submandibular
gland.

3. The P2X subtypes, P2X4 and P2X7, and the P2Y sub-
types, P2Y1 and P2Y2, are co-expressed in salivary glands
and salivary cell lines, and exhibit distinct basolateral, as
opposed to apical, localisation in polarised cell mono-
layers as well as having discrete patterns of intracellular
signalling [666].

In mouse submandibular ductal cells, P2X7 receptors are
present, but P2X4 receptors are also involved in some ATP
effects [555].

The conclusion from a study of nucleotide actions of the
mouse submandibular salivary cell line, ST588, was that two
P2 receptor subtypes were probably present, one where ATP
and UTP were equipotent (probably P2Y2) and another where
2-MeSATP was active (possibly a P2Y1 receptor) [273]. P2Y2

receptors are upregulated in duct-ligated rat submandibular
gland, and it was suggested that this may be an important
component of the response to injury and that during recovery
there is a return to P2Y2 receptor levels [4]. P2Y2 receptor
activation upregulates vascular cell adhesion molecule-1 ex-
pression and enhances lymphocyte adherence from a human
submandibular gland cell line [27]. Mechanical stimulation in
submandibular gland cells results in the release of ATP, which
then acts via P2Y2 receptors to produce Ca

2+ waves resulting
in synchronised salivary gland cell function [590]. It was
suggested that P2Y2 receptors may be a novel target for dry
mouth symptoms.

There is convincing evidence for the expression of Na+–H+

exchanger (NHE) isoforms in the basolateral membrane of rat
submandibular gland duct and acinar cells (NHE1) and NHE2
and NHE3 in the luminal membrane of these cells which
shows that the activities of the basolateral and luminal NHEs
are regulated by P2 receptors (P2U receptors in the isolated
membrane and P2X7 receptors in the luminal membrane) in a
membrane-specific manner, which may play an important role
in co-ordinating the overall process of Na+ absorption [428].
Another study [370] has shown that extracellular ATP and
BzATP, a potent agonist for P2X7 receptors, substantially
increased the release of arachidonic acid from rat
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submandibular gland ductal cells; these effects involved acti-
vation of PLA2 by the purinergic agonists. It has been sug-
gested that propofol, a widely used intravenous anaesthetic
agent, potentiates the response, probably mediated by P2X4
receptors, of submandibular acinar cells [218].

An RT-PCR and pharmacological study of postnatal develop-
ment of purinergic signalling in salivary glands, using dispersed
cell aggregate preparations from the submandibular–sublingual
gland complex of 1-day-old and 1-, 2-, 3- and 4-week old rats,
showed that functional P2Y1 receptors were expressed in imma-
ture (1 day postnatal) salivary glands and that receptor activity
decreased as the glands matured, suggesting that P2Y1 receptors
may have an important role during salivary gland development
[541]. P2Y1 receptors have been shown to play important roles in
embryonic chick development [476].

Ecto-ATP diphosphohydrolase and ecto-5′-nucleotidase
have been identified in cultured rat submandibular glands,
which hydrolyse ATP released as a cotransmitter from nerve
terminals at the basal border of cells [320]. Ecto-nucleotide
pyrophosphatase/phosphodiesterase (E-NPP) is colocalised
with NTPDase and ecto-5′-nucleotidase in cells cultured from
submandibular salivary glands [321]. Dry mouth is a common
side effect caused by antidepressant therapy, and antidepres-
sant drugs have been shown to modulate E-NPPs from sub-
mandibular gland cells [322].

Neurons in the parasympathetic submandibular ganglion
innervate the submandibular gland to control secretion of sali-
va. ATP, probably released as a cotransmitter with ACh in
preganglionic nerves, acts on both postsynaptic P2X [445,
625] and P1 and P2Y (probably P2Y2) [2] receptors. Occupa-
tion of P1 and P2Y receptors led to inhibition of N- and P/Q-

type voltage-dependent Ca2+ channel currents via Gi/o proteins
[2].

Both P2X and P2Y subtypes are expressed by cells of the
salivary glands, and opportunities for utilisation of these re-
ceptors as pharmaceutical targets for diseases involving sali-
vary gland dysfunction appear promising (see [19, 667]).
Primary Sjögren's syndrome is a common inflammatory au-
toimmune disorder characterised by decreased secretion of
saliva leading to symptoms of dry mouth. ATP, probably
released as a cotransmitter in sympathetic and/or parasympa-
thetic nerves, increased [Ca2+]i in the acini of labial salivary
glands via P2Y receptors to activate saliva production in both
saliva glands from healthy and Sjögren's patients [546]. It was

Fig. 9 ATP stimulates transepithelial secretion across cholangiocyte
monolayers. In this example, polarised cell monolayers are mounted in
anUssing chamber, and the transepithelial movement of Cl− ions from the
basolateral to apical space is measured as short circuit current (Isc, A).
Under basal conditions, Isc is low (b). However, addition of ATP (bar)
activates P2Y2 receptors (P2R) in the apical membrane and elicits a brisk
Cl− secretory response as demonstrated by a marked increase in Isc.
Apical Cl− secretion occurs via opening of apical membrane Cl− channels
and is inhibited by application of the selective anion channel blocker 5-
nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, bar) (reproduced
from [583], with permission from Elsevier)

Table 1 RT-PCR to detect human adenosine receptor mRNA in human
intestine

A1 A2a A2b A3

Jejunum

Whole thickness − (−) − (+)? ++ ++

Mucosa/submucosa − (−) ++ ++ +

Mucosa − (−) + ++ +

Mucosa − (+)? ++ ++ ++

Submucous plexus − (+) − (+) + +

Longitudinal/circular + (++) ++ ++ +

Ileum

Whole thickness + (+) ++ + +

Mucosa/submucosa ND ND ND ND

Mucosa − (+) ++ + +

Submucous plexus ND ND ND ND

Caecum

Whole thickness − (−) + ++ +

Mucosa/submucosa − (+) ++ + +

Mucosa − (−) + ++ +

Submucous plexus − (+) − (−) + − (+)

Colon

Whole thickness − (−) − (−) + − (+)?

Mucosa/submucosa − (−) − (−) ++ +

Mucosa ND ND ND ND

Submucous plexus − (+) − (+)? ++ +

Human cell lines

HT-29 (colonic epithelium) + (+) +++ +++ − (−)?

T-84 (colonic epithelium) − (+) + +++ − (−)?

T98G (glioblastoma) ++ +++ +++ − (+)

ND not done, + or − indicates receptor mRNA detected or not detected,
respectively. Failure to detect adenosine receptor mRNA after the first
round of PCR reflects either absence or low expression. If the results of
RT-PCRwere negative, an aliquot of the first PCR reaction was amplified
a second time, and the result is indicated in parentheses. Failure to detect
adenosine receptor mRNA after the second round of PCR is likely to be
due to its absence. A question mark indicates a possible faint expression
of receptor mRNA (reproduced from [130], with permission from
Springer)
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speculated that there may be some abnormality in the inner-
vation of salivary glands in Sjögren's syndrome. Another
study suggested that the P2Y2 receptor is upregulated in the

submandibular gland of the NOD B10 mouse model of
Sjögren's syndrome [610].

Gall bladder and bile duct

Gall bladder

Stimulation in vivo of the cervical vagus nerve produces
contraction of the guinea pig gall bladder. Following block
of this response by atropine, a relaxation is revealed which is
not affected by the adrenergic neuron blocker, guanethidine.
This relaxation is, however, blocked by hexamethonium, in-
dicating that the NANC inhibitory neurons are located in the
wall of the gall bladder. There was early evidence to suggest
that the intrinsic NANC inhibitory neurons, like those in the
gut, were purinergic [169]. The NANC relaxation was mim-
icked by ATP and intrinsic nerve cell bodies exhibit fluores-
cence for quinacrine which binds to high levels of granule-
bound ATP. Release of ATP from strips of guinea pig gall
bladder during transmural stimulation of intrinsic nerves was
demonstrated [651]. ATP release was stimulation frequency-
dependent and both ATP release and contractions were
completely abolished in Ca2+-free medium; this suggests me-
diation by P2X receptors. It is likely that prostaglandins
participate in the contractile response, since responses of the
guinea pig gall bladder to ATP were antagonised by indo-
methacin [184]. Activation of an apical Cl− conductance by
extracellular ATP in Necturus gall bladder is mediated by

Table 2 Cellular localisation of adenosine A1, A2A, A2B and A3 receptor
immunoreactivities in human small and large intestine

Human intestinal region /cell type A1 A2a A2b A3

Jejunum +

Longitudinal muscle ± ± −

Myenteric plexus neurons + + +

Glia − − +++

Circular muscle + − −

Submucous plexus neurons − +++ +++

Nerve fibres/neurites − + + +

Epithelia − + + +

Colon +

Longitudinal muscle ± − −

Myenteric plexus neurons − + +

Glia − − +

Circular muscle + + +

Submucous plexus neurons +++ + +

Epithelia +

T98G +

U373 +

BON cells +

− absent,+ present (or present ≤2 neurons), ± marginally detectable,++
three to six neurons, +++ >6 neurons (reproduced from [130], with
permission from Springer)

Table 3 Functional distribution of luminal P2 receptors in gastrointestinal epithelial cells

Tissue Species P2 receptor Endogenous agonist Function Signalling Reference

Jejunum Mouse P2Y4 ATP=UTP Cl− secretion ↑ [157]

Duodenal villus Rat P2X7 Apoptosis ?? [298]

Pancreatic duct Guinea pig P2Y2 ATP=UTP HCO3
− secretion ↑ Ca2+ ↑ [355]

Rat P2X7 Bz-ATP Ca2+ ↑ [317]

Rat P2Y2, P2Y4, P2X7 UTP/ATP Cl− secretion ↑ Ca2+ ↑ [448]

Dog ATP Mucin secretion ↑ Ca2+ ↑ [507]

PDEC Human P2Y2/P2Y4 UTP/ATP Cl− secretion ↑ Ca2+ ↑ [124]

CFPAC-1 Mouse P2Y2/P2Y6 ATP=UTP/UDP Cl− secretion ↑ [157]

Gall bladder Mouse P2Y2 ATP/UTP HCO3
− secretion ↑ Ca2+ ↑ [144]

Necturus P2 ATP Cl− secretion ↑ cAMP ↑ [680]

Bile duct Rat P2Y1, P2Y2 ATP, UTP HCO3
− secretion ↑

P2Y4, P2Y6 ADP, UDP

2MeSATP

Rat P2Y2/P2Y4 UTP/ATP Cl− secretion ↑ [609]

Colon Rat, mouse P2Y2/P2Y4 UTP/ATP K+ secretion ↑ Ca2+ ↑ [386]
Na+ absorption ↓ ?

Caco-2 Human P2Y2, P2Y4, P2Y6 UTP/ATP Cl− secretion ↑ Ca2+ ↑ [464]

Reproduced from [130], with permission from Springer
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cAMP, not by [Ca2+]i [680]. A recent paper has shown that
ATP stimulates P2Y4 receptors within the gall bladder mus-
culature and, in turn, stimulates prostanoid production via
COX-1 leading to increased excitability of gall bladder
smooth muscle [42].

P2Y6 receptor mRNAwas identified onmature gall bladder
epithelial cells and UDP shown to promote current changes in
cystic fibrosis gall bladder epithelia, suggesting that the P2Y6

receptors may be a target for the treatment of cystic fibrosis
gall bladder disease [424].

Biliary duct

The extra-hepatic biliary tract is innervated by dense networks
of extrinsic and intrinsic nerves that regulate both smooth
muscle tone and epithelial cell function [28]. ATP activates
ion permeabilities in rat biliary epithelial cells (cholangiocytes
that form the intrahepatic bile ducts) via two pathways, extra-
cellular Ca2+-dependent and Ca2+-independent [467], impli-
cating P2X and P2Y receptors. Cl− secretion, measured by
both electrophysiological and radio-nucleotide methods, is
stimulated though the activation of P2Y2 receptors in rat bile
duct epithelial cells [224]. Ca2+-dependent activation of chlo-
ride currents in rat biliary epithelial cells is regulated by
calmodulin-dependent protein kinase II [468]. Extracellular
nucleotides modulate secretory and absorptive functions of
cholangiocytes by activating Na+/H+ exchange mechanisms
[202]. Apical P2Y2 and basolateral P1(A1) receptors regulate
Na+/H+ exchange activity (acid/base transport) in rat
cholangiocytes [765]. Basolateral ADP was more potent in
stimulating transepithelial currents [597], consistent with me-
diation by P2Y1, P2Y12 or P2Y13 receptors. ATP, ADP and
AMP are present in rat, pig and human bile, perhaps released
by paracrine and/or autocrine activities, in sufficient concen-
trations to regulate biliary secretion [125]. Evidence has been
presented to suggest that tachykinins and ATP may be excit-
atory cotransmitters in NANCnerves supplying the guinea pig
common bile duct [543]. ATP is released into the bile by both
hepatocytes and cholangiocytes, where it functions as a potent
paracrine/autocrine stimulator for cholangiocyte secretion
(Fig. 9) [583, 584]. Both small and large cholangiocytes show
mechanosensitive vesicular ATP release, but this is greater in
small cholangiocytes [709].

A key role in modifying the volume and composition of
bile is played by fluid absorption and secretion across
intrahepatic bile duct units (IBDUs). P2Y1, P2Y2, P2Y4,
P2Y6 and P2X4 receptor mRNAs were expressed in isolated,
microperfused IBDUs using RT-PCR [190]. In human
intrahepatic biliary epithelial cell lines [706], ATP and UTP
increase [Ca2+]i, probably via P2Y2 or P2Y4 receptors.
Purinoceptors mediate activation of cholangiocytes to secrete
Cl− and HCO3

− in the intrahepatic bile ducts [597]. Vesicles
containing ATP within the biliary epithelial cells are in part

responsible for the initiation of purinergic signalling in the
biliary system [601].

RT-PCR from cultured rat cholangiocytes detected tran-
scripts for P2X2, P2X3, P2X4 and P2X6 receptors, and im-
munohistochemistry showed that the P2X4 receptor protein
was dominant, particularly in intrahepatic bile ducts, and
functional studies implicated the P2X4 receptor in modulation
of biliary secretion [183]. Fluid flow (shear stress) induces
cholangiocyte mechanosensitive ATP release through calcium
signalling and chloride transport via PKC-dependent path-
ways [707]. Portal fibroblasts inhibit the proliferation of bile
duct epithelia via blockade of P2Y activation and expression
of NTPDase2 [363]. TRPV4 is expressed on cholangiocyte
cilia in intrahepatic bile duct units and its activation induces
increases in bile flow, ATP release and bicarbonate secretion
[292]. It has been suggested that cholangiocyte primary cilia
are chemosensory organelles that detect biliary nucleotides via
P2Y12 receptors [461]. The existence of a P2 receptor signal-
ling axis was proposed, present along the intrahepatic biliary
tree, with upstream small cholangiocytes releasing ATP,
which then serves as a signalling molecule for downstream
large cholangiocytes [708].

It was suggested that ATP release may be a key regulator of
biliary secretion and a target to modulate bile flow in the
treatment of cholestatic liver disease. It has been claimed that
extracellular ATP induces IL-6 transcription in bile duct epi-
thelial cells via the P2Y11 receptor [742]. P2Y13-deficient
mice exhibit a decrease in hepatic high-density lipoprotein
cholesterol uptake, hepatic cholesterol content and bili-
ary cholesterol output [66]. Pharmacological activation
of P2Y13 receptors with ADP increases reverse choles-
terol transport and it was suggested that P2Y13 agonists
may have a potential role as a novel target for the
treatment of dyslipidemia. Cholangiopathies are
characterised by impaired cholangiocyte secretion.
Ursodeoxycholic acid (UDCA) is widely used for
cholangiopathy treatment. Data has been presented that
indicates that UDCA stimulates a CFTR-dependent api-
cal ATP release from cholangiocytes to act on P2Y
receptors, which, through [Ca2+]i increase and PKC
activation, stimulates Cl− efflux and fluid secretion
[221]. Bile ductular proliferation is markedly upregulat-
ed in biliary fibrosis and cirrhosis. The ectonucleotidase
NTPDase2 has been shown to be a critical regulator of
bile ductular proliferation and IL-6 to downregulate
NTPDase2 mRNA expression [741]. The apical P2Y–
InsP3 receptor signalling pathway mediating Cl− trans-
port may be a potential target for increasing secretion
for the treatment of cholestatic liver disease [197]. Bi-
carbonate secretion is a function of cholangiocytes and
it has been reported that cAMP regulates bicarbonate
secretion from cholangiocytes via release of ATP into
the bile [479].
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Summary and future directions

Purinoceptors are widely expressed by non-neuronal cells as
well as neurons in the gut and associated organs (see Tables 1,
2 and 3). Exploration of the therapeutic potential of
purinergic-related drugs for inflammatory and motility disor-
ders is in its infancy and should be encouraged in future
investigations.
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