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Purity of Gaussian states: measurement schemes and time–evolution in noisy channels
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We present a systematic study of the purity for Gaussian states of single-mode continuous variable
systems. We prove the connection of purity to observable quantities for these states, and show
that the joint measurement of two conjugate quadratures is necessary and sufficient to determine
the purity at any time. The statistical reliability and the range of applicability of the proposed
measurement scheme is tested by means of Monte Carlo simulated experiments. We then consider
the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general
Gaussian states both in thermal and squeezed thermal baths. We show that purity is maximized
at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed
state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the
input state.

PACS numbers: 03.65.Yz, 42.50.–p, 03.67.Pp, 42.50.Dv

I. INTRODUCTION

Nonclassical features of atomic and radiation systems
play a relevant role in quantum information, communica-
tion and high precision measurements, as well as in many
fundamental experiments to test quantum mechanics
[1, 2]. In particular, pure Gaussian states of continuous
variable (CV) systems, such as coherent and squeezed–
coherent states, are the key ingredients of secure optical
communication [3, 4, 5, 6] and Heisenberg limited quan-
tum interferometry [7, 8, 9, 10, 11]. The characteriza-
tion of several properties of Gaussian states has been the
subject of intense recent work [12, 13, 14, 15, 16, 17, 18],
stimulated by the seminal analysis on their entanglement
properties [19, 20].
Any attempt to exploit Gaussian states for quantum

information and quantum measurement schemes must
however face the obvious difficulty that pure states are
unavoidably corrupted by the interaction with the envi-
ronment. Therefore, CV Gaussian states that are avail-
able for experiments are usually mixed states, and it
becomes crucial to establish their degree of purity (or
mixedness) determined by the environmental noise. In
the present paper, we study the purity of Gaussian states
for single–mode continuous variable systems focusing on
two aspects: its experimental characterization, and its
time–evolution in noisy channels. We first show that the
joint detection of two conjugate quadratures is a neces-
sary and sufficient measurement to determine the purity
of a Gaussian state with reliable experimental statistics;
we then derive an evolution equation for the purity of
Gaussian states in a noisy channel, considering the in-
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stances of a thermal bath and of a squeezed thermal bath,
and determine the evolutions that at any given time max-
imize the purity.

Let us refer to µ = Tr
[

̺2
]

as to the purity of a
generic quantum state ̺; the conjugate quantity SL =
(1−µ)d/(d− 1), where d is the dimension of the Hilbert
space of the system under investigation, is known as lin-
ear entropy or mixedness. In general, µ ranges from one,
which is the value for a pure state, to µ = 1/d for a
completely mixed state. Throughout the paper we will
consider CV systems, i.e. infinite dimensional Hilbert
spaces, and therefore we will have 0 < µ ≤ 1. Since µ
is a nonlinear function of the density matrix, it cannot
be connected to an observable quantity if we perform re-
peated measurements on single copies of the state. That
is, it cannot be the expectation value of a single-system
self-adjoint operator, nor it can be related to a single-
system probability distribution obtained from a positive
operator-valued measure (POVM). On the other hand,
if collective measurements on two copies of the state
are possible, then the purity may be measured directly
[21, 22]. For instance, collective measurements of overlap
and fidelity have been experimentally realized for qubits
encoded into polarization states of photons [23].

In general, purity can be determined by the knowledge
of the quantum state of the system, which in turn can be
obtained by quantum tomography [24]. However, in this
case, the statistics is usually poor, since the measurement
of a whole quorum of observables is needed, unavoidably
leading to large fluctuations [25]. On the other hand, if
we focus our attention on the class of Gaussian states,
it is indeed possible to find an operative method to ex-
perimentally determine µ . In fact, Gaussian states are
uniquely defined by their first two statistical moments,
which can be measured by the joint detection of two
conjugate quadratures, say position and momentum or
quadrature phases of the electromagnetic field. Such a
measurement corresponds to an estimate of the Husimi
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Q–function Q(α) = 〈α|̺|α〉, |α〉 being a coherent state
of the harmonic oscillator. We will show that the mea-
surement of the Q–function is the optimal minimal mea-
surement for the purity, in the sense that it is necessary
and sufficient to determine µ and requires the minimum
number of observables to be measured.

The joint measurement of two conjugate quadratures
is possible for a single–mode radiation field as well as
for a single atom [26, 27, 28]. Remarkably, for these
systems, the class of Gaussian states include almost all
the states that can be reliably produced, and employed
in communication or measurement protocols.

Finally, we will show that the previous discussion al-
lows to unravel the dynamics of purity only in terms of
observable quantities. Indeed, the time–evolution of the
purity of an initial Gaussian state in a noisy channel can
be uniquely expressed as a function of the initial observ-
able parameters of the input state and of the asymptotic
observable parameters of the environment. This prop-
erty allows then to determine and engineer optimal evo-
lutions, i.e. evolutions that maximize the purity at any
given time.

The paper is structured as follows. In Section II we
show how purity is related to observable quantities for
Gaussian states, and how it can be obtained either from
the Q–function or by three single-quadrature detection.
In Section III we present the results of a systematic
numerical analysis, establishing the statistical reliability
and the range of applicability of the method by means
of Monte Carlo simulated experimental runs. We also
show that the Q-function based determination of purity
is a more reliable method than single-quadrature detec-
tion. Section IV is devoted to derive and solve an evolu-
tion equation for the purity of an initial Gaussian state
in a noisy channel, both for thermal and squeezed ther-
mal baths. We show that, even though the asymptotic
value of purity is not related to the initial conditions,
its behavior at finite times does depend on the initial
squeezing and thermal excitations, and we determine the
evolutions that maximize the purity at any finite time.
We show in particular that purity is maximized for an
initial coherent state evolving in a thermal bath, or for
an initial squeezed state evolving in a squeezed thermal
bath whose asymptotic squeezing is orthogonal to that
of the input state. Finally, in Section V we present some
concluding remarks.

II. PURITY OF GAUSSIAN STATES

We begin by reviewing some fundamental properties of
the Wigner phase-space representation [29] which will be
useful throughout the paper. The Wigner representation
of an arbitrary operator O is defined as follows

O(α) =

∫

C

d2γ

π2
eγ̄α−γᾱ Tr[O D(γ)] , (1)

whereD(γ) = exp(γa†−γ̄a) is the displacement operator,
and Tr[O D(γ)] is usually referred to as the characteris-
tic function of the operator O. Let O1 and O2 be oper-
ators that admit regular Wigner representations O1(α)
and O2(α). Then the trace Tr [O1 O2] can be computed
as an integral over phase space according to

Tr[O1 O2] = π

∫

C

d2α O1(α) O2(α) . (2)

From now on, we will move to the phase–space vari-
ables x and p, corresponding to quadrature phases x̂ =
(a + a†)/

√
2 and p̂ = i(a† − a)/

√
2 of the field a, whose

expectation values 〈x̂〉 ≡ x and 〈p̂〉 ≡ p are related to α

by α = (x+ ip)/
√
2.

The Wigner representationW (α) of the density matrix
̺ of a quantum state is referred to as the Wigner function
of the state. The class of Gaussian states is defined as the
class of states with Gaussian Wigner function, namely

W (x, p) =
e−

1

2
Xσ

−1XT

π
√

Det[σ]
, (3)

where X is the displaced vectorX = (x− x0, p− p0) and
σ is the covariance matrix

σij =
1

2
〈x̂ix̂j + x̂j x̂i〉 − 〈x̂i〉〈x̂j〉 ,

where x̂1 = x̂, x̂2 = p̂. The density matrix of the most
general Gaussian state can be written as [30]

̺ = D(α0)S(r, ϕ)νn̄S
†(r, ϕ)D†(α0) , (4)

where α0 = (x0+ip0)/
√
2, and νn̄ is a thermal state with

average photon number n̄:

νn̄ =
1

1 + n̄

∞
∑

k=0

(

n̄

1 + n̄

)k

|k〉〈k| ,

D(α0) denotes the displacement operator and S(r, ϕ) =
exp(12r e

−i2ϕa2 − 1
2r e

i2ϕa†2) the squeezing operator. A
convenient parametrization of Gaussian states can be
achieved replacing the σij ’s by n, r, ϕ, which have a
more direct phenomenological interpretation. By apply-
ing the phase-space representation of squeezing [29, 31],
the following relations are easily derived

σxx =
2n̄+ 1

2

[

cosh(2r)− sinh(2r) cos(2ϕ)
]

,

σpp =
2n̄+ 1

2

[

cosh(2r) + sinh(2r) cos(2ϕ)
]

,

σxp =
2n̄+ 1

2
sinh(2r) sin(2ϕ) . (5)

Exploiting Eq. (2), one can write

µ
.
= Tr[̺2] =

π

2

∫

R

∫

R

dx dp W 2(x, p) , (6)
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so that, for a Gaussian state

µ =
1

2
√

Det[σ]
=

1

2
√

σxxσpp − σ2
xp

. (7)

In terms of n̄, r and ϕ, Eq. (7) can then be recast as
[32, 33]

µ =
1

2n̄+ 1
. (8)

Eq. (8) shows that the purity of a generic Gaussian state
depends only on the average number of thermal photons,
as one should expect since displacement and squeezing
are unitary operations. Therefore, the measurement of
the purity of a Gaussian state is equivalent to the mea-
surement of its average number of thermal photons.
As the last step in connecting µ to observables we re-

port the expression of the σij ’s in terms of the Q–function
Q(α). This follows from the antinormally ordered expres-
sion of the second moments. We have, for instance

x̂2 =
a2 + a†2 + 2aa† − I

2
,

which, in terms of phase–space variables, corresponds to
x2 − 1

2 . Therefore, we eventually get

〈x̂2〉 = Tr[̺
(a+ a†)2

2
]

=

∫

R

∫

R

dx dp Q(x, p) (x2 − 1

2
) ,

where we have moved from variables α and ᾱ to variables
x and p, previously defined. In much the same way, we
obtain

〈p̂2〉 =

∫

R

∫

R

dx dp Q(x, p) (p2 − 1

2
) , (9)

1

2
〈x̂p̂+ p̂x̂〉 =

∫

R

∫

R

dx dp Q(x, p) x p . (10)

Since first moments are naturally antinormally ordered,
evaluation of first moments of quadratures is easily ob-
tained, and the σij ’s can be eventually computed.
Gaussian states may be effectively characterized as well

by single-quadrature measurements obtained by balanced
homodyne detection [34]. Thus a question arises whether
or not one really needs to resort to joint measurement of
two conjugate quadratures to determine the purity. In
particular, since Gaussian states are fully characterized
by the first and second moments, it suffices to measure
the rotated quadrature xθ = (a† eiθ+a e−iθ)/

√
2 for three

different values of θ to have a complete characterization
of the state, including the measure of its purity. This fact
can be proven by reminding that the probability distri-
bution p(x, θ) of a measurement of xθ on a state of the
form (4) is a Gaussian centered in x0 = Re[α0 e

−iθ], with
variance

σθ =
1

2µ

[

e−2r cos2(θ − ϕ) + e2r sin2(θ − ϕ)
]

. (11)

FIG. 1: Effect of the number of data on the Q-function based
determination of purity for Gaussian states: results from
Monte Carlo simulated experiments. On the left graph we
plot the determination of the purity µ versus the number of
data Nx for a squeezed thermal state with parameters given
by α0 = 0, ϕ = 0, r = 1.5, corresponding to sinh2 1.5 ≃ 4.5
mean squeezed photons, and a mean number of thermal pho-
tons n̄ = 0.5. Black circles are the estimated values of purity
based on the Q–distributed statistics, vertical bars are the
experimental errors (confidence intervals); for a large number
of experimental data the errors quickly fall well within the
black circles of the estimated values. The theoretical value of
purity for all the simulated experimental runs is µ = 0.5. On
the right graph we report the relative errors ∆µ/µ versus the
number of data for the same squeezed thermal state.

By measuring three quadratures we directly obtain the
purity µ by comparison of variances. By choosing θ =
0, π/2, π/4 we have

µ =
[

4σπ/4(σ0 + σπ/2 − σπ/4)− (σ0 − σπ/2)
2
]− 1

2 . (12)

In the next Section, we will compare the two different
experimental schemes on the basis of Monte Carlo simu-
lated experiments.

III. MONTE CARLO SIMULATED

EXPERIMENTS

As we have seen, in order to evaluate the σij ’s and
then the purity, we need to estimate averages over the
Q–function. These estimates can be obtained if one dis-
poses of data distributed according to the Q–function
Q(x, p) itself. Indeed, such a distribution can be experi-
mentally reconstructed for a single–mode radiation field
through heterodyne [35], eight–port homodyne [36, 37]
or six–port homodyne detectors [38], and for atoms by
coupling the atom with two light fields and measuring
the corresponding phase–shifts [28].
In order to test the effectiveness of the proposed

scheme, we have performed a systematic numerical analy-
sis by means of Monte Carlo simulated experiments. The
simulations are needed to show the actual independence
of the method on the squeezing and displacing parame-
ters, in compliance with Eq. (8). Moreover, they provide
a crucial test on the actual possibility of getting reliable
(i.e. with reduced fluctuations) determinations of µ in
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FIG. 2: Effect of the number of data on the determina-
tion of purity for Gaussian states by single-quadrature de-
tection: results from Monte Carlo simulated experiments of
three quadratures x0, xπ/2, xπ/4. On the left graph we plot
the determination of the purity µ versus the number of data
Nx for the same squeezed thermal state of Fig. 1. Notice that,
in this instance, the total number of data Nx corresponds to
Nx/3 detections for each quadrature. Black circles are the
estimated values of purity based on the balanced homodyne
statistics, vertical bars are the experimental errors (confidence
intervals); for a large number of experimental data the errors
quickly fall well within the black circles of the estimated val-
ues. The theoretical value of purity for all the simulated ex-
perimental runs is µ = 0.5. On the right graph we report the
relative errors ∆µ/µ versus the number of data for the same
squeezed thermal state.

realistic experimental settings and even for most unfa-
vorable states.

The purity µ and its dispersion ∆µ have been evalu-
ated from samples of the Q–function, varying the values
of the parameters of the simulated Gaussian state. Be-
sides n̄, r, ϕ, and α0, the experimental determination of
the Q–function depends on the number Nx of collected
data.

We find that µ and ∆µ are essentially independent
on the complex displacement parameter α0 and on the
squeezing angle ϕ. On the other hand, ∆µ does depend
on n̄ and r, decreasing with increasing n̄ and increasing
with increasing r.

In Fig. 1 we report the determination of purity for
a strongly squeezed thermal state as a function of the
number of data. The error on purity is of the order of a
few percent for samples made of Nx ≃ 105 data.

In order to compare the determination of µ by the
Q–function with that coming from single–quadrature de-
tection, we have simulated the measurement of three
quadratures xθ, θ = 0, π/2, π/4 by balanced homodyne
detection. In Fig. 2 we report the estimated purity [using
Eq. (12)] for the same strongly squeezed thermal state of
Fig. 1 as a function of the number of data. Some fea-
tures are immediately evident. First of all one can see
that the determination is biased: in the present case the
estimated µ is always larger than the true value, while
the opposite case occurs by inverting the phase of the
squeezing. Therefore the method is very sensitive to the
choice of the phase. Moreover, the relative error is not a

FIG. 3: Effect of squeezing on the Q–function based deter-
mination of purity for Gaussian states: results from Monte
Carlo simulated experiments. On the left graph we plot the
determination of purity versus the squeezing parameter r for
Gaussian states with the other parameters fixed at α = 0,
ϕ = 0, and n̄ = 0.5. Black circles are the determined values
of purity based on the Q–distributed statistics, vertical bars
are the experimental errors (confidence intervals). For small
r the errors are within the black circles. The theoretical value
of purity for all the states is µ = 0.5. On the right graph we
report the relative errors ∆µ/µ versus the squeezing param-
eter for the same set of experiments. The number of data in
all simulated experiments is Nx = 3 · 104.

smooth function of the number of data i.e. the method
is not statistically reliable as the joint–measurement one.
This is again due to the remarkable dependence of the
variances on the phase of the squeezing, a dependence
which is instead smoothed out in the measurement of
the Q–function. Summing up, for some specific states
(as the example considered here) single-quadrature de-
tection may be asymptotically even more efficient than
the heterodyne one. However, in general, the number of
data needed for the relative error to be below the joint–
measurement level is strongly state–dependent. We con-
clude that the measurement of the Q–function is statisti-
cally more reliable and thus more suited for a systematic
analysis of the purity of Gaussian states.

Let us now go back to the analysis of the Q–function
determination of purity. A smaller number of data is
needed to obtain a given precision for states with smaller
squeezing. The effect of the squeezing parameter on the
determination of purity is illustrated in Fig. 3, where we
report µ and ∆µ/µ versus r for Gaussian states with α =
0, ϕ = 0, and n̄ = 0.5, and for a number of data Nx =
3 · 104. Notice that in Fig. 3 the range of r corresponds
to a quite large number of mean squeezed photons 0 ≤
sinh2 r . 15.

In the deep quantum regime, i.e. for small n̄, fluctu-
ations of µ become more relevant. This is not surpris-
ing, since µ is a highly nonlinear function of the second–
order moments. However, simulations show that even for
highly squeezed (up to ≃ 15 mean squeezed photons) and
slightly mixed (down to n̄ ≃ 0.1) states, realistic experi-
mental conditions allow a statistically reliable determina-
tion of µ that complies with the theoretical expectation
(8), up to an error of a few percent. In Fig. 4 we plot
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FIG. 4: Effect of thermal photons on the Q-function based de-
termination of purity for Gaussian states: results from Monte
Carlo simulated experiments. On the left graph we plot the
determination of purity versus the value of n̄ for Gaussian
states with the other parameters fixed at α = 0, ϕ = 0, and
r = 1.0. Black circles are the determined values of purity ac-
cording to the Q–function statistics, and vertical bars denote
the experimental errors (confidence intervals); the latter are
within the black circles for essentially all values of n̄. The
solid line reports the theoretical values of µ. On the right
graph we report the relative errors ∆µ/µ versus n̄ for the
same set of experiments. The number of data in all simulated
experiments is Nx = 104.

the determination of purity for different squeezed ther-
mal states as a function of the average number of thermal
photons n̄, for samples made of Nx = 105 data.
From the above analysis we conclude that the joint

measurement of two conjugate quadratures provides a
statistically reliable method to determine the purity of a
generic Gaussian state. This is best achieved with exper-
imental schemes that involve data distributed according
to the Husimi Q–function, such as heterodyne and multi–
port homodyne detection schemes.

IV. EVOLUTION OF PURITY IN A NOISY

CHANNEL

Let us consider the time evolution of an initial, pure
or mixed, generic single–mode Gaussian state in presence
of noise and damping (and/or pumping) toward a final
squeezed thermal state. If Γ−1 is the photon lifetime in
the noisy channel, the evolution of a state is described, in
the interaction picture, by the following master equation

˙̺ =
Γ

2
N L[a†]̺+

Γ

2
(N + 1) L[a]̺

− Γ

2

(

M D[a]̺+M D[a†]̺
)

, (13)

where the dot stands for time–derivative and the Lind-
blad superoperators are defined by

L[O]̺ ≡ 2O̺O† −O†O̺− ̺O†O , (14)

D[O]̺ ≡ 2O̺O −OO̺− ̺OO . (15)

M is the correlation function of the bath (which is usually
referred to as the squeezing of the bath); it is in general a
complex number M = M1+iM2, and M denotes its com-
plex conjugate, while N is a phenomenological parameter
related, as we shall see, to the purity of the asymptotic
state. Positivity of the density matrix imposes the im-
portant constraint |M |2 ≤ N(N+1). At thermal equilib-
rium, i.e. for M = 0, N coincides with the average num-
ber of thermal photons in the bath. The master equation
(13) can be transformed into a Fokker–Planck equation
for the Wigner function W (x, p, t). Using the differential
representation of the superoperators [31, 39] in Eq. (13),
the corresponding Fokker-Planck equation reads as fol-
lows

Ẇ (x, p, t) =
Γ

2

(

2 + x∂x + p∂p +
2N + 1

2

(

∂2
xx + ∂2

pp

)

+ M1

(

∂2
xx − ∂2

pp

)

+ 2M2∂xp

)

W (x, p, t).(16)

For a general single–mode Gaussian state of the form (3)
one has, in compact notation

Ẇ =
Γ

2

(

2−Xσ
−1

(

x

p

)

+
2N + 1

2
SXσ(I)

+ M1 SXσ(A) +M2 SXσ(B)

)

W , (17)

where SXσ(γ) denotes the seralian (or siralian) operator,
a scalar function of the matrix γ given by SXσ(γ) ≡
Xσ

−1
γσ

−1XT −Tr[γσ−1]. The displaced vector X and
the covariance matrix σ have been previously defined,
whereas I,A,B form a basis in the space of 2 × 2 real
symmetric matrices:

I =

(

1 0
0 1

)

, A =

(

1 0
0 −1

)

, B =

(

0 1
1 0

)

.

For any given real matrix γ and generic Gaussian states,
the seralian operator shows the remarkable property:

∫

R

dx

∫

R

dp SXσ(γ)W (x, p, t) = 0 . (18)

It can be easily shown that this property assures that the
last three terms of Eq. (17) [corresponding to diffusion
terms in the Fokker–Planck equation (16)] do not enter
in the time–evolution equations for the first statistical
moments x0 and p0. Such evolution is governed by the
drift terms and is described by the following equation for
the vector X0 ≡

(

x0

p0

)

Ẋ0 =

∫

R

dx

∫

R

dp

(

x

p

)

Ẇ

2
= −Γ

2
X0 . (19)

First moments are damped through the noisy channel:
this effect should be expected since it is the mathemat-
ical evidence of the absorption of the state’s coherent
photons.
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The evolution of the covariance matrix of the state can
be described by monitoring different sets of variables. A
good choice of variables is given by the σij ’s, in terms
of which the evolution equations decouple. The relations
between the variables σij and the variables µ, r, and ϕ are
given in Eqns. (5) and (7). Here we recall some further
relations that will be useful in the following:

Det[σ] = σxxσpp − σ2
xp =

(2n̄+ 1)2

4
=

1

4µ2
, (20)

Tr[σ] = σxx+σpp = (2n̄+1) cosh(2r) =
cosh(2r)

µ
, (21)

σpp − σxx =
sinh(2r) cos(2ϕ)

µ
. (22)

As we have seen, in the Wigner phase–space picture the
expectation values can be computed as phase–space in-
tegrals. The first–order evolution equation for the co-
variance matrix σ is thus obtained by straightforward
integration, and reads:

σ̇ = Γ (σ∞ − σ) , (23)

with σ∞ ≡





(2N+1)+2M1

2 M2

M2
(2N+1)−2M1

2



 . (24)

The matrix σ∞, determined by the bath parameters
alone, turns out to be the asymptotic covariance matrix.

In fact, integration of Eq. (23) yields

σ(t) = σ∞

(

1− e−Γt
)

+ σ(0) e−Γt. (25)

Eq. (25) shows a simple example of a Gaussian com-
pletely positive map [40]. The Gaussian character of the
evoluted Wigner function can be proven, a posteriori, by
verifying that a function of the form (3), with covariance
matrix given by Eq. (25), indeed solves Eq. (16). In order
to be a bona fide covariance matrix, σ(t) must satisfy the
usual condition encoding the x̂− p̂ uncertainty relations
[40, 41]

σ(t) +
i

2
J ≥ 0 , with J =

(

0 1
−1 0

)

. (26)

It is promptly seen that such a condition is satisfied
at any time by the convex combination giving σ(t) in
Eq. (25) iff σ∞ is a legitimate covariance matrix. This
last requirement is assured by the necessary constraint
N(N + 1) ≥ |M |2 that guarantees positivity of the den-
sity matrix.
By introducing

µ∞
.
=
[

(2N + 1)2 − 4|M |2
]−1/2

,

and exploiting Eqns. (20–22) we can eventually express
µ, r and ϕ as functions of time

µ(t) = µ0

[

µ2
0

µ2
∞

(

1− e−Γt
)2

+ e−2Γt

+ 2µ0

(

√

1 + 4µ2
∞|M |2 cosh(2r0)
µ∞

+ 2 sinh(2r0)
(

M1 cos(2ϕ0)−M2 sin(2ϕ0)
)

)

(

1− e−Γt
)

e−Γt

]−1/2

, (27)

cosh[2r(t)] = µ(t)

(
√

1 + 4µ2
∞|M |2

(

1− e−Γt
)

µ∞

+ e−Γt cosh(2r0)

µ0

)

, (28)

tan[2ϕ(t)] =
M22µ0

(

1− e−Γt
)

+ sinh(2r0) sin(2ϕ0)e
−Γt

−M12µ0 (1− e−Γt) + sinh(2r0) cos(2ϕ0)e−Γt
, (29)

where µ0, r0 and ϕ0 are, respectively, the initial purity and the initial squeezing parameters.
Let us first consider the case M = 0, for which the initial state is damped toward a thermal state with mean photon

number N [29, 42]. In this case, see Eq. (29), ϕ is constant in time and does not enter in the expression of µ. The
corresponding solutions for µ(t) and r(t) read then as follows

µ(t) = µ0

[

µ2
0

µ2
∞

(

1− e−Γt
)2

+ 2
µ0

µ∞

e−Γt
(

1− e−Γt
)

cosh(2r0) + e−2Γt

]−1/2

, (30)

cosh[2r(t)] = µ(t)

(

1− e−Γt

µ∞

+ e−Γt cosh(2r0)

µ0

)

. (31)
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FIG. 5: Plot of the purity µ for an initially pure Gaussian
state (µ0 = 1) in different non–squeezed (M = 0) noisy chan-
nels, evaluated at time t = Γ−1, as a function of the initial
squeezing parameter r0. From top to bottom, the value of
the mean thermal photon number N that characterizes the
different channels is N = 0, N = 0.5, and N = 1 respectively.

The quantities µ(t) and r(t) in Eqns. (30) and (31) solve
the following system of coupled equations

µ̇ = Γ

(

µ− µ2 cosh(2r)

µ∞

)

,

ṙ = −Γ

2

µ

µ∞

sinh(2r) , (32)

which, in turn, can be directly found working out the
basic evolution equation µ̇ = 2Tr[ ˙̺ ̺] as a phase–space
integral and exploiting Eqns. (20–22). It is easy to see
that, as t → ∞, µ(t) → µ∞ = (2N + 1)−1 and r(t) → 0,
as one expects, since the channel damps (pumps) the
initial state to a thermal state with mean photon number
N . Therefore, the only constant solution of Eq. (32) is
µ = µ∞, r = 0, i.e. only initial non–squeezed states are
left unchanged by the evolution in the noisy channel. In
fact Eq. (30) shows that µ(t) is a decreasing function
of r0: in a non–squeezed channel (M = 0), a squeezed
state decoheres more rapidly than a non–squeezed one
(see Figs. 5 and 6). Let us consider, for instance, an
initially pure state in a channel with N = 1 (so that
µ∞ = 1

3 ); after a time t = Γ−1, the ratio of the purity of
a state with r0 = 1.5 to the purity of a state with r0 = 0
is 53.7%. This dependence could therefore be relevant for
practical purposes. The optimal evolution for the purity,
obtained letting r = 0 in Eq. (30), reads

µ(t) =
µ0 µ∞

µ0 + e−Γt(µ∞ − µ0)
. (33)

Obviously, µ(t) is not necessarily a decreasing function
of time: if µ0 < µ∞ then the initial state will undergo
a certain amount of purification, asymptotically reaching
the value µ∞ which characterizes the channel, as shown
in Fig. 6. In addition, µ(t) is not a monotonic function
for any choice of the initial conditions. Letting µ̇ = 0 in

Eq. (32), and exploiting Eqns. (30) and (31), one finds
the following condition for the appearance of a zero of
µ̇ at finite positive times: cosh(2r0) > max( µ0

µ∞

, µ∞

µ0

).

If this condition is satisfied, then µ(t) shows a local ex-
tremum, in fact a minimum since, differentiating the first
of Eqns. (32) and letting µ̇ = 0, one obtains µ̈ > 0. This
behavior is shown in Fig. 6.

Let us now treat the more general instance M 6= 0
of a squeezed thermal bath. Recalling the definition of
µ∞ and exploiting Eqns. (27–29), one easily finds the
asymptotic values of the physical parameters µ, r and ϕ

µ∞ =
1

√

(2N + 1)2 − 4|M |2
, (34)

cosh(2r∞) =
√

1 + 4µ2
∞|M |2 , (35)

tan(2ϕ∞) = −M2

M1
. (36)

These values characterize the squeezed channel. Eq. (34)
shows that, if M 6= 0, then N is not simply the mean
thermal photon number n̄ of the asymptotic state. One
has:

N =

√

(2n̄+ 1)
2
+ 4|M |2 − 1

2
.

In order to understand the dynamics of purity when
M 6= 0, it is convenient to write again the expression
(27) for µ(t), using Eqns. (35) and (36) to switch from
the complex parameter M = M1 + iM2 to the asymp-
totic values of the squeezing parameters r∞ and ϕ∞; one
obtains

0 2 4 6 8
t

0.2
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0.8

1
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FIG. 6: The purity µ for various Gaussian states evolving in a
channel with N = 0.5, M = 0, as a function of time. Time is
dimensionless and measured in units of Γ−1. The upper curve
refers to an initial pure coherent state (r0 = 0, µ0 = 1), the
central curve to an initial pure squeezed vacuum (r0 = 1.5,
µ0 = 1), and the lower curve to an initial thermal state with
r0 = 0 and µ0 = 0.05, i.e. n̄0 = 9.5.
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µ(t) = µ0

[

µ2
0

µ2
∞

(

1− e−Γt
)2

+ e−2Γt

+ 2
µ0

µ∞

(

cosh(2r∞) cosh(2r0) + sinh(2r∞) sinh(2r0)
(

cos(2ϕ∞ − 2ϕ0)
)

)

(

1− e−Γt
)

e−Γt

]−1/2

. (37)

We see from Eq. (37) that µ(t) is a monotonically decreasing function of the factor cos(2ϕ∞ − 2ϕ0), which gives the
only dependence on the initial phase ϕ0 of the squeezing. Thus, for any given ϕ∞ characterizing the squeezing of the
bath, ϕ0 = ϕ∞+ π

2 is the most favorable value of the initial angle of squeezing, i.e. the one which allows the maximum
purity at a given time. For such a choice, µ(t) reduces to

µ(t) = µ0

[

µ2
0

µ2
∞

(

1− e−Γt
)2

+ e−2Γt + 2
µ0

µ∞

cosh(2r∞ − 2r0)
(

1− e−Γt
)

e−Γt

]−1/2

. (38)

This is a decreasing function of the factor cosh(2r∞ −
2r0), so that the maximum value of the purity at a given
time is achieved for the choice r0 = r∞, and the evolution
of the purity of a squeezed state in a squeezed channel is
identical to the evolution of the purity of a non–squeezed
state in a non–squeezed channel expressed by Eq. (33)
and illustrated in Fig. 6.
In conclusion, for the most general instance of a chan-

nel characterized by arbitrary µ∞, r∞, ϕ∞ and Γ, the
initial Gaussian state for which purity is best preserved
in time must have a squeezing parameter r0 = r∞ and a
squeezing angle ϕ0 = ϕ∞+ π

2 , i.e. it must be antisqueezed
(orthogonally squeezed) with respect to the bath. The
net effect for the evolution of the purity is that the two
orthogonal squeezings of the initial state and of the bath
cancel each other exactly, thus reproducing the optimal
purity evolution of an initial non–squeezed coherent state
in a non–squeezed thermal bath.

V. CONCLUSIONS

We have shown that the purity of Gaussian states for
continuous variable systems can be operationally deter-
mined by the joint measurement of two conjugate quadra-
tures. In order to perform such a measurement, the mini-
mal, necessary and sufficient requirement is that the mea-
surement apparatus records data distributed according
to the Husimi quasi–probability function. We have then
verified by Monte Carlo simulated experiments the statis-

tical reliability of the associated measurement schemes,
thus proving the possibility of an experimentally real-
izable characterization of the purity of Gaussian states.
We have compared as well the scheme based on the Q–
function with the one based on single–quadrature detec-
tion, and showed that the former provides a more reliable
statistics. Moreover, we have derived an evolution equa-
tion for the purity of Gaussian states in noisy channels,
both in the case of a thermal and of a squeezed thermal
bath. Our analysis shows that the purity is maximized at
any given time for an initial coherent state evolving in a
thermal bath, or for an initial squeezed state evolving in
a squeezed thermal bath whose squeezing is orthogonal
to that of the input state. We have focused our attention
on the purity of single–mode Gaussian states. The time–
evolution of the purity for specific initial non Gaussian
states of great physical relevance can be studied, as well
as the extension to Gaussian states of multimode sys-
tems, both pure and mixed. These topics are currently
being explored and will be the subject of forthcoming
work.
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