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Abstract
Background: The main problem in many model-building situations is to choose from a large set
of covariates those that should be included in the "best" model. A decision to keep a variable in the
model might be based on the clinical or statistical significance. There are several variable selection
algorithms in existence. Those methods are mechanical and as such carry some limitations. Hosmer
and Lemeshow describe a purposeful selection of covariates within which an analyst makes a
variable selection decision at each step of the modeling process.

Methods: In this paper we introduce an algorithm which automates that process. We conduct a
simulation study to compare the performance of this algorithm with three well documented
variable selection procedures in SAS PROC LOGISTIC: FORWARD, BACKWARD, and
STEPWISE.

Results: We show that the advantage of this approach is when the analyst is interested in risk
factor modeling and not just prediction. In addition to significant covariates, this variable selection
procedure has the capability of retaining important confounding variables, resulting potentially in a
slightly richer model. Application of the macro is further illustrated with the Hosmer and
Lemeshow Worchester Heart Attack Study (WHAS) data.

Conclusion: If an analyst is in need of an algorithm that will help guide the retention of significant
covariates as well as confounding ones they should consider this macro as an alternative tool.

Background
The criteria for inclusion of a variable in the model vary
between problems and disciplines. The common
approach to statistical model building is minimization of
variables until the most parsimonious model that
describes the data is found which also results in numerical
stability and generalizability of the results. Some method-
ologists suggest inclusion of all clinical and other relevant
variables in the model regardless of their significance in

order to control for confounding. This approach, how-
ever, can lead to numerically unstable estimates and large
standard errors. This paper is based on the purposeful
selection of variables in regression methods (with specific
focus on logistic regression in this paper) as proposed by
Hosmer and Lemeshow [1,2].

It is important to mention that with the rapid computing
and information evolution there has been a growth in the
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field of feature selection methods and algorithms. Some
examples include hill-climbing, greedy algorithms, recur-
sive feature elimination, univariate association filtering,
and backward/forward wrapping, to name a few. These
methods have been used in bioinformatics, clinical diag-
nostics, and some are universal to multiple applications.
Hill-climbing and greedy algorithms are mathematical
optimization techniques used in artificial intelligence,
which work well on certain problems, but they fail to pro-
duce optimal solutions for many others [3-6]. Filtering,
wrapping, and recursive feature elimination methods
have been used in areas like text processing or gene expres-
sion array analysis. While these are powerful selection
methods that have improved the performance of predic-
tors, they are often computationally intensive. They are
used on large data sets often with thousands of variables,
introducing the problem of dimensionality and like some
other multivariate methods have potential to overfit the
data [7].

Several variable selection methods are available in com-
mercial software packages. Commonly used methods,
which are the ones of focus in this paper, are forward
selection, backward elimination, and stepwise selection.

In forward selection, the score chi-square statistic is com-
puted for each effect not in the model and examines the
largest of these statistics. If it is significant at some entry
level, the corresponding effect is added to the model.
Once an effect is entered in the model, it is never removed
from the model. The process is repeated until none of the
remaining effects meet the specified level for entry.

In backward elimination, the results of the Wald test for
individual parameters are examined. The least significant
effect that does not meet the level for staying in the model
is removed. Once an effect is removed from the model, it
remains excluded. The process is repeated until no other
effect in the model meets the specified level for removal.

The stepwise selection is similar to the forward selection
except that effects already in the model do not necessarily
remain. Effects are entered into and removed from the
model in such a way that each forward selection step may
be followed by one or more backward elimination steps.
The stepwise selection process terminates if no further
effect can be added to the model or if the effect just
entered into the model is the only effect removed in the
subsequent backward elimination

The purposeful selection algorithm (PS) follows a slightly
different logic as proposed by Hosmer and Lemeshow
[1,2]. This variable selection method has not been studied
or compared in a systematic way to other statistical selec-

tion methods, with the exception of a few numerical
examples.

An important part of this study was the development and
validation of a SAS macro that automates the purposeful
selection process. Details on the macro and the link to
macro itself are provided in the appendix. Since the macro
was written in SAS, we compare its performance with SAS
PROC LOGISTIC variable selection procedures, namely
FORWARD (FS), BACKWARD (BS), and STEPWISE (SS)
[8].

The objectives of this paper are 1) to evaluate the purpose-
ful selection algorithm systematically in a simulation
study by comparing it to the above mentioned variable
selection procedures, and 2) to show the application of it
on the motivating data set.

Purposeful selection of covariates
The purposeful selection process begins by a univariate
analysis of each variable. Any variable having a significant
univariate test at some arbitrary level is selected as a can-
didate for the multivariate analysis. We base this on the
Wald test from logistic regression and p-value cut-off
point of 0.25. More traditional levels such as 0.05 can fail
in identifying variables known to be important [9,10]. In
the iterative process of variable selection, covariates are
removed from the model if they are non-significant and
not a confounder. Significance is evaluated at the 0.1
alpha level and confounding as a change in any remaining
parameter estimate greater than, say, 15% or 20% as com-
pared to the full model. A change in a parameter estimate
above the specified level indicates that the excluded varia-
ble was important in the sense of providing a needed
adjustment for one or more of the variables remaining in
the model. At the end of this iterative process of deleting,
refitting, and verifying, the model contains significant
covariates and confounders. At this point any variable not
selected for the original multivariate model is added back
one at a time, with significant covariates and confounders
retained earlier. This step can be helpful in identifying var-
iables that, by themselves, are not significantly related to
the outcome but make an important contribution in the
presence of other variables. Any that are significant at the
0.1 or 0.15 level are put in the model, and the model is
iteratively reduced as before but only for the variables that
were additionally added. At the end of this final step, the
analyst is left with the preliminary main effects model. For
more details on the purposeful selection process, refer to
Hosmer and Lemeshow [1,2].

Simulations
We conducted two simulation studies to evaluate the per-
formance of the purposeful selection algorithm. In the
first simulation we started with the assumption that we
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have 6 equally important covariates (X1, ..., X6 such that
Xj~U(-6, 6) for j = 1, ..., 6), three of which were significant
and three that were not. We set 0 = -0.6, 1 = 2 = 3 =
0.122, and 4 = 5 = 6 = 0. Therefore, the true logit we
sampled from was

logit = -0.6 + 0.122X1 + 0.122X2 + 0.122X3 + 0X4 + 0X5 + 
0X6.

We conducted 1000 simulation runs for each of the 6 con-
ditions in which we varied the sample size (n = 60, 120,
240, 360, 480, and 600). The summary measure of the
algorithm performance was the percent of times each var-
iable selection procedure retained only X1, X2, and X3 in
the final model. (For PS selection, confounding was set to
20% and non-candidate inclusion to 0.1, even though
confounding was not simulated in this portion of the
study.)

Table 1 shows the percent of times that the correct model
was obtained for four selection procedures under various
sample sizes. Correct retention increases with sample size,
and it is almost identical for PS, SS, and BS. FS selection
does not perform as well as the other three with the excep-
tion of lower sample size levels.

In the second simulation, we started with the same
assumption, that the 6 covariates were equally important,
two of which were significant, one that was a confounder,
and three that were not significant. We assumed that X1 =
Bernoulli (0.5), the confounder X2~U(-6, 3) if X1 = 1 and
X2~U(-3, 6) if X1 = 0, and X3 - X6~U(-6, 6). We created the
confounder X2 by making the distribution of that variable
dependent on X1. We set 0 = -0.6, 1 = 1.2, 2 = 0.1, 3 =
0.122, and 4 = 5 = 6 = 0. Therefore, the true logit we
sampled from was

logit = -0.6 + 1.2X1 + 0.1X2 + 0.122X3 + 0X4 + 0X5 + 0X6.

We conducted 1000 simulation runs for each of the 24
conditions in which we varied the sample size (n = 60,
120, 240, 360, 480, and 600), confounding (15% and
20%), and non-candidate inclusion (0.1 and 0.15). Simi-

larly, the summary measure of the algorithm performance
was the percent of times each variable selection procedure
retained only X1, X2, and X3 in the final model.

Table 2 shows the percent of times that the correct model
was obtained for four selection procedures under 24 sim-
ulated conditions.

Again, the proportion of correctly retained models
increases with sample size for all selection methods. At the
lower sample size levels no procedure performs very well.
FS does the best with the exceptions when the non-candi-
date inclusion is set to 0.15, where PS performs better.
With the larger samples like 480 and 600, PS, SS, and BS
converge toward a close proportion of correct model
retention while FS does notably worse. With confounding
present, PS retains a larger proportion of correct models
for all six sample sizes when confounding is set to either
15% or 20% and non-candidate inclusion to 0.15 as com-
pared to the other three methods. Under the other scenar-
ios, PS retains a slightly larger proportion of correct
models than the other variable selection procedures,
mainly for samples in the range 240–360.

In addition to the mentioned simulation conditions, we
tampered with the coefficient of the confounding variable
X2, by making it more significant at 0.13, and less signifi-
cant at 0.07. We show the results for both scenarios with
confounding set to 15% and non-candidate inclusion at
0.15.

When 2 = 0.13, Table 3 shows that PS, BS, and as sample
size gets larger, SS perform comparably, retaining a simi-
lar proportion of correct models. This is primarily due to
the fact that X2 becomes significant in a larger proportion
of simulations and is retained by those procedures
because of its significance and not confounding effect. FS
again mostly does worse than the three previously men-
tioned selection procedures.

When 2 = 0.07, Table 3 shows that PS performs better
across all sample sizes than other variable selection proce-
dures; however, the proportion of correctly retained mod-
els is lower for all procedures. This is a result of the fact
that X2 becomes non-significant in more simulations and
is not retained. Table 3 also shows how X2 is picked up by
PS due to its confounding effect which is still present.

Application
A subset of observations (N = 307) and variables from the
Worchester Heart Attack Study (WHAS) data set [1,11,12]
were used to compare the results of variable selections
between the purposeful selection method and each of the
three methods available in SAS PROC LOGISTIC as
described above. Variable inclusion and exclusion criteria

Table 1: Simulation results.

n Purposeful Stepwise Backward Forward

60 5.1 4.5 4.9 9
120 24.2 22.4 22.8 24.2
240 52.6 52.6 52.5 36
360 69.8 69.8 69.8 42.5
480 71.1 71.2 71.1 44.2
600 70.5 70.6 70.5 40.4

Retention of the correct model for purposeful, stepwise, backward, 
and forward selection methods, with no confounding present.
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for existing selection procedures in SAS PROC LOGISTIC
were set to comparable levels with the purposeful selec-
tion parameters. Specifically, the variable entry criterion
was set to 0.25 and the variable retention criterion to 0.1
to minimize the discrepancies as a result of non-compara-
ble parameters.

The main outcome of interest was vital status at the last
follow-up, dead (FSTAT = 1) versus alive (FSTAT = 0). The
eleven covariates listed in Table 4 were treated as equally
important. The macro calls used to invoke purposeful
selection of variables from the WHAS data set under dif-
ferent confounding and non-candidate inclusion settings
are given in the appendix.

Table 5 shows the results of variable retention from our
macro and PROC LOGISTIC selection procedures. The
univariate analysis identified 9 covariates initially as

Table 2: Simulation results

Confounding Non-candidate Inclusion n Purposeful Stepwise Backward Forward

20 0.1 60 5 3.6 6.3 9.1
120 17.3 15.6 18.2 18.8
240 39.7 39.6 40.1 30.3
360 55.2 54.4 54.4 36.6
480 64.3 64.3 64.3 37.5
600 65.8 65.7 65.7 41.3

20 0.15 60 9.2 4.6 6.4 8.1
120 18.7 14.8 17.2 18.5
240 43.1 37.1 38.2 30.5
360 56.5 53.7 53.9 37
480 63.6 62.6 62 43
600 70.3 69 68.7 41

15 0.1 60 6.6 4.1 6.1 9.6
120 17.8 15.6 18.6 19.2
240 39.7 36.6 37.6 29.8
360 53.3 52.2 52.6 38.3
480 62.4 62.1 62.1 40.1
600 68.5 67.9 68 40.2

15 0.15 60 9.7 4.4 6.7 9
120 21.9 16.8 21.3 19.6
240 46.6 40.2 41.4 32.3
360 57.7 52.5 52.5 35.3
480 64 63.1 63.1 39.3
600 70.4 69.6 69.6 41.4

Retention of the correct model for purposeful, stepwise, backward, and forward selection methods, under 24 simulated conditions that vary 
confounding, non-candidate inclusion, and sample size levels.

Table 3: Simulation results.

2 n Purposeful Stepwise Backward Forward

0.13 60 9.7 6.3 10.3 10.8
120 25.8 19.8 24.9 23
240 55.5 52 54.9 37.4
360 66.4 65.5 65.8 38.7
480 72.5 72.7 72.8 41.1
600 71.4 72.9 72.9 42.9

0.07 60 7.5 3.1 4.4 6.7
120 18.6 11.3 12.2 15.8
240 32.2 22.5 22.9 21.4
360 41.5 35.5 35.5 26.9
480 47.9 44.5 44.5 34.6
600 52 50.5 50.5 35.5

Retention of the correct model for purposeful, stepwise, backward, 
and forward selection methods, for two values of 2 while specifying 
confounding at 15% and non-candidate inclusion at 0.15.

Table 4: WHAS data set variables.

FSTAT Status as of last follow-up (0 = Alive, 1 = Dead)
AGE Age at hospital admission (Years)
SEX Gender (0 = Male, 1 = Female)
HR Initial heart rate (Beats per minute)
BMI Body mass index (kg/m2)
CVD History of cardiovascular disease (0 = No, 1 = Yes)
AFB Atrial fibrillation (0 = No, 1 = Yes)
SHO Cardiogenic shock (0 = No, 1 = Yes)
CHF Congestive heart complications (0 = No, 1 = Yes)
AV3 Complete heart block (0 = No, 1 = Yes)
MIORD MI order (0 = First, 1 = Recurrent)
MITYPE MI type (0 = non - Q-wave, 1 = Q-wave)
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potential candidates for the multivariate model at the
0.25 alpha level based on the Wald chi-square statistic.
Those included AGE, SEX, HR, BMI, CVD, AFB, SHO,
CHF, and MIORD. During the iterative multivariate fit-
ting, four of them (SEX, CVD, AFB, and CHF) were elimi-
nated one at a time because they were not significant in
the multivariate model at the alpha level of 0.1, and when
taken out, did not change any remaining parameter esti-
mates by more than 20%. The variable BMI was also not
significant at the 0.1 alpha level but changed the parame-
ter estimate for the MIORD covariate by more than 20%
when taken out; therefore, it remained in the model as a
confounder. The maximum p-value of the remaining var-
iables AGE, SHO, HR, and MIORD was less than 0.1, at
which point the variables originally set aside were recon-
sidered.

Out of the remaining two variables set aside initially
because they were not significant at the 0.25 level (AV3
and MITYPE), MITYPE made it back in the model when
tested (one at a time) with the five retained covariates
because it was significant at the 0.1 alpha level. The addi-
tion of MITYPE confounded the relationship between
MIORD and FSTAT, hence the change in the MIORD p-
value from 0.0324 to 0.1087.

All three selection procedures available in SAS PROC
LOGISTIC resulted in the same model (Table 5). While
the resulting model contains only significant covariates, it
did not retain the confounder BMI or the variable MIORD
which were retained by the purposeful selection method.
On the other hand, the variable AV3 was retained.

Changing the value of confounding to 15% and non-can-
didate inclusion to 0.15 resulted in the addition of the
variable AV3, which was a non-candidate originally but
made it in the model at the higher non-candidate inclu-
sion level since its significance was 0.1173. This particular
specification resulted in the exact variables that were
retained by available selection procedures in SAS PROC
LOGISTIC with the addition of one confounding variable

(BMI) and another potentially important covariate
(MIORD).

Discussion
The human modeling process still remains an effective
one. We can attempt to control for as many situations as
possible through automated computer algorithms, but
that is still not an adequate replacement for a skilled ana-
lyst making decisions at each step of the modeling proc-
ess.

The advantage of the purposeful selection method comes
when the analyst is interested in risk factor modeling and
not just mere prediction. The algorithm is written in such
a way that, in addition to significant covariates, it retains
important confounding variables, resulting in a possibly
slightly richer model.

The simulation study demonstrates that the purposeful
selection algorithm identifies and retains confounders
correctly at a larger rate than other selection procedures,
particularly in instances where the significance level of a
confounder is between 0.1 and 0.15, when the other algo-
rithms would not retain it.

We realize that many studies have samples much larger
than 600. We tested larger sample sizes, 1000 for instance,
and the simulation results suggest that all selection meth-
ods except FS converge toward the same proportion of
correctly retained models. As the sample gets larger, the
variability of even borderline significant confounders gets
smaller, and they get retained as significant variables,
hence diminishing the retention differences between the
selection methods. It is evident from the simulation
results that PS works well for the samples in the range of
240–600, a common number of participants in epidemi-
ologic and behavioral research studies.

Limitations
There are a few limitations to this algorithm. First, varia-
bles not selected initially for the multivariate model are

Table 5: WHAS data set variables retained in the final models for purposeful selection method under two different settings.

Purposeful Selection
(20%, 0.1)

p-value Purposeful Selection
(15%, 0.15)

p-value Forward, Backward, Stepwise p-value

AGE <0.0001 AGE <0.0001 AGE <0.0001
SHO 0.0018 SHO 0.0029 SHO 0.0039
HR 0.0025 HR 0.0019 HR 0.0011

MITYPE 0.091 MITYPE 0.0586 MITYPE 0.0149
MIORD 0.1087 AV3 0.0760 AV3 0.0672

BMI 0.2035 MIORD 0.1285
BMI 0.2107

SAS PROC LOGISTIC forward, backward, and stepwise selection methods.
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tested later on with the selected set of covariates one at a
time. This is a possible limitation because any of these var-
iables that would be significant when put in the model
jointly will be missed. However, being significant jointly
may indicate multicollinearity, in which case the analyst
may choose to use only one of those as a proxy or not at
all. Also if there is some multicollinearity between signif-
icant variables they would likely be retained by all selec-
tion procedures as a result of their significant effect.
Second, if two non-significant covariates confound each
other, they are going to be retained as confounders since
all covariates are assumed to be equally important. In a
situation where that happens, the analyst should probably
consider retaining the two covariates if they are significant
at the 0.25 level, indicating some reasonable association
with the outcome. Otherwise, the analyst should probably
exclude both from the model as meaningless confound-
ers. Additionally, if there is some multicollinearity
between non-significant variables, they would likely be
retained by PS as a result of confounding effect on each
other, and missed by other three selection procedures as a
result of their non-significant effect. Third, this algorithm
was not designed to force all dummy variables in the
model (for instance, one that has three nominal levels
which corresponds to two dummy variables that need to
be considered as a unit in model inclusion), if one is sig-
nificant. Other selection procedures have this limitation
as well, unless you force dummy variables in the model.
However, it is not possible to know a priori whether one
of the dummy variables will be significant. If one of the
dummy variables is retained as significant, the analyst can
manually insert the rest of them in the model. Finally,
multi-class problems were not explored in this paper;
therefore, the results do not support the robustness of PS
over a range of model selection applications and prob-
lems.

Conclusion
If an analyst is in need of an algorithm that will help guide
the retention of significant covariates as well as confound-
ing ones, this macro will provide that. In order to improve
the chances of retaining meaningful confounders, we rec-
ommend setting the confounding level to 15% and the
non-candidate inclusion level to 0.15. Analysts should use
this macro as a tool that helps with decisions about the
final model, not as a definite answer. One should always
carefully examine the model provided by this macro and
determine why the covariates were retained before pro-
ceeding.

Appendix
%PurposefulSelection SAS Macro Description
The main %PurposefulSelection (PS) macro consists of
three calls to sub-macros, %ScanVar, %UniFit, and
%MVFit. The %ScanVar sub-macro scans the submitted

covariates and prepares them for the univariate analysis.
The %UniFit sub-macro fits all univariate models and cre-
ates a data set with the candidate variables for the multi-
variate analysis. The %MVFit sub-macro iteratively fits
multivariate models while evaluating the significance and
confounding effect of each candidate variable as well as
those that were not originally selected. A flowchart of the
macro is presented in Figure 1.

The user must define several macro variables as shown in
Table 6. The macro variable DATASET corresponds to the
data set to be analyzed. Macro variable OUTCOME is the
main outcome of interest and should be a binary variable
(also known as the dependent variable). The macro uses
the DESCENDING option by default to model the proba-
bility of OUTCOME = 1. The macro variable COVARIATES
represents a set of predictor variables which can all be con-
tinuous, binary, or a mix of the two. In the case of a poly-
tomous covariate, dummy variables must be created
before invoking the macro and specified as separate varia-
bles. All covariates specified here are assumed to be of
equal importance. The macro variable PVALUEI defines
the alpha level for the univariate model at which a covari-
ate will be considered as a candidate for the multivariable
analysis. The macro variable PVALUER defines the reten-
tion criterion for the multivariate model at which a varia-
ble will remain in the model. The macro variable CHBETA
represents the percent change in a parameter estimate
(beta) above which a covariate that is removed from the
model as non-significant will be considered a confounder
and placed back in the model. Even though we recom-
mend inclusion and retention criteria to be set at 0.25 and
0.1, respectively, and confounding at 15% change, these
parameters can be directly controlled by the analyst, since
they are coded as macro variables. Finally, the macro var-
iable PVALUENC defines the inclusion criterion for any
non-candidate variables, allowing them to make it back
into the model. We recommend this value be set at 0.15
for reasons discussed in the simulation study and applica-
tion sections. [See additional file 1: Purposeful Selection
Macro v Beta1_1.txt]

%PurposefulSelection SAS Macro Code
Link to SAS macro code: http://www.uams.edu/biostat/
bursac/PSMacro.htm

Two macro calls used to analyze WHAS data set described
in the application section:

%PurposefulSelection (whas, fstat, age sex hr bmi cvd afb
sho chf av3 miord mitype, 0.25, 0.1, 20, 0.1);

%PurposefulSelection (whas, fstat, age sex hr bmi cvd afb
sho chf av3 miord mitype, 0.25, 0.1, 15, 0.15);
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%PurposefulSelection macro flow chartFigure 1
%PurposefulSelection macro flow chart.
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Table 6: %PurposefulSelection macro variables.

DATASET Input data set
OUTCOME Main outcome (Y)
COVARIATES All covariates (X1...Xj)
PVALUEI Inclusion criteria for multivariate model
PVALUER Retention criteria for multivariate model
CHBETA % change in parameter estimate indicating confounding
PVALUENC Inclusion criteria for non-candidate
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