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Pursuit-evasion Game for Nonholonomic Mobile Robots With Obstacle

Avoidance using NMPC

Mukhtar Sani, Bogdan Robu, Ahmad Hably

Abstract— In this work, non-cooperative competitive games
between two unmanned ground robots using Nonlinear Model
Predictive Control (NMPC) while incorporating obstacle avoid-
ance techniques are studied. The objective of the first player
(pursuer) is to minimize the relative distance and orientation
between itself and the second player (evader) while avoiding
obstacles, whereas the evader does the opposite. The Pursuit-
Evasion Game (PEG) being a typical class of a differential
game is formulated as a zero-sum game with two homogeneous
players in five different game scenarios. The objective function
of each player is formulated as a double optimization problem
and is solved separately using NMPC techniques. The optimal
trajectory of each player is computed iteratively by consid-
ering the best response of the opponent player. The level of
information is assumed to be symmetric. Simulations of various
scenarios show the winning possibility of each player.

I. INTRODUCTION

Nowadays, game-theoretic paradigm has been getting a fas-

cinating attention in the field of robotics and control despite its

high computational complexities. This is due to its possibility

to interpret a control law as a sort of intelligent rational

decision maker that was designed to produce a desired effect

[1]. Pursuit-evasion is an interesting class of differential games

which is a typical non-cooperative game problem. It includes

a number of mobile pursuers and evaders in a conflicting

scenarios. Example of such problem involve a pursuer trying

to catch the evader while the evader is trying to dodge in a

real environment; this can be achieved by independently min-

imizing and maximizing the relative distance and orientation

between them.

The application of the this setting was argued in [2] to be

numerous. In surveillance and security, for tracking malicious

evader that is trying to escape, the security robot must ensure

that the evader didn’t escape by maintaining visibility. Also, in

home care setting, a tracking robot can follow an elderly per-

son and alert caregivers in case of emergencies. It can also be

useful in wildlife monitoring, where unmanned surface vehicle

(USV) is required to navigate in a cluttered environment while

tracking marine species.

Several approaches for solving differential games and in

particular pursuit-evasion games have been presented in the

past while earliest approaches are optimal control based tech-

niques. In [3] variational techniques was used to solve differ-

ential games, conditions for capture and optimality are derived

for a class of pursuit-evasion problem. Reachability-based

approached are presented in [4] using Hamilton-Jacobi-Isaac’s

formulation to compute the reachable set of a continuous

1 The auathors are with the Univ. Grenoble Alpes, CNRS, Greno-
ble INP*, GIPSA-lab, 38000 Grenoble, France. {mukhtar.sani,
bogdan.robu, ahmad.hably}@grenoble.fr

dynamic differential game. However, [5] argued that solutions

of HJI equations are not readily available from the practical

point of view especially for the problems with multiple agents

and non-trivial dynamics, thus proposed conditions for the

game to be terminated in terms of reachable sets inclusion.

Numerical solutions to differential games by a sequence of

finite state Markov games has been presented in [6] where

players are assumed to be moving at constant speed. In [7],

Improved Potential field method has been used for solving

pursuit-evasion problem. A novel incremental sampling-based

algorithm to compute the open-loop solutions for the evader

assuming worst case scenario for the pursuer is presented in

[8]. In [9] non-cooperative multi-agent planning problem was

formulated as a stochastic game for a situation where there is

an uncertainty from the sensor and actuator noise. Recently,

a more intelligent approach was proposed in [10] where a

tool from social psychology known as Social Value Orienta-

tion (SVO) was integrated into autonomous vehicle decision

making. This was aimed to quantify the degree of agent’s

selfishness or altruism, thus allow for a better prediction of

the agent’s interaction and cooperation with others.

Pursuit-evasion often involves cooperation among agents.

For example, a group of pursuers trying to capture a sin-

gle evader as in [11] or the opposite case where a single

pursuer against many evaders as in [12]. In other scenario

where cooperation is involved in the pursuit-evasion game

is Target, Defender and Attacker called (TAD) game. Two

pursuit-evasion problems are coupled: Attacker-Target and

Defender-Attacker as in [13]. The Attacker chases the Target

whilst avoiding being captured by the defender and in parallel

the Target cooperates with the Defender in order to dodge

from the Attacker while helping the Defender to capture the

Attacker. A practical application the TAD game is in active

defense as proposed in [14] where an Attacker missile pursues

a Target aircraft protected by a Defender missile which aims

at intercepting the Attacker before the latter reaches the Target

aircraft.

In most of the above situations Nash equilibrium of the

game is computed using optimal control approaches, however,

a much better technique is the so called ”best response”

where the Nash equilibrium is attained when all the agents

are best responding. In [15] several information patterns are

reviewed and then Best response is used to compute the Nash

equilibrium for two quadrotor drone racing. The work was

improved in [16] where sensitivity enhanced iterated best re-

sponse algorithms was used to solve for the approximate Nash

equilibrium in the space of feasible trajectories and applied to

a car-like vehicle. In [17], the concept of iterated best response



Fig. 1. Schematic diagram of mobile robot

and model predictive control was combined to solve for an

agile interaction between two ground vehicles modeled in a

semi-stochastic formulation.

Nonlinear Model Predictive Control approach has been

applied to two aerial systems in [18]. Each aircraft computes

its optimal strategy by firstly predicting the opponent’s optimal

trajectory assuming each have information about the dynamics

and the current state of the itself and the opponent. The game

can be switched due to its symmetrical nature, i.e the pursuer

can become the evader and the vice-versa. Similar approach

of using nonlinear Model predictive control (NMPC) have

been presented in [19] for two heterogeneous systems. The

unmanned ground vehicle (UGV) and the unmanned aerial

vehicle (UAV). Two independent Model predictive controllers

are designed using the dynamic model of UAV and the UGV.

The PEG appear to be constant-sum instead of zero-sum game

due to its heterogeneous nature. Nevertheless neither one of the

two papers, [18] and [19], include obstacle avoidance which is

a crucial aspect when dealing with the control of robots in a

realistic environment.

In this paper, we intend to use NMPC techniques to compute

optimal trajectories for two homogeneous autonomous ground

vehicles in an cluttered environment and to analyse the various

game scenarios in order to determine the win possibility for

both players assuming equal level of information. The rest of

the paper is organized as follows. In section II , we present the

models of the non-holonomic robots, the obstacle avoidance

techniques and formulation of the pursuit-evasion problem as

a Nash equilibrium search. In section III, design of the game

theoretic controllers is presented while the game scenarios and

the results are presented in section IV. Finally conclusion and

suggestions of future work are presented in section V.

II. PROBLEM STATEMENT

A. Non-holonomic Mobile Robots

A robot is said to be holonomic if all its dynamics con-

straints are integrable into positional constraints. Another class

of robots are called non-holonomic robots whose dynamic

constraints are non-integrable. Such systems are also referred

to as differential drive robots. This type of robots can be de-

scribed as a cart having two controlled wheels with a control-

free wheel at its front or as a tricycle with three controlled

wheels. It can also be represented with a four-wheels configu-

ration. The kinematic model of cart robots is given as [20]:










ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(1)

Where the state vector denoted as X = (x, y, θ) represents the

Cartesian (x, y) position of the robot in the earth frame of ref-

erence and the orientation angle θ, while v, ω are respectively

the linear and the angular speeds of the robot measured in m/s

and rad/s, contained in the input vector U = (v, ω). Moreover,

the control inputs v and ω are related to the angular speeds of

the left (ωl) and right (ωr) wheels of the robot by the following

equation:
{

ωr = (2v + ωRrob)/2r

ωl = (2v − ωRrob)/2r
(2)

where Rrob is the length of the robot’s base from the center

and r is the radius of the robot’s wheels.

The discrete version (Euler) of the kinematic model in eq.

(1) is used for designing the discrete NMPC for both robots.











xk+1 = xk + Ts(v
k cos θk)

yk+1 = yk + Ts(v
k sin θk)

θk+1 = θk + Ts(ω
k)

(3)

For the purpose of notation, lets represent the discrete kine-

matic equations of the two robots as follows, where the symbol

”p” denotes pursuer and the symbol ”e” denotes evader, Ts is

the sampling time.
{

Xk+1
p = fp(X

k
p , U

k
p , T s)

Xk+1
e = fe(X

k
e , U

k
e , T s)

(4)

Where the state variables Xk
p = [xk

p, y
k
p , θ

k
p ]

T and Xk
e =

[xk
e , y

k
e , θ

k
e ]

T are measured using sensors at every decision

instant.

B. Obstacle avoidance

One of the key issues associated to autonomous navigation

of mobile robots is obstacle avoidance [21]. Mobile robots

operating in a dynamic environment had to be enhanced with

obstacle avoidance techniques for the safety of the objects

around and that of the robot.

Literally, obstacle avoidance can be achieved via two stages,

obstacle detection and collision avoidance. Some of the widely

accepted obstacle avoidance techniques are:

• Bug Algorithms: These are basically the simplest algo-

rithms [21]. The robot moves on the shortest path from

its current position towards the goal until it come across

an obstacle. The algorithm forces the robot to move

tangentially around the obstacle’s surface until it returns

to its original path. The primitive bug algorithms makes

the robot to circumnavigate the whole obstacle before

returning to its original path.

• Artificial Potential Field (APF) Methods: In APF meth-

ods, the robot, obstacle and the goal are considered as

electric charges such that the robot and the obstacle have

the same polarity so that repulsive force is created while



the goal is assumed to have opposite polarity with the

robot so that attractive force will be created [22].

• Bubble Band Technique: In these methods as firstly pro-

posed in [23], the robot is surrounded by a ”bubble”

containing the maximum available free space which the

robot can pass in any direction without collision.

• Vector Field Histogram: This method was firstly pro-

posed in [24] in order to deal with the issue of sensor

noise through constructing a polar histogram using the

most recent readings of the sensor. In the histogram, a

probability of obstacle’s presence in a particular direction

is plotted against the angle associated with the sonar

sensor readings. A local occupancy grid map of the envi-

ronment around the robot is created in order to compute

the probabilities.

The polar histograms is used to determine all the passages

large enough to avoid collision with the obstacle. The

passage to be followed by the robot is selected by evalu-

ating the cost function defined for each passage which is

a function of the alignment of robot’s path with the goal

and the difference between the current wheel orientation

and the new direction. The passage having minimum cost

function is selected.

In this work, the bug type algorithm is selected due to its

simplicity and the intention to avoid increasing the computa-

tional cost of the NMPC. We consider M obstacles which are

assumed to be spherical in shape with radius Robs and each

being positioned in a point described by it’s Cartesian coor-

dinates (xobs,yobs). Detection of the obstacles can be achieved

by measuring Robs, xobs and yobs using sensors. Collision with

the obstacles is avoided by including the following function as

an inequality constraint in the NMPC formulation.
√

(xrob − xobs)2 + (yrob − yobs)2 ≥ (Robs +Rrob + ds)
(5)

where xrob and yrob are the position of the robot (pursuer or

evader) in x-y plane, ds is a safe distance between the robot

and an obstacle. In this work, three spherical obstacles each of

2m in diameter are placed on strategic positions. Each Robot

have a diameter of 0.4m while the safe distance selected is

0.2m.

C. Game Theoretic Formulation

In game theory, systems are modelled as intelligent rational

decision makers where an agent considers the opponent’s

move before deciding own strategy. The agent predict the

opponent’s best response which is the worst case from the

agent’s point of view and then computes its optimal strategy

according to that. If each agent plays its best response, Nash

equilibrium is attained in which no player has incentive to

deviate.

In our pursuit-evasion problem, the two agents have exactly

the opposite intention. This depicts the zero-sum property in

which an increase in utility/cost for one player results in a de-

crease in utility/cost for the other player by the same amount.

The sum of the two objective function can be expressed as:

Jp(Up, Ue) + Je(Up, Ue) = 0 ∀Up ∈ Up, Ue ∈ Ue (6)

where [Jp, Je], [Up,Ue] and [Up, Ue] are the cost function, the

control strategy and the admissible control strategies for the

pursuer and evader respectively. Given this special structure,

zero-sum games are usually expressed in terms of a single

objective function J , thus

J (Up, Ue) = Jp(Up, Ue) = −Je(Up, Ue) (7)

Therefore the objective function of the pursuer and the evader

can be defined in terms of the single objective function using

double optimization as:
{

J = maxUe
minUp

J (Up, Ue)

J = minUp
maxUe

J (Up, Ue)
(8)

The strategy pair [U∗

p ,U∗

e ] is a Nash equilibrium if:

J (U∗

p , U
′

e) ≤ J (U∗

p , U
∗

e ) ≤ J (U
′

p, U
∗

e )

which indicates that U∗

p is the best response for the U∗

e and

vice versa, thus J = J .

The value of the game corresponds to the saddle points of the

game is given by:

V G = J (U∗

p , U
∗

e )

III. CONTROL DESIGN

Nonlinear Model Predictive Control (NMPC) technique was

employed to compute the control inputs for both robots. The

main motivations for using NMPC in our case are threefold: 1)

Being an online optimization technique so that new controls

can be computed at each decision instant. 2) Ability to handle

Nonlinear dynamics of mobile robots. 3) Ability to handle

MIMO systems such as the mobile robots.

In NMPC, a controller is obtained by minimizing a cost

function subject to constraints which incorporate the nonlinear

dynamic model of the system. The controller output is a

sequence of open loop controls predicted ahead over a finite

horizon window called prediction horizon, N . Only first part

of the controller is applied to close the loop at the particular

decision instant Ts and the rest of the solution is ignored. At

every decision instant, the prediction horizon is shifted one

step and the process is repeated to obtain the new optimal

control sequence.

In the context of game theory, each player must firstly

compute the worst case strategy of the opponent, then compute

its own strategy based on it; which means that our problem has

double stage optimization. Literally, the pursuer would first

use the evader’s dynamics and compute the maximum strategy

(which is the pursuer’s worst case), then compute its minimum

strategy as a function of the latter. The evader does exactly

the opposite by firstly computing the minimum strategy of the

pursuer and then computes its maximum.

A. Controller Design for the Pursuer

The pursuer’s controller is obtained by solving its Min-max

problem. This was achieved by firstly estimating the evader’s

best move U∗

e :

max
Ue

J =
N
∑

k=1

(Xk
e −Xk

p )
TQe(X

k
e −Xk

p )+(Uk
e )

TReU
k
e (9)



subject to:







































Xk+1
e = fe(X

k
e , U

k
e ), k = 0, 1, . . . , N − 1

f(Xe, Xobs(i)) ≥ (Robs +Rrob + ds), i = 1, . . . ,M

Xemin
≤ Xe ≤ Xemax

Uemin
≤ Ue ≤ Uemax

Xp(0) = Xp0

Xe(0) = Xe0

(10)

Then compute U∗

p based on the value of U∗

e by solving.

min
Up

J =
N
∑

k=1

[Xk
p−Xk

e (U
∗

e )]
TQp[X

k
p−Xk

e (U
∗

e )]+(Uk
p )

TRpU
k
p

(11)

subject to:







































Xk+1
p = fp(X

k
p , U

k
p ), k = 0, 1, ..N − 1

f(Xp, Xobs(i)) ≥ (Robs +Rrob + ds), i = 1, . . . ,M

Xpmin
≤ Xp ≤ Xpmax

Upmin
≤ Up ≤ Upmax

Xp(0) = Xp0

Xe(0) = Xe0

(12)

Where N is the level of thinking (technically called prediction

horizon), M is the total number of obstacles in the game

scenario, (Xe, Ue) and (Xp, Up) denote the dynamical states

and inputs of the evader and pursuer respectively, Xp0
and

Xe0 are initial conditions, Xobs represent the x-y positions

of the obstacles. The weighting matrices Q and R are chosen

by the designer in order to achieve the satisfactory controller

performance.

B. Controller Design for the Evader

Similarly, the evader’s controller is obtained by solving its

max-min problem which was is done by firstly computing U∗

p

through solving:

min
Up

J =
N
∑

k=1

(Xk
e −Xk

p )
TQp(X

k
e −Xk

p ) + (Uk
p )

TRp(U
k
p )

(13)

subject to:







































Xk+1
p = fp(X

k
p , U

k
p ), k = 0, 1, ..N − 1

f(Xp, Xobs(i)) ≥ (Robs +Rrob + ds), i = 1, . . . ,M

Xpmin
≤ Xp ≤ Xpmax

Upmin
≤ Up ≤ Upmax

Xp(0) = Xp0

Xe(0) = Xe0

(14)

Then compute U∗

e based on the value of U∗

p by solving.

max
Ue

J =
N
∑

k=1

[Xk
e−Xk

p (U
∗

p )]
TQe[X

k
e−Xk

p (U
∗

p )]+(Uk
e )

TRe(U
k
e )

(15)

subject to:






































Xk+1
e = fe(X

k
e , U

k
e ), k = 0, 1, ..N − 1

f(Xe, Xobs(i)) ≥ (Robs +Rrob + ds), i = 1, . . . ,M

Xemin
≤ Xe ≤ Xemax

Uemin
≤ Ue ≤ Uemax

Xp(0) = Xp0

Xe(0) = Xe0

(16)

The Qp and Qe are identity matrices of order 3, the Rp and

Re are identity matrices of order 2, the prediction horizon is 5

while the sampling time Ts is 0.1sec.

N.B: The reference trajectory in eq. (13) and (15) are com-

puted using the opponent’s dynamics as a function of the

computed optimal control values.

IV. SIMULATION

A. Game Setup

The proposed controllers are implemented in MAT-

LAB/SIMULINK coded using CasADi [26] interfaced with

IPOPT solver. All simulations were done on a HP laptop with

Intel Core i7 vPro 2.60GHz processor, 16G RAM and running

64-b windows 7 operating system in order to achieve fast

computation. The Game was set up in five scenarios based on

the input constraints. The state constraints are chosen to be a

square shaped space for an indoor experiment defined by the

opposed corner coordinates [xmin, ymin] as [−5m,−5m] and

[ymax, xmax] as [5m, 5m]. The initial conditions are randomly

selected but with the pursuer always behind the evader. Below,

we propose five different simulation scenarios in order to test

the extreme cases:

Scenario 1: Both the pursuer and the evader have the same

speed and agility. The linear and angular speeds limits for both

robots are −2ms−1 ≤ v ≤ 2ms−1 and −2rads−1 ≤ ω ≤

2rads−1 respectively.

Scenario 2: Both the pursuer and the evader have the same

speed but the pursuer is more agile. The linear speed limits

of both robots is −2ms−1 ≤ v ≤ 2ms−1 while the angular

speed limits for the pursuer and evader are −2rads−1 ≤ ω ≤

2rads−1 and −1rads−1 ≤ ω ≤ 1rads−1 respectively.

Scenario 3: Both the pursuer and the evader have the same

speed but the evader is more agile .The linear speed limits of

both robots is −2ms−1 ≤ v ≤ 2ms−1 while the angular

speed limits for the pursuer and evader are −1rads−1 ≤ ω ≤

1rads−1 and −2rads−1 ≤ ω ≤ 2rads−1 respectively.

Scenario 4: Both the pursuer and the evader have the same

agility but the pursuer is faster. The angular speed limits of

both robots is −2rads−1 ≤ ω ≤ 2rads−1 while the linear

speed limits for the pursuer and evader are −2ms−1 ≤ v ≤

2ms−1 and −1ms−1 ≤ v ≤ 1ms−1 respectively.

Scenario 5: Both the pursuer and the evader have the same

agility but the evader is faster. The angular speed limits of both

robots is −2rads−1 ≤ ω ≤ 2rads−1 while the linear speed

limits for the pursuer and evader are −1ms−1 ≤ v ≤ 1ms−1

and −2ms−1 ≤ v ≤ 2ms−1 respectively.

In each scenario, the relative distance and orientation

between the two systems, R.D is computed at each sampling



instant.

R.D =
√

(xp − xe)2 + (yp − ye)2 + (θp − θe)2 (17)

A threshold distance of 0.2m is selected to stop the simulation.

The game time in seconds is obtained to indicate how long it

takes the pursuer to catch the evader. Thus a pursuer is said

to win if the game time is very small while evader wins if the

game time is very long.
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Fig. 2. Simulation of scenario 1, the blue circles represents the obstacles
while the red and green lines represent the trajectory of the players.

B. Results

Several simulation experiments were conducted using sev-

eral random initial conditions. The results presented here, for

the purpose of consistency, are simulated with the same initial

conditions for all the scenarios. The pursuer’s initial conditions

are [xp, yp, θp]
T = [0, 4,−π/2]T while that of the evader are

[xe, ye, θe]
T = [0, 3,−π/2]T .

For Scenario 1, where both robots have the same speed and

agility, it takes the pursuer 14.8 seconds to catch the evader

as depicted in figure 2. Both robots avoided the obstacles

encountered and box constraints.

For scenario 2 and 3, the effect of agility is tested. The speed

of both robots is the same. In scenario 2, the pursuer is more

agile, thus catches the evader in just 5.4 seconds as in figure 3

while in scenario 3 the evader is more agile, thus it takes the

pursuer 17.3 seconds to catch it as in figure 4. The agility

differences has great effect in the game.

For scenario 4 and 5, the effect of speed is tested. The agility

of both players is the same. In scenario 4, the pursuer is faster,

it takes around 14 seconds to catch the evader as in figure 5
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Fig. 3. Simulation of Scenario 2, the blue circles represent the obstacles,the
red/green lines represent the trajectory of the players.
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Fig. 4. Simulation of Scenario 3,the blue circles represent the obstacles,the
red/green lines represent the trajectory of the players.
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Fig. 5. Simulation of Scenario 4, the blue circles represent the obstacles,the
red/green lines represent the trajectory of the players.

whereas in scenario 5 where the evader is faster, it takes 14.9

seconds to be captured by the pursuer. The speed has slight

effect in the game.

In table I, the agility and speed effects are compared with

the scenario 1. The percentage time gained are computed for

each robot. It’s observed that a more agile robot always has

advantage.

The computation time for both controllers is in range of 0.01

to 0.02 seconds.

Player More Agile Faster

Pursuer 63.5% 5.4 %

Evader 16.9 % 0.7%

TABLE I

COMPARISON OF THE ADVANTAGE OF AGILITY AND SPEED.

V. CONCLUSION

In this work, we used game theory to design two Nonlinear

Model Predictive Controllers for two homogeneous vehicles

having opposing objectives in the presence of obstacles. Five

scenarios have been examined, a robot that’s more agile has

better chance of winning the game in a cluttered environment

that a faster one. Realistic game situations have been utilised

and equal level of information has been assumed. Solution of

min-max and max-min leads to Nash equilibrium in which any

vehicle that deviate form it will eventually lose. Obstacles and

constraints on the playground has been seen to slightly affect

the winning. Thus in a tightly constraint environment, an agile

player is likely to win despite the fact that the opponent is
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Fig. 6. Simulation of Scenario 5, the blue circles represent the obstacles,the
red/green lines represent the trajectory of the players.

playing its Nash equilibrium.

The future work is to validate the simulation results using

physical robots. Another trend is to develop a game of in-

complete information, in which each robot has to estimate the

dynamics of its opponent.
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