
Push Planning for Object Placement on Cluttered Table Surfaces

Akansel Cosgun Tucker Hermans Victor Emeli Mike Stilman

Abstract— We present a novel planning algorithm for the
problem of placing objects on a cluttered surface such as a
table, counter or floor. The planner (1) selects a placement for
the target object and (2) constructs a sequence of manipulation
actions that create space for the object. When no continuous
space is large enough for direct placement, the planner leverages
means-end analysis and dynamic simulation to quickly find a
sequence of linear pushes that clears the necessary space. Our
heuristic for determining candidate placement poses for the
target object is used to guide the manipulation search. We show
successful results for our algorithm in dynamic simulation.

I. INTRODUCTION

Natural environments often contain cluttered surfaces.
Robots designed to operate in unstructured domains along-
side humans must not only manipulate specified objects but
also manipulate the environment itself. In this paper we
examine the problem of placing objects onto cluttered sur-
faces. We focus on designing a non-prehensile manipulation
strategy that applies linear pushes to objects that reside on
the surface to create space for a target object. We refer to
this problem as footprint clearing, where the footprint is the
two dimensional boundary of the object to be placed when
viewed from above. The term clutter represents any object
or group of objects present on the surface.

This paper has two contributions. First we propose a novel
planner that selects a sequence of pushing actions to clear
a space large enough to place the target object. Second, we
introduce a heuristic that guides search by finding candidate
placements that are likely to yield simpler manipulation
plans. Our research is complementary to perception of sur-
faces, objects [1–3] and control of robot arms both for object
placement and non-prehensile manipulation [4–10].

First, we examine the relevant literature in Section II,
including the perception of clutter, non-prehensile manip-
ulation, object placement, and related planning work on
obstacle clearing. Section III defines the problem domain
and Section IV describes our proposed algorithm in detail.
Section V discusses experimental results produced in simula-
tion with variations of domain complexity. Section VI places
our planner in the broader context of clutter manipulation.

II. RELATED WORK

Existing work on automated pushing [4–10] does not focus
on pushing objects as a prerequisite to object placement.
Research in perception has distinguished surfaces from ob-
jects residing on them [1–3] and recently [3] placed objects
on cluttered surfaces assuming suitably large free space. We
create free space by pushing and rearrangement planning.

Akansel Cosgun, Tucker Hermans, Victor Emeli, and Mike Stilman are
with the Center for Robotics and Intelligent Machines and The School of
Interactive Computing, Georgia Institute of Technology, Atlanta, GA.

(a)(a)

(b) (c)

Fig. 1: Example tabletop push planning scenario.

A. Tabletop Object Pushing

Mason and Lynch developed the dynamics and control of
pushing [4, 11]. Since then, pushing of tabletop objects has
been performed with a variety of goals. Tabletop pushing
has been used for segmentation in [5–7, 12]. Omrc̆en learns
a pushing rule for flat objects that aligns them slightly
off the table edge and facilitates grasping [9]. Dogar [10]
proposes “push-grasping” in cluttered tabletop environments
where the set of possible grasps is constrained. This approach
pushes an object so that it rolls into the hand of the robot
leading to successful grasps that avoid collisions with the
clutter. Berenson [13] also studies grasp planning in cluttered
environments with a focus on collision avoidance. To our
knowledge, no work has considered pushing strategies that
allow collision in order to create free space. As illustrated in
Fig.1, our research is complementary to existing studies and
would allow simpler strategies for grasping and placement.

B. Planning for Obstacle Clearing

Our approach to footprint clearing is related to two planning
domains: Rearrangement Planning [14, 15] and Navigation
Among Movable Objects (NAMO) [16–19]. However, the
problem is not readily solved by existing methods due to the
under-specified goal configuration, obstacle collisions and
dynamic non-prehensile manipulation.

[20] showed the problem of pushing objects for rearrange-
ment to be PSPACE-hard and gave an O(n3) algorithm to
solve it for one movable object in an environment with n



corners. Alami [21] broadened this domain to find sequences
of manipulation actions for rearrangement of a single object.
In contrast to early developments, our work focuses on
domains that require the manipulation of multiple objects.

Ben-Shahar [14] approached rearrangement planning of
multiple objects by planning independent motions of objects
from start to goal configurations and sequencing these plans
through a ”permutation net.” Ota [15, 22] has expanded this
approach to the use of LRTA* to generate motion plans
and heuristics for intermediate configurations. Both existing
planners in this domain have focused on robots that interact
with one object at a time. We allow objects to collide and
plan through physics-based simulation.

Alternative approaches to handing movable obstacles are
evaluated in the domain of NAMO [16]. Given a single
navigation or manipulation task, the robot plans to make free
space by manipulating unspecified objects in its environment.
Table-clearing is even less constrained than NAMO [17, 19]
in that the final configurations of all the objects are unspec-
ified. Similar to rearrangement planners, NAMO planners
have also focused on sequential single-object interactions.
Despite significant differences, some of the concepts in this
work are closely related to [18] which applies means-end
analysis in order to efficiently compute plans for displac-
ing objets with multiple interactions. We present a similar
process of reverse search in our novel domain.

III. PROBLEM DESCRIPTION

Consider a rectangular surface such as a tabletop, T , defined
by opposite bounding corners ((xmin, ymin), (xmax, ymax)),
and a set of object shapes O = {o1, o2, . . . , on}. The first
n−1 shapes describe the objects residing on the tabletop and
on defines the shape of the target object to be placed. Let q =
(P1, P2, . . . , Pn) define the poses of all the objects, where
Pj = {(x, y) : x ∈ R, y ∈ R, (x, y) ∈ oj} is the set of all
points occupied by object shape oj . A linear pushing action
is defined as ui = (oi, φj , dj), where the push is applied to
object oi in the direction φj with a constant velocity ε > 0
for a distance dj > 0. The dynamic interactions between
objects is governed by a function f , where q̇ = f(O, q, u).

Apart from their shape, position and orientation, all objects
include a boolean value indirectly pushable, which defines
whether the object can be pushed indirectly by other objects
or only directly by the robot. This distinction could be
desirable for certain objects (i.e. tall, fragile objects) which
may need extra care when being pushed.

Placing the object onto a crowded tabletop requires
an agent to find a sequence of pushing actions U =
(u1, u2, . . . , ut) that will result in a state qend, where three
conditions are satisfied:

1) No objects intersect:
⋃

Pi,Pj∈qend,i6=j(Pi ∩ Pj) = ∅
2) Objects are within table borders: xmin < x < xmax,

ymin < y < ymax ∀ (x, y) in P ∈ qend.
3) Objects are stationary: q̇ = 0.

Note that an exhaustive search of the space is not com-
putationally feasible. If we restrict the problem domain to
allow only one push per object U = (u0, u1, . . . , um), then

oi 6= oj for every pair (ui, uj) = ((oi, φi, di), (oj , φj , dj))
in U . Given a set of n objects and g pushing angles, the
branching factor would be ng and total nodes in the tree
would be (ng)n. For n = g = 10, an exhaustive search tree
produces 1020 nodes, a space too large for standard hardware.

Tractable solutions thus require a restriction on the actions,
thereby reducing the problem complexity. The preceding
analysis restricts the action space to one push per object and
a maximum of n pushes in any final plan. Instead, we allow k
pushes per object, where k is the number of objects initially
overlapping the goal footprint. The maximum number pushes
is kn. By combining a larger action space with informed
heuristics, we simplify the solution.

In order to achieve generality and efficiency, we decom-
pose the task of placing an object in a crowded environment
into two stages: The first stage determines the goal placement
configuration Pn for the target object on. The second stage
finds the set of push motions U , that satisfy the three require-
ments listed above. Increased plan complexity is gradually
allowed by the algorithm after iterating Stages 1 and 2 for
simpler plans with shorter plan length.

IV. PROPOSED ALGORITHM

A. Goal Configuration Calculation
For a given tabletop configuration, infinite goal configu-
rations satisfy the high level task requirement of placing
object on somewhere on T . Our heuristic determines an
object placement pose P̂n that has minimum overlap with
the current objects. Given an overhead segmentation of object
and surface, we produce a binary image where object pixels
have value 0 and surface 1. For M discrete orientations we
produce a rectangular binary mask of the footprint of the
object to be placed. This kernel has value 1 for object pixels
and 0 for the surrounding pixels. When convolved with the
binary image, this kernel produces a score at each pixel
resulting in a grayscale image as shown in Figure 2b.

As a post-processing step for each orientation we exam-
ine only the object pose where the entire object footprint
is contained within the boundaries of the table. We then
determine the location of locally-maximal points within this
interior. Regions of points with scores above 10% of the
global maximum value are kept as modes in the distribution.
Figures 2(c) and (d) show examples of these modes for
two different orientations of the same object. The red points
correspond to candidate locations.

Note that this heuristic produces a discrete representation
of the configuration space of target object on. Each pose P i

n

in configuration space has a score Si between 0 and the area
of on. In the case where a solution that requires no pushes
exists, the maximally scored pose P ∗n represents this solution
and no further planning is required. In the common case
where no such solution is found, subsequent configurations
are produced by probabilistically sampling from the list
proportional to the pose score. Pose P i

n is sampled with

probability p(P i
n) =

Si∑
Sj

. Given a pose sample, we present

a solution for push planning that clears the object footprint
in Sections IV-B and IV-C.



(a) (b) (c) (d)

Fig. 2: (a) Current environment. (b) Footprint kernel and result of convolution with the environment. (c) The same convolution result
with modes highlighted in red. (d) Footprint kernel, convolution results, and highlighted modes for another orientation of the same object.

B. Footprint Clearing Planner

Given a candidate goal pose P̂n we introduce a planning
algorithm that clear the footprint defined by (P̂n, on). First,
we explain the algorithm for the case where only one object
o1 overlaps with the placement footprint on. Next, we extend
this approach to multiple overlapping objects in Section IV-
C. The planner uses Breadth First Search (BFS) to search
over the possible pushing actions Uo1 = {ui = (o1, φi, di)}.
It determines the pushing distance di, via the following
push termination conditions: (1) Any object collides with
the table border or makes contact with ok ∈ O deemed not
object pushable. (2) o1 ∩ on = ∅.

Instead of a brute force search over all possible pushes,
our algorithm begins by considering just the set of pushing
actions Uo1 on overlapping object o1. Following each push
of object o1, we detect any object oj that blocks the motion
of o1. After exhausting all single pushes of o1, the planner
resets to the initial configuration qinit and searches over the
pushing actions Uoj of each blocking object oj . Every push
ui terminates following rule (1) defined above. Given the
resulting configuration from each push of oj the planner
backtracks to o1 and searches over the pushes Uo1 , testing
if any clears o1 from the placement footprint. This approach
guides the search by means-end analysis. The planner at-
tempts to remove the obstructing object oj from the path
of object o1. Since objects may constrain the movement of
object oj the planner recursively follows this procedure until
it clears the footprint or reaches a maximum depth LMAX .
Pseudocode for the planner is given in Algorithm 1.

To clarify the algorithm, consider a simple example.
Figure 3a illustrates an initial tabletop configuration and
the accompanying search tree generated by the planner. The
yellow rectangle o5 represents the object placement footprint.
The object cannot be placed since o4 overlaps the placement
footprint. At the first stage of the algorithm, the planner
attempts all possible actions Uo4 on o4 checking if any single
push clears object o4 from region o5. The results of one such
pushing action is shown in Figure 3b. Since a collision occurs
between o4 and o6, the planner resets the environment to the
initial configuration and the search continues by attempting
push actions Uo6 on object o6. Figure 3c shows the results
of one such push from Uo6 . These pushes correspond to the
search over Level 2 in the search tree. Following this push,
the planner again searches over Uo4 checking if any push
clears o4 from the placement footprint.

Algorithm 1 pushPlanner(T, o1, qinit, Pn, Lmax)

1: Q.enqueue((qinit, o1, ∅))
2: loop
3: if Q.empty() then
4: return Failure
5: end if
6: (q, o, U)← Q.dequeue()
7: if U.size > Lmax then
8: return Failure
9: end if

10: for ui ∈ Uo do
11: loadConfiguration(q)
12: (qnew, oBLOCK)← executePush(ui)
13: Unew = U.append(ui)
14: if goalTest(T, Pn, Unew) then
15: return Unew

16: end if
17: Q.enqueue((qnew, oBLOCK , Unew))
18: end for
19: end loop
20: return ∅

Algorithm 2 goalTest(T, Pn, U)

1: startObjCnt = size(getOverlappingObjects(T, on))
2: while U.notEmpty() do
3: unext = U.pop()
4: executePush(unext)
5: curObjCnt = size(getOverlappingObjects(T, on))
6: if startObjCnt < curObjCnt then
7: return success
8: end if
9: end while

10: return failure

Since no push of o4 clears o5, we examine the collision of
o6 with o7 in Level 2. The planner begins its search at Level
3 attempting pushes Uo7 . Figure 3(d) shows one such push,
where o7 reaches the table edge. The planner backtracks
to the previous level and attempts pushes Uo6 . For each
push in Uo6 the planner backtracks again and attempts Uo4 .
Figure 3(d) shows the resulting plan clearing the footprint.

In the following section we extend this algorithm to
multiple objects overlapping the placement region. We also
explain how the placement heuristic creates shorter plans.



4 4 4
6

(b) Plan Level 1 (c) Plan Level 2 (d) Plan Level 3

4
6

(a) Initial State

5 5
67

5
6

7

5
67

Identifies O6 Identifies O7

H i i

5

4
67

5

4
6

4 44 4 … …

Heuristic
Search

Level 1

7

4
6

6 6 6 … 6 …Level 2

5

7
7 7

…
7

Solved
Level 3

Fig. 3: An illustrative example that demonstrates the push planning algorithm.

C. Iterative-Deepening Breadth-First Search

In the case of multiple overlapping objects, our planner
proceeds as follows. An overlapping footprint is selected by
rejection sampling from the probability distribution in Sec.
IV-A. Each object that overlaps the footprint is a sub-goal.
For each sub-goal, the planner applies the algorithm in Sec.
IV-B. If a goal test succeeds then the planner continues with
the next overlapping object starting from q′init, where the
sub-goal is satisfied. Algorithm 2 shows how the planner
attempts prior pushing actions to evaluate if a sub-goal
has been reached. A sub-goal succeeds if the number of
overlapping objects has decreased, regardless of which object
has been cleared. The test returns success even if the planner
is pushing o1 and clears another object from the footprint.

For any initial configuration there are likely to be many
solutions. Our planner prefers solutions with fewer pushes.
We extend our algorithm to use Iterative-Deepening Breadth-
First Search (IDBFS). We add an outer loop around Algo-
rithm 1 which iteratively increases the maximum allowed tree
depth from 0 to Lmax. IDBFS allows our BFS planner to run
on a number of different placement footprints in an attempt
to find shorter, optimized, plans which will require fewer
pushes. Algorithm 3 explains the full IDBFS Push Planner,
which takes into account multiple objects Oo overlapping the
placement footprint.

While the planner could exhaustively search over the
placement candidates, our algorithm samples a finite number
of candidate poses Cmax at each depth of the IDBFS. Two
factors motivate this sampling: efficiency and similarity of
candidates. Even with the thresholding described in Sec-
tion IV-A the heuristic can still propose tens of thousands
of candidate poses. However, neighboring poses are unlikely
to produce distinct planning results. Sampling allows the
planner to efficiently visit a diverse set of object placement
poses, favoring those with higher scores.

Note that this variety of possible goal configurations mo-
tivates IDBFS. Instead of forcing the planner to find a long

Algorithm 3 IDBFSPushPlanner(T, Lmax, CMAX , on)

1: for L = 0 to LMAX do
2: for C = 0 to CMAX do
3: P̂n ← getCandidateFootprint(T, on)
4: Oo ← getOverlappingObjects(T, on)
5: Û ← ∅
6: while Oo.notEmpty() do
7: o1 ← Oo.pop()
8: U ′ ← pushPlanner(T, qinit, on, P̂n, L)
9: if U ′ fails then

10: BREAK
11: end if
12: Û .push(U ′)
13: end while
14: if Û succeeds then
15: return Û
16: end if
17: end for
18: end for
19: return ∅

solution at a potentially difficult footprint goal configuration,
we choose to abandon the current placement candidate and
restart from a new, potentially easier, goal footprint. If a
number of candidate locations fail, then it is more likely to
reach the goal at a deeper level and the planner is allowed
to search deeper. Our approach is inspired by Iterative-
Deepening Depth-First Search (IDDFS) [23], which takes
advantage of the minimal solution length while maintaining
the memory efficiency of Depth-First Search.

Our approach is designed to be efficient and applicable
to practical domains. It is not complete. For instance, the
planner only considers linear pushes instead of general
trajectories. Furthermore, in the case of multiple objects
overlapping the goal footprint, the planner does not consider
all permutations in deciding which order to push the objects.
Instead, since some fraction of all overlapping objects occupy



the same continuous footprint area, they are likely to con-
tact each other when executing pushes. Therefore resolving
the collision conflicts produces results similar to starting
with a different overlapping object. Instead of considering
alternative permutations of order with similar resulting con-
figurations, our approach allocates computational resources
to search with a new placement footprint candidate. It is
still possible that when the planner reaches a sub-goal the
ordering of object clearing may affect its ability to find a
solution.

V. EXPERIMENTS

We implemented our planner in simulation with the open
source 2D physics engine Box2D [24]. Box2D incorporates
contact, friction and restitution as well as collision detection.
We modeled tabletop objects as rigid bodies of convex
polygonal objects with equal densities. Push actions were
applied with a rectangular gripper object og of dimension
2cm × 8cm. To apply ui = (oi, φi, di), first og is placed
centered at the center of mass of oi with orientation φi
and gradually moved along −φi while checking collision
between oi and og . At the configuration where Pi ∩Pg = ∅,
a final test between og and all other objects in O verifies
whether the gripper can be placed without collision. If the
configuration is collision free, the pushing action is feasible
and og is moved in φi direction at a constant velocity.

We evaluated the performance of the algorithm under
varying clutter percentages and ratios of indirectly pushable
objects. Clutter percentage is the ratio of the area occupied
by the objects to the total surface area. We compared three
scenarios: (1) all objects are indirectly pushable, (2) half of
the objects are indirectly pushable, and (3) no objects are
indirectly pushable. The table size was 80cm× 60cm for all
experiments, the initial object shapes Oinit = {o1, o2, o3}
and configuration qinit = (P1, P2, P3) of the first three
objects were sampled randomly. At every iteration, the
simulator randomly generated a circle of radius 7cm, square
of side 14.4cm or rectangle of dimensions 8.8cm×26cm with
equal probability. The chosen object was scaled by a factor
uniformly sampled from interval [0.7, 1.3]. The simulator
provided the resulting table configuration qinit as input to
the planning algorithm for placement. If the algorithm found
a plan for placement, the simulator executed the pushes and
placed the object before selecting a new object. When the
algorithm failed, the simulator reset the environment to the
initial configuration and repeated the procedure.

To keep the execution time of the algorithm reasonable,
the maximum allowed tree level was set to 4, the maximum
number of goal configuration samples per allowed tree level
was 20 and the push angle resolution was π/12, resulting
in 24 push directions. So in the worst case, 100 candidate
footprint positions were tried. If a plan was not found for
all the candidate positions, the algorithm terminated with no
solution. We performed 1600 trial runs each for scenarios
1,2 and 3. Example configurations are given in Figure 4 and
statistical results are shown in Figure 5.

The push planner had 100% success in cases with table

clutter less than 40%. The average plan contained zero
pushes for clutter percentages less than 20%, which implies
all objects could be placed in empty spaces. The success
rate rises higher with the percentage of indirectly pushable
objects. However, for very crowded tables (clutter percentage
>70%) the planner rarely finds a feasible plan.

The total number of pushes searched reflects the complex-
ity of the algorithm, since most of the computation comes
from calculating the dynamics and running collision checks
for the pushing action. The run time first increases rapidly,
then suddenly drops. The compute time doesn’t diverge,
since at the peaks most of the cases hit the maximum allowed
tree depth. Moreover, the search space actually declines for
more crowded tables, since fewer feasible gripper locations
exist, severely limiting the branching factor, eventually reach-
ing zero. Note that we only analyze the successful cases for
results in Figures 5b and 5c.

The average number of moves in a plan increases
with the clutter percentage, until some point for the no-
indirectly pushable and half-indirectly pushable cases. We
attribute this to the fact that for a significantly crowded table
with several indirectly pushable objects, the planner either
can’t find a solution or finds a simple solution with a few
pushes when the footprint object is small by chance. For the
all-indirectly pushable case, the solution continues to include
more pushes as the table clutter increases. This is a result of
allowing an object to move others, which increases diversity
in table configuration and creates opportunities for different
solutions. In contrast, for scenarios 2 and 3, many objects
must be pushed one by one, which forces a more complex
solution. Additional constraints arise since a more cluttered
table restricts gripper placement to few locations.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel algorithm for clearing surfaces
such as tabletops to facilitate the placement of objects.
Exploiting the candidate pose generating heuristic assists in
finding shorter solutions by providing a variety of candidate
locations to the planner. Applications to a physical robot will
benefit from this bias towards simpler solutions. Plans with a
greater number of push actions during real world operation
induce a greater chance of divergence from the simulated
physics used by the planner. By reducing the number of
actions this error can be reduced and the robot can more
robustly perform the task.

Object placement is a compelling task for robotics research
that bridges a gap between pushing strategies such as those
in [9, 10], tabletop clutter perception [3, 5, 12], and picking
and placing [2, 25]. While our work has focused on the use
of planning to enable placing of objects in environments, the
same approach could be useful in enabling object grasping.
As noted earlier both [10] and [9] use pushing to assist in
grasping objects in constrained settings. By setting the goal
footprint to be an area surrounding the object to be lifted, and
treating that object as an immovable obstacle, our planner
could then be used to clear space to make room for grasping
an object in a cluttered environment.



(a) (b) (c)

Fig. 4: (a) A successful run from the all-indirectly pushable scenario. o6 is the candidate goal footprint, table clutter is 39.5% . (b) Table
configuration after plan execution on (a); 24 total pushes searched in 4.8s resulting in a plan of 4 pushes. (c) A failed run from the
half-indirectly pushable scenario. Clutter was 51.7%, total number of pushes searched was 2,505 requiring 43.6s of execution.

(a) (b) (c)

Fig. 5: Experimental results on all three test cases. x axes are the clutter percentage and only successful cases are plotted for (b) and (c).
(a) shows success rate of the placement algorithm, (b) shows total number of searched pushes for successful cases (c) shows the average
number pushes in the plan for successful cases.

VII. ACKNOWLEDGEMENTS

This research was partially supported by NSF grant IIS-
1017076. It was conducted as part of the ”Robot Intelligence:
Planning” course at Georgia Tech.

REFERENCES

[1] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “To-
wards 3d point cloud based object maps for household environments,”
Robot. Auton. Syst., vol. 56, no. 11, pp. 927–941, 2008.

[2] A. Jain and C. C. Kemp, “EL-E: An Assistive Mobile Manipulator
that Autonomously Fetches Objects from Flat Surfaces,” Autonomous
Robots, 2010.

[3] M. J. Schuster, J. Okerman, H. Nguyen, J. M. Rehg, and C. C. Kemp,
“Perceiving Clutter and Surfaces for Object Placement in Indoor
Environments,” in ICHR, 2010.

[4] M. T. Mason, “Mechanics and planning of manipulator pushing
operations,” Int. J. Rob. Res., vol. 5, pp. 53–71, September 1986.

[5] P. M. Fitzpatrick and G. Metta, “Towards manipulation-driven vision,”
in in IEEE/RSJ Conference on Intelligent Robots and Systems, 2002.

[6] D. Katz and O. Brock, “A factorization approach to manipulation in
unstructured environments,” in Int. Symp. on Robotics Research, 2009.

[7] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for
manipulation in unstructured environments,” in ICRA, 2009.

[8] M. T. Mason, S. Srinivasa, and A. S. Vazquez, “Generality and simple
hands,” in International Symposium of Robotics Research, July 2009.

[9] D. Omrcen, C. Böge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous acquisition of pushing actions to support object grasping
with a humanoid robot,” in IEEE/RAS International Conference on
Humanoid Robots (Humanoids), Paris, France, 2009.

[10] M. Dogar and S. Srinivasa, “Push-grasping with dexterous hands: Me-
chanics and a method,” in Proceedings of 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2010), 2010.

[11] K. M. Lynch and M. T. Mason, “Controllability of pushing,” in IEEE
Int. Conf. on Robotics and Automation, 1995, pp. 112–119.

[12] D. Katz and O. Brock, “Extracting planar kinematic models using
interactive perception,” vol. 8, 2008.

[13] D. Berenson and S. Srinivasa, “Grasp synthesis in cluttered environ-
ments for dexterous hands,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids08), December 2008.

[14] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rear-
rangement tasks,” Trans. on Robotics and Automation, vol. 14, 1998.

[15] J. Ota, “Rearrangement of multiple movable objects,” in IEEE Int.
Conf. Robotics and Automation (ICRA), 2004, pp. 1962–1967.

[16] M. Stilman and J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” in Proceedings of
the 2004 IEEE International Conference on Humanoid Robotics
(Humanoids’04), vol. 1, December 2004, pp. 322 – 341.

[17] K. Okada, A. Haneda, H. Nakai, M. Inaba, and H. Inoue, “Environ-
ment manipulation planner for humanoid robots using task graph that
generates action sequence,” in In: Proceedings of 2004 International
Conference on Intelligent Robots and Systems, 2004, pp. 1174–1179.

[18] M. Stilman and J. J. Kuffner, “Planning among movable obstacles
with artificial constraints,” International Journal of Robotics Research,
vol. 27, no. 12, pp. 1296–1307, Novemeber 2008.

[19] M. Stilman, J. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in IEEE Int’l Conf. on Robotics
and Automation (ICRA’07), 2007.

[20] G. Wilfong, “Motion planning in the presence of movable obstacles,”
in Proceedings of the fourth annual symposium on Computational
geometry, ser. SCG ’88. New York, NY, USA: ACM, 1988, pp.
279–288. [Online]. Available: http://doi.acm.org/10.1145/73393.73422

[21] R. Alami, T. Simeon, and J. P. Laumond, “A geometrical approach
to planing manipulation tasks, the case of discrete placements and
grasps,” in International Symposium on Robotics Research, 1989.

[22] J. Ota, “Rearrangement Planning of Multiple Movable Objects by a
Mobile Robot,” Advanced Robotics, 23, vol. 1, no. 2, pp. 1–18, 2009.

[23] R. Korf, “Depth-first iterative-deepening* 1:: An optimal admissible
tree search,” Artificial intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[24] “Box2d,” http://www.box2d.org/, November 2010.
[25] A. Edsinger and C. C. Kemp, “Manipulation in human environments,”

in IEEE/RAS International Conference on Humanoid Robots (Hu-
manoids), 2006.


