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Abstract

The push-sum algorithm allows distributed computing of the average on a directed graph, and is par-
ticularly relevant when one is restricted to one-way and/or asynchronous communications. We investigate
its behavior in the presence of unreliable communication channels where messages can be lost.

We show that convergence still holds, and analyze the error of the final common value we get for the
essential case of two nodes, both theoretically and numerically. We compare this error performance with
that of the standard consensus algorithm. For the multi-node case, we deduce fundamental properties
that implicitly describe the distribution of the final value obtained.

1 Introduction

The ongoing active research on decentralized systems and distributed computation constantly faces the
mathematical challenge of aggregating information spread across a huge network [1], [2], [3]. A fundamental
case is the task of averaging certain values obtained at the nodes of the network, which is known as the average
consensus problem [4]. The difficulty of this task heavily depends on the assumptions on the communication
network.

In the simplest case, nodes communicate according to a graph synchronously and without error, that is,
they expose their current values to their neighbors and in turn they update their own values using a linear
combination of the values they have access to. The system is said to reach average consensus if the values of
all nodes converge to the average of the initial values. In this case this can be achieved by properly choosing
the coefficients for the linear combinations [5]. We will refer to these as traditional consensus methods.

It is known to be impossible in general to reach average consensus using such methods if the commu-
nication network is directed and coxsmmunication is asynchronous, as the average usually cannot be kept
constant over time in these situations. One way of overcoming this issue is to use the push-sum algorithm:
nodes not only record a linear combination of other nodes’ values, but also keep track of the “amount”
of information they actually have. Therefore, two variables per node are required. The algorithm can be
asynchronous, with a randomly chosen node communicating towards another at every step, without waiting
for a reply. This method is known to efficiently compute the perfect average [6], but only if all transmitted
messages are guaranteed to arrive.

There is a strong research effort to understand the performance of these averaging methods while incor-
porating deficiencies of the communication channels. Such limitations include packet delays [7], packet drops
[8], changing connection topology [9], [10], limited or noisy communications [11],[12] or multiple of these [13].
The issue we currently focus on is the presence of transmission failures, resulting in some messages being
lost. For a traditional consensus protocol, it is known that the consensus value remains unchanged, only
the speed of convergence is slowed down. This is not the case for the push-sum algorithm, an error from
the exact average is expected to appear. A clever solution relying on sending the sum of all messages that
would have been sent in a classical push-sum algorithm was proposed in [14]. However, this method requires
additional capabilities for the nodes; they need to have local identifiers for each potential neighbor, and also
an extra memory slot for each communication link.
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In this work, we follow an alternative approach, we analyze the performance of the original push-sum
algorithm in the presence of such transmission failures if no additional corrective mechanism is applied,
similarly to what was done for traditional consensus in [15]. We present new tools that help understanding
the nature of the resulting consensus value. Using these tools, we then derive bounds on the error in the
simple case of two nodes. In addition, we perform a numerical comparison of the push-sum algorithm and
the traditional consensus method, allowing to determine which is the most efficient one depending on the
transmission failure rate and the error tolerance.

The rest of the paper is organized as follows. In Section 2 we formally describe the push-sum algorithm.
Section 3 provides the tools needed to preform our analysis. We then develop error bounds in Section 4
for two nodes. Comparison of the push-sum algorithm and traditional consensus is performed in Section 5.
Conclusions and further research directions are discussed in Section 6.

2 The push-sum algorithm

In the general setting the push-sum algorithm can be described as follows. Given are n agents with a
connection graph and we want the agents to reach average consensus using only limited communication.

Every agent stores a value xi(t) and also an abstract weight variable wi(t). The values xi(0) are the
initial measurements, these are the ones to be averaged. The weights are initialized as wi(0) = 1 for all i.
At every time step, an (i, j) edge is chosen randomly according to a fixed distribution, in an independent
way. Then agent i sends half of what he has (both in terms of value and weight) to agent j. To be more
precise, we do the following update:

xi(t+ 1) = xi(t)/2, xj(t+ 1) = xj(t) + xi(t)/2,

wi(t+ 1) = wi(t)/2, wj(t+ 1) = wj(t) + wi(t)/2.
(1)

The behavior of the algorithm strongly depends on the connection graph and on the way we pick the
edges at every step. It is known to work well in a quite general setting even with multiple simultaneous
communications [16], meaning that the rescaled measurements approach the average value at every node:

lim
t→∞

xi(t)

wi(t)
=

∑

xi(0)

n
, ∀i, a.s.

We analyze the effect of transmission errors: some messages sent might not reach their destination,
without the sender being aware of the failure, resulting in a loss of information. Formally, at every time step
with probability p we use the update rule (2) below instead of the usual (1), which now corresponds to node
i sending a message without node j receiving it.

xi(t+ 1) = xi(t)/2, xj(t+ 1) = xj(t),

wi(t+ 1) = wi(t)/2, wj(t+ 1) = wj(t).
(2)

In the sequel we will study the asymptotic behavior of this system for a special case. From now on, we
assume the connection graph is complete and edge selection is uniform. We will show that ratio converges
even though weights and values go to 0, and analyze then the error between the limiting ratio and the true
average. We propose general tools for treating this process with transmission errors. We exploit them in the
simple case of two agents to get concrete error bounds.

3 The invariance relation

In this section we will prove an invariance relation that will be of key importance for our analysis. Before
getting there, we need to establish basic properties of the push-sum algorithm with transmission failures.

3.1 Convergence

First we show that the push-sum algorithm converges exponentially, meaning that the scaled measurements
of different agents will be the same in the limit. Observe that all values and weights go to zero, nevertheless
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the ratio converges to a meaningful value. Here we only aim to confirm convergence, and do not search for
the best rate possible.

Theorem 1. The push-sum algorithm converges exponentially fast almost surely.

Proof. Let us denote the maximal rescaled measurement xi(t)/wi(t) at time t by M(t) and the minimal one
by m(t). Observe that the steps we perform only allow M(t) to decrease and m(t) to increase. We prove
the theorem by showing the following equation for some γ > 1:

P (lim sup
t→∞

(M(t)−m(t))γt ≤ 1) = 1. (3)

We first point out the opportunity when M(t)−m(t) can decrease. Fix some time t and choose the agent i
with the largest weight wi(t). There is a certain positive probability q that in the following n−1 steps, agent
i successfully sends one message to every other agent, and that these are the only communication steps in
this time frame. Let us call this broadcast-style event B(t). When B(t) occurs, this will pull all the scaled
measurements towards xi(t)/wi(t), every node will receive at least a 2−n+1 portion of wi(t). If some portion
α was received, we have

xi(t+ n− 1)

wi(t+ n− 1)
− xj(t+ n− 1)

wj(t+ n− 1)
=

xi(t)

wi(t)
− xj(t) + αxi(t)

wj(t) + αxj(t)
=

xi(t)wj(t)− xj(t)wi(t)

wi(t)(wj(t) + αwi(t))
.

We have to compare this with

xi(t)

wi(t)
− xj(t)

wj(t)
=

xi(t)wj(t)− xj(t)wi(t)

wi(t)wj(t)
.

Knowing wi(t) ≥ wj(t) and the lower bound on α we get for every j 6= i that

∣

∣

∣

∣

xi(t+ n− 1)

wi(t+ n− 1)
− xj(t+ n− 1)

wj(t+ n− 1)

∣

∣

∣

∣

≤ 1

1 + 2−n+1

∣

∣

∣

∣

xi(t)

wi(t)
− xj(t)

wj(t)

∣

∣

∣

∣

.

Let us introduce ρ = 1/(1 + 2−n+1). As every rescaled measurement moves towards xi(t)/wi(t), so does the
maximal and the minimal one. This means we can conclude

M(t+ n− 1)−m(t+ n− 1) ≤ ρ(M(t)−m(t)),

again assuming the event B(t). The events B(t1) and B(t2) are independent whenever |t1 − t2| ≥ n− 1, as
they can be expressed using two disjoint sets of independent transmission decisions. For some k, let us count
how many of the events B(0), B(n − 1), . . . , B((k − 1)(n − 1)) happen and denote this number by N(k).
From standard concentration techniques involving Chernoff bounds we see that

P

(

N(k) <
1

2
qk

)

≤ exp

(

−1

8
qk

)

.

This implies using t = k(n− 1) that

P
(

M(t)−m(t) ≥ (M(0)−m(0))ρ
qt

2(n−1)

)

≤ exp

(

− qt

8(n− 1)

)

.

As the right hand side sums to a finite number for t → ∞, the events on the left hand side will happen

almost surely finitely many times. This confirms the theorem for γ < ρ−
q

2(n−1) .

In the case when transmission errors cannot occur, convergence can be shown in a much more general
setting [16], [17].
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3.2 Final values

In the previous subsection we have seen that the push-sum algorithm always reaches consensus. However,
due to the random transmissions and failures this final value is a random variable.

We set up the definitions to study the behavior of the final consensus value acquired from the push-sum
algorithm with transmission failures. We introduce two versions to formulate this, first we define a random
function T as the push-sum function which results in the final consensus value of a push-sum algorithm given
the initial measurements of the agents. We will then define the push-sum coefficient which captures how the
push-sum algorithm mixes the initial values in a more general setting.

Definition 2. For any real vector space V and a probability space Ω, we call a random function T : V n → V
a push-sum function if it follows the distribution of the output of the algorithm below. We assume there is
a probability space Ω and that the algorithm has access to the actual realization ω ∈ Ω to determine the
random variables encountered.

To generate T (V) for some V = (v1, v2, . . . , vn) initialize V(0) = V, w(0) = 1 ∈ R
n. At every time

step t, choose i 6= j indices in a random uniform way and perform the following updates to get V(t + 1) =
(v1(t+ 1), v2(t+ 1), . . . , vn(t+ 1)) and w(t+ 1) = (w1(t+ 1), w2(t+ 1), . . . , wn(t+ 1)):

vi(t+ 1) = vi(t)/2, vj(t+ 1) = vj(t) + χt+1vi(t)/2,

wi(t+ 1) = wi(t)/2, wj(t+ 1) = wj(t) + χt+1wi(t)/2.

Here χt+1 is an independent binary random variable, χt+1 = 1 if the transmission is successful and χt+1 = 0
if not. We encode the failure probability p by setting P (χt+1 = 0) = p, P (χt+1 = 1) = 1− p. For all indices
k other than i, j, the update is identical:

vk(t+ 1) = vk(t),

wk(t+ 1) = wk(t).

Finally, let

T (V) = lim
t→∞

vi(t)

wi(t)
. (4)

Observe that this is well defined almost surely as the limit is the same for all indices i. This follows from
the convergence of the push-sum algorithm (Theorem 1). Still, the function value is random, depending on
the choice of indices and χt+1 at each time step.

To simplify the representation we define the random operator S : V n ×R
n → V n ×R

n corresponding to
a single independent step of the push-sum algorithm such that

(V(t+ 1), w(t+ 1)) = S(V(t), w(t)).

Also, let us introduce the operator N : V n × R
n → V for the final evaluation of the push-sum algorithm:

N(V(t), w(t)) = v1(t)

w1(t)
.

Knowing that the final ratios are the same for all agents, it does not matter which vi/wi we use, so we choose
v1/w1 for simplicity. Using the new notations we can rewrite the push-sum function T as

T (V) = lim
t→∞

N(St(V,1)). (5)

Here with a slight abuse of notation St means the composition of t independent copies of S.

Observe that the push-sum function is linear in its input. Therefore we attempt a decomposition as a
random linear operator applied to the input vectors. For this we define a special type of push-sum algorithm
as follows.
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Definition 3. A random variable τ ∈ R
n
+ is a push-sum coefficient if it follows the distribution of the

algorithm below. Again, we assume there is a probability space Ω and that the algorithm has access to the
actual realization ω ∈ Ω to determine the random variables encountered.

Initialize zi(0) = ei = (0, 0, . . . , 1, . . . , 0)T . At every time step t, choose i 6= j indices in a random uniform
way and perform the following updates:

zi(t+ 1) = zi(t)/2,

zj(t+ 1) = zj(t) + χt+1zi(t)/2.

Here χt+1 is an independent random variable (corresponding to the success of the transmission), P (χt+1 =
0) = p, P (χt+1 = 1) = 1− p. For all indices k other than i, j, the update is identical:

zk(t+ 1) = zk(t).

Finally, let

τ = lim
t→∞

zi(t)

‖zi(t)‖1
.

Observe that this is well defined as the limit is the same for all indices i. This follows from the convergence
of the push-sum algorithm. Still, the function value is random, depending on the choice of indices and χt+1

at each time step.

Definition 4. In order to simplify our formulas, for any x ∈ R
n (possibly random) and n-tuple of vectors

V = (v1, v2, . . . , vn) from some vector space V we define

〈x,V〉 =
n
∑

i=1

xivi.

We present the connection between push-sum functions and push-sum coefficients.

Proposition 5. For any vector space V and V = (v1, v2, . . . , vn) ∈ V n define the random function T as

T (V) = 〈τ,V〉,

where τ is a push-sum coefficient. Then T is a push-sum function.

Proof. Observe that a process generating a push-sum function can be obtained from the algorithm generating
τ by the following coupling:

vi(t) = 〈zi(t),V〉,
wi(t) = ‖zi(t)‖1.

It is easy to check that these equations are preserved with each update (we use that all zi(t) and wi(t) are
non-negative). In the limit, this leads to

lim
t→∞

vi(t)

wi(t)
= lim

t→∞

〈zi(t),V〉
‖zi(t)‖1

=

〈

lim
t→∞

zi(t)

‖zi(t)‖1
,V
〉

= 〈τ,V〉.

We conclude by remarking that the left hand side defines a push-sum function and the right hand side is the
definition of T in the proposition.

Corollary 6. We may view a push-sum coefficient as a special value of a push-sum function according to
the equation

T (E) = τ,

where E = (e1, e2, . . . , en).

Proof. Observe that τ = 〈τ, E〉 directly from the definition. Combine this with Proposition 5 using V = E .

Corollary 6 confirms the intuition that the two representations of the push-sum algorithm are essentially
doing the same thing. Note that the construction is slightly different, for push-sum functions we explicitly
track the weights wi(t), while for the push-sum coefficient we just use the norm of the vectors zi(t).
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3.3 Measures

We plan to work with the distribution of the final value of the push-sum algorithm, so we introduce the
measures and transformations involved.

Definition 7. Let µ be the distribution of a push-sum coefficient. This measure has a support contained
in the unit simplex {x ∈ R

n
+ | ‖x‖1 = 1}.

We define the induced measure transformation 〈σ,V〉 for a measure σ on R
n. Formally

〈σ,V〉(A) = σ
(

{x ∈ R
n | 〈x,V〉 ∈ A}

)

.

In other words, for any set A ⊂ V we collect and measure those x for which 〈x,V〉 falls in A.
We need the rescaling operator L on R

n
+ \ {0} as

L(x) =
x

‖x‖1
.

This operator scales its argument to have unit 1-norm. The operator L naturally induces the measure
transformation L∗,

L∗(σ) (A) = σ
(

{x ∈ R
n
+ \ {0} | L(x) ∈ A}

)

.

Now we develop an invariance relation describing µ using the time-homogeneity of the push-sum algo-
rithm. Broadly speaking, we want to exploit that a push-sum algorithm should give the same result if we
let it run for one more step.

The main result of this section is the following.

Theorem 8. After the first step of a push-sum coefficient algorithm we get the n-tuple of vectors Z(1) =
(z1(1), z2(1), . . . , zn(1)). We get an invariance equation for the push-sum coefficient distribution µ:

µ = EL∗ (〈µ,Z(1)〉) . (6)

To see the right hand side in a more detail, we first take the inner product of µ with the (random) collection
of vectors Z(1). We map back the resulting measure to the simplex of unit 1-norm non-negative vectors.
Finally we take expectation w.r.t. Z(1).

Proof. Following Corollary 6, T (E) generates a random variable with distribution µ. We launch the push-
sum algorithm as specified in Definition 2. It does no harm to take t+1 push-sum steps by first taking one,
then applying all the remaining steps to the result. Formally, we mean

T (E) = lim
t→∞

N(St+1(E ,1)) = lim
t→∞

N(St(Z(1), w(1))).

We define a very similar random variable for comparison. We perform a single step of the push-sum algorithm,
which gives us Z(1). We now treat this as the input for a new push-sum function. Formally, we are looking
at

T (Z(1)) = lim
t→∞

N(St(Z(1),1)).

Let us compare the two expressions above.
Claim 1. The vector parts of the two algorithms [St(Z(1), w(1))]V and [St(Z(1),1)]V follow the same

distribution.
We see two push-sum algorithms, both starting from Z(1), but with different weights. During the push-

sum steps S the weights wi(t) have no effect on the evolution of the vectors vi(t), so the vector parts must
follow the same distribution.

Claim 2. There exist a scalar ρ which can be random and dependent from our other variables such that

T (E) d
=T (Z(1))ρ. (7)

What happens when we apply the evaluating function N to both St(Z(1), w(1)) and St(Z(1),1)? We
divide the first of the vectors, which are the same, with the first of the weights, which might be different.

6



Consequently, the directions of the resulting vectors are the same, while the lengths might be different, so
there is only a scalar factor difference between the two.

Claim 3. We can also write
T (E) d

=L(T (Z(1))). (8)

From (7) we have

‖T (Z(1))ρ‖ d
= ‖T (E)‖ = 1.

Here we use that the push-sum coefficient T (E) always results in a vector of unit 1-norm. This means

T (Z(1))ρ =
T (Z(1))

‖T (Z(1))‖ ,

as both their directions and their norms agree. The right hand side is L(T (Z(1))) by definition, so we arrive
at

T (E) d
=T (Z(1))ρ = L(T (Z(1))).

Claim 4. The invariance equation (6) holds.
The distribution of the left hand side expression of (8) is µ. We complete the proof by showing that

the right hand side of (8) follows the distribution indicated on the right hand side of (6). According to
Proposition 5 the right hand side of (8) can be expressed using a push sum-coefficient,

LT (Z(1)) = L〈τ,Z(1)〉.

Let us express the distribution of this random variable for any realization of Z(1). The distribution of τ is µ,
and the operators acting on the random variables translate to the corresponding measure transformations.
We thus arrive at

L∗〈µ,Z(1)〉.
In order to get the overall distribution we have to integrate over possible realizations of Z(1) which results
in

EL∗〈µ,Z(1)〉.
This is exactly the expression presented on the right hand side of (6).

4 Error bound for two agents

We now focus on the case of 2 agents and scalar input, and we are interested how far the final consensus value
is from the real average. We quantify this by taking the expectation of the quadratic error. To normalize
this error, we assume the input to be V = (−1, 1) so the real average is 0, and define

R = ET
(

(−1, 1)
)2
.

We develop lower and upper bounds for this error. In order to do this, we first investigate the push-sum
coefficient for 2 agents.

Let us interpret previous results for this particular case. The measure µ is now supported on the segment
(1, 0)⊤− (0, 1)⊤ of the real plane. The invariance equation of Theorem 8 becomes

Corollary 9. For 2 agents the following equation holds for the push-sum coefficient distribution µ:

µ =
1− p

2
D1µ+

1− p

2
D2µ+

p

2
F1µ+

p

2
F2µ, (9)

where D1, D2 are the measure transformations corresponding to a delivered message from node 1 to 2 and 2
to 1, respectively, while F1, F2 are the transformations for failed transmissions by node 1 and 2, respectively.
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Proof. In the two agent setting there are four cases for the first step depending on which node is transmitting
and whether it is successful or not. Let us expand the formulation of Theorem 8.

µ = EL∗ (〈µ,Z(1)〉) = P (1 → 2 success)L∗
(

〈

µ,E(Z(1) | 1 → 2 success)
〉

)

+ P (2 → 1 success)L∗
(

〈

µ,E(Z(1) | 2 → 1 success)
〉

)

+ P (1 → 2 failure)L∗
(

〈

µ,E(Z(1) | 1 → 2 failure)
〉

)

+ P (2 → 1 failure)L∗
(

〈

µ,E(Z(1) | 2 → 1 failure)
〉

)

.

For the first term, the probability of occurring is 1−p
2 . Conditioning on the event that the first step was

a 1 → 2 successful transmission, we get Z(1) =
(

(1/2, 0)⊤, (1/2, 1)⊤
)

. The measure µ is supported on the

segment (1, 0)⊤− (0, 1)⊤, so it is easy to check that the inner product
〈

µ,E(Z(1) | 1 → 2 success)
〉

will be
connecting (1/2, 0)⊤− (1/2, 1)⊤. As the inner product is linear, this measure will be the same as µ moved
by a similarity transformation to span the segment between the two new endpoints. The L∗ transformation
maps back the measure to (1, 0)⊤− (0, 1)⊤. The series of transformations is illustrated in Figure 1. The
measure µ on the blue segment is moved to the orange segment, then mapped along the yellow lines back to
the blue line.

Figure 1: The transformation D1

The other cases are interpreted in a similar way, only the conditional values of Z(1) change. For 2 → 1
successful transmission it is

(

(1, 1/2)⊤− (0, 1/2)⊤
)

, for 1 → 2 failed transmission it is
(

(1/2, 0)⊤− (0, 1)⊤
)

,

for 2 → 1 failed transmission it is
(

(1, 0)⊤− (0, 1/2)⊤
)

. The visual representation of all four cases is shown
in Figure 2.

Figure 2: The four transformations

In fact µ is inherently a measure on a one dimensional set, so let us interpret it this way. It is convenient
to parametrize the diagonal segment (1, 0)⊤− (0, 1)⊤ by the first coordinate. As a result we have to work
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with measures ν on the unit interval [0, 1]. Working with ν does preserve the symmetry of the problem. Let
us restate Corollary 9 in terms of ν.

We need to reformulate Di, Fi in terms of ν, which we demonstrate for D1. The point x ∈ [0, 1]
corresponds to (x, 1− x)⊤ on the diagonal line supporting µ. For the inner product we get

〈

(x, 1− x),
(

(1/2, 0)⊤, (1/2, 1)⊤
)〉

= (1/2, 1− x)⊤

Then using L this is renormalized to have unit 1-norm:

1

1/2 + 1− x
(1/2, 1− x)⊤=

(

1

3− 2x
,
2− 2x

3− 2x

)⊤

.

Finally, to switch back to the domain of [0, 1] we have to take the first coordinate of the result. In a similar
way, we get the four functions corresponding to the preceding four measure transformations:

d1(x) =
1

3− 2x
, f1(x) =

x

2− x
,

d2(x) =
2x

1 + 2x
, f2(x) =

2x

1 + x
.

Using these functions we are ready to restate Corollary 9:

Corollary 10. The following invariance equation holds for ν, the push-sum coefficient measure for two
agents represented on [0, 1].

ν =
1− p

2
d∗1(ν) +

1− p

2
d∗2(ν) +

p

2
f∗
1 (ν) +

p

2
f∗
2 (ν). (10)

4.1 Lower bound

The general plan is to develop simple necessary conditions on ν based on (10). We then get a lower bound by
optimizing the error on the broader class of measures only constrained by the necessary condition obtained.

The first step of simplification is dropping terms from the right hand side of (10) and using the non-
negativity of the terms:

ν ≥ p

2
f∗
1 (ν) +

p

2
f∗
2 (ν). (11)

Let us introduce a useful subdivision of [0, 1]: For any k ∈ N let

a−k =
1

2k + 1
, ak = 1− 1

2k + 1
.

Lemma 11. For any k ∈ Z we have

f1(ak) = ak−1,

f2(ak) = ak+1.

Proof. This can be directly checked using the formulas defining fi, ak.

We disregard the rather complicated fine structure of ν for a moment and only explore how it acts on
the intervals defined by ai. For this, let us define

si = ν
(

(a−i−1, a−i)
)

= ν
(

(ai, ai+1)
)

,

ti = ν
(

{a−i}
)

= ν
(

{ai}
)

.

Here we use the straightforward symmetry of ν and the strict monotonicity of fi. Combining (11) with
Lemma 11 we get the following inequalities.
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Lemma 12. We have

s0 ≥ p

2
s0 +

p

2
s1,

si ≥
p

2
si−1 +

p

2
si+1, i ≥ 1,

ti ≥
p

2
ti−1 +

p

2
ti+1, i ≥ 0.

We derive an even simpler condition on si and ti.

Lemma 13. Let γ =
1−

√
1−p2

p
. For any i ≥ 0 we have

γsi ≤ si+1,

γti ≤ ti+1.

To give some intuition, γ is ≈ p/2 for p near 0, but reaches 1 as p increases to 1.

Proof. We show the inequality for si, the proof is the same for ti. Assume the claim does not hold for a
given i, meaning γsi > si+1. We define the auxiliary series s̃i, s̃i+1, . . . as follows:

s̃i = si, s̃i+1 = si+1,

s̃j =
2

p
s̃j−1 − s̃j−2, j ≥ i+ 2. (12)

We will show that s̃j ≥ sj and s̃j → −∞. This would imply sj → −∞ which is impossible for entries of a
probability distribution.

First, to compare the two series, let us define dj = sj − s̃j . Using Lemma 12 and the definition of s̃j the
recursion scheme for this series becomes

di = 0, di+1 = 0,

dj ≤
2

p
dj−1 − dj−2, j ≥ i+ 2.

It is easy to check that dj ≤ dj−1 ≤ 0 implies dj+1 ≤ dj ≤ 0. We immediately get dj ≤ 0 in general and

s̃j ≥ sj , j ≥ i. (13)

Now let us compute the series (s̃j). It is defined by a second order recursion, so we get the two canonical
solutions by solving

x2 =
2

p
x− 1.

The two roots are

x1 =
1−

√

1− p2

p
= γ, x2 =

1 +
√

1− p2

p
= γ̃.

These are different except the pathological case of p = 1. Any solution of the recursion (12) must be a
mixture of γj and γ̃j . Then any element of the sequence can be expressed as

s̃j = αγj−i + α̃γ̃j−i, (14)

for a proper choice of α, α̃. Therefore we need to find α, α̃ such that

s̃i = α+ α̃

s̃i+1 = αγ + α̃γ̃,
(15)

By the condition γsi > si+1 we get α̃ < 0 while solving (15). Adding the fact that γ < 1 < γ̃, this implies
s̃j → −∞.

To sum up, if we had γsi > si+1, then we would get s̃j → −∞, and by (13) also sj → −∞, which is
impossible for probabilities.
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Based on this condition, we can prove the following error bound:

Theorem 14. The following bound holds for the quadratic error R of the push-sum function:

R ≥ γ − 4(1− γ)

∞
∑

i=1

(2γ)i

(2i + 1)2
≥ γ − 8

9
γ(1− γ)− 2

2− γ
γ2(1− γ).

For p → 0, both lower bounds are asymptotically p
18 +O(p2).

The numerical performance of the two bounds is shown in Figure 3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

Simulations

Lower bound 1

Lower bound 2

Figure 3: Performance of the two lower bounds presented in Theorem 14 for different transmission failure
probabilities p.

Proof. Let us first separate the measure ν as follows:

νa = ν
∣

∣

{ai:i∈Z}
,

νc = ν − νa.

In other words, νa corresponds to the ti terms while νc corresponds to the si terms. For the overall weights
we define Ma = νa([0, 1]) and Mc = νc([0, 1]). Concerning the errors, we introduce the following notation
for the error corresponding to a single point:

r(x) = (1− 2x)2.

We define Ra, Rc for the overall errors of νa, νc. As we created a separation of the original measure ν we
immediately have

1 = Ma +Mc,

R = Ra +Rc.

Let us investigate νc. Observe that the error of ν
∣

∣

(ai,ai+1)
is larger than the error at ai with weight si

(i ≥ 0). The symmetrical arguments hold for i < 0. We get

Rc ≥ 2

∞
∑

i=0

sir(ai),
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here r(ai) refers to the error corresponding to the point ai. We now check how low can the right hand side
be while keeping the overall weight constant, that is, 2

∑

si = Mc = νc([0, 1]).
Let us define the series (s∗i ) such that 2

∑

s∗i = νc([0, 1]) and γs∗i = s∗i+1 for all i ≥ 0. This can be seen
as the extremal series that still satisfies the claim of Lemma13. We will show that the error corresponding
to this series is at most that of (si). To this end, let us define di = si − s∗i . Clearly

∑

di = 0. We also have

di+1 = si+1 − s∗i+1 ≥ γsi − γs∗i = γdi.

From this we see that di > 0 implies that all the later terms of (di) are also positive. Therefore we see the
following structure of the series di. It has to begin with some non-positive terms up to some index I to
ensure that the sum is 0. After that, all terms are positive.

Furthermore, we see
I
∑

i=0

(−di)r(ai) ≤
∞
∑

i=I+1

dir(ai). (16)

This holds because the sum of the positive weights −di on the left hand side and the sum of di on the right
hand side are the same, but the coefficients r(ai) are larger on the right hand side.

Now let us compare the error of the two series.

∞
∑

i=0

sir(ai)−
∞
∑

i=0

s∗i r(ai) =

∞
∑

i=0

dir(ai) ≥ 0.

The first equality is simply the definition of di, the inequality follows from (16). As (s∗i ) well defined, it gives
a lower bound of the quadratic error of νc.

Rc ≥
∞
∑

i=0

Mc(1− γ)γir(ai).

We can treat νa the same way using ti. Note that now there is only one central atom at a0 while there
were two intervals of interest around a0 for νc. Therefore the weights for the series (t

∗
i ) are slightly different,

and we get the lower bound on the error

Ra ≥ 1− γ

1 + γ
r(a0) +

∞
∑

i=1

2Ma

1− γ

1 + γ
γir(ai).

Let us now add up the two lower bounds while using that the error at a0 is 0.

R ≥
(

Mc +
2Ma

1 + γ

) ∞
∑

i=1

(1− γ)γir(ai).

Knowing that Mc +Ma = 1 and γ ≤ 1 this expression is minimal if Mc = 1,Ma = 0. With this setting, we
arrive at a universal lower bound on R as follows.

R ≥ (1− γ)

∞
∑

i=1

γi (1− 2ai)
2
= (1− γ)

∞
∑

i=1

γi

(

2i − 1

2i + 1

)2

= (1− γ)

∞
∑

i=1

γi

(

1− 4 · 2i
(2i + 1)2

)

= (1− γ)
∞
∑

i=1

γi − (1− γ)
∞
∑

i=1

γi 4 · 2i
(2i + 1)2

= γ − 4(1− γ)
∞
∑

i=1

(2γ)i

(2i + 1)2
= . . .

This is exactly the first lower bound we wanted to show. For the second, simpler claim we decrease the
denominators (2i + 1)2 to 22i in order to get a geometric series that is easy to sum.

. . . = γ − 4(1− γ)
2γ

9
− 4(1− γ)

∞
∑

i=2

(2γ)i

(2i + 1)2
≥ γ − 4(1− γ)

2γ

9
− 4(1− γ)

∞
∑

i=2

(2γ)i

22i

= γ − 4(1− γ)
2γ

9
− 4(1− γ)

γ2

4

1

1− γ
2

= γ − 8

9
γ(1− γ)− 2

2− γ
γ2(1− γ).

This is the second lower bound we were aiming for. The asymptotic rate near p = 0 for both lower bounds
follows easily using γ = p/2 +O(p2) for small p.
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Having a look at Figure 3 we see that the lower bounds we obtained qualitatively capture the real behavior
of the algorithm. We get an error linear in the failure rate for p ≈ 0 and then we get an error approaching
1 as p ≈ 1. Still, we did some strong simplification steps so quantitatively we do experience a gap between
the simulated and the proven values.

4.2 General upper bound

In this subsection we present an upper bound that is valid for all p and that is asymptotically tight both
around p = 0 and p = 1. The numerical performance of the upper bound is shown in Figure 4. Although
it shows that the bound is conservative, we already recover the linear growth rate near p = 0. In the next
subsection we will complement this error bound with one that gives a much better estimate near p = 1.
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General upper bound

Figure 4: Performance of upper bound stated in Theorem 15

Once again we base our studies on the invariance equation (10). We express ν as a mixture of measures
that are supported strictly within [0, 1]. In the end we get the bound below.

Theorem 15. The following bound holds for the error of the push-sum function:

R ≤ p(1− p)2

3 + p
+

p

25(1 + p2)

(

18 + 23p+ 50p2 − 41p3
)

.

Proof. We give an intuition on the main ideas used in this proof. For a measure π with restricted support in
[x, y] for some 0 ≤ x < y ≤ 1, we immediately have an upper bound on the error: we simply find the point
of the interval furthest from 1/2, and obtain max((1− 2x)2, (1− 2y)2).

When we apply one of the transformations corresponding to a transmission on π, we get a new interval
containing the new support. By studying the evolution of the interval we get an evolving upper bound.

For a measure π that can be expressed as the mixture of different measures with restricted supports, again
we get an upper bound on the error by taking the weighted average of the error bounds for the individual
measures according to the idea above.

We will now convert these ideas to precise statements and apply them for the push-sum coefficient
measure ν to get an upper bound on the error of the push-sum function.

For measures on [0, 1] we define the following intervals that will serve as possible restrictions on the
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support. A visual representation is shown in Figure 5.

αi =

[

2i

2i+1 + 1
,

2i + 1

2i+1 + 1

]

,

β′
0 =

[

1

5
,
2

3

]

, β′
1 =

[

0,
2

3

]

,

β′′
0 =

[

1

3
,
4

5

]

, β′′
1 =

[

1

3
, 1

]

,

γ0 =

[

1

5
,
4

5

]

, γ1 = [0, 1] .

(17)

0 1

α0

α1

α2

β′
0

β′
1

β′′
0

β′′
1
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γ1

Figure 5: Intervals for supports we focus on.

We construct a related abstract Markov chain. This chain has statesA0, A1, . . . andB′
0, B

′
1, B

′′
0 , B

′′
1 , C0, C1.

These will correspond to possible different supports α0, α1, . . . and β′
0, β

′
1, β

′′
0 , β

′′
1 , γ0, γ1. From each state there

are four possible transitions with probabilities (1 − p)/2, (1 − p)/2, p/2, p/2. The transitions are shown in
Figure 6 and 7. These will correspond to the four measure transformations used in (10). For example,
whenever supp(π) ⊆ α0, we have supp(d∗1(π)) ⊆ α1. And indeed, our Markov chain has a transition from
A0 to A1. Moreover, the transition probability of the Markov chain matches the coefficient of the measure
transformation in (10).

This Markov chain is irreducible, aperiodic and positive recurrent. Therefore the distribution will ap-
proach the unique stationary distribution from any starting distribution.

For a measure µ on [0, 1] we define the following operation to get µ+ in the spirit of (10).

µ+ =
1− p

2
d∗1(µ) +

1− p

2
d∗2(µ) +

p

2
f∗
1 (µ) +

p

2
f∗
2 (µ), (18)

where the transformations d∗i , f
∗
i are the ones in (10).

We link the four possible transformations on some measure µ with the transitions of the Markov chain.
We say that the state s and the measure µ are consistent with each other whenever

if s = Ai then supp(µ) ⊂ αi,

if s = B′
i then supp(µ) ⊂ β′

i,

if s = B′′
i then supp(µ) ⊂ β′′

i ,

if s = Ci then supp(µ) ⊂ γi.

(19)

Lemma 16. a) Take one of the states s of the Markov chain and a measure µ on [0, 1] that are consistent
with each other. There is a pairing of the transitions of the Markov chain and the transformations of
measures that correspond to each other, let s+ be the next state of the Markov chain after a certain
transition and µ+ the measure resulting from the corresponding transformation. Then s+ is consistent
with µ+.
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b) Let X = xA0
, xA1

, . . . be a probability distribution on the states of the Markov-chain. Let µA0
, µA1

, . . .
be probability measures consistent with A0, A1, . . .. Define

µ = xA0
µA0

+ xA1
µA1

+ . . . .

Let X+ = x+
A0

, x+
A1

, . . . be the probability distribution when taking one step of the Markov chain starting
from X. Let µ+ be the mixture of the four transformed version of µ according to (18). Then there
exists probability measures µ+

A0
, µ+

A1
, . . . consistent with A0, A1, . . . such that

µ+ = x+
A0

µ+
A0

+ x+
A1

µ+
A1

+ . . . .

Proof. a) This is an elementary but tedious exercise, we only present a list of claims to confirm.

For all pairs αi, Ai (and similarly for the other states and intervals), one has to find the image of αi

under the four transformations in (18). Also, one has to gather the possible states following Ai for the
Markov chain. It has to be verified that the images of αi fall within the intervals corresponding to the
new state of the Markov chain.

Even more, it should be confirmed that the weights match: the measure transformations with co-
efficients (1 − p)/2 and p/2 in (18) have to correspond to Markov chain transitions with transition
probability (1− p)/2 and p/2.

b) We need to apply a) multiple times. For example, assume for a moment that the Markov chain is at
B′

0 and we are given a µB′

0
supported within β′

0. The Markov chain can step to B′
0, A0, C0, B

′
1 with

transition probabilities (1−p)/2, (1−p)/2, p/2, p/2. According to a) the four measure transformations
corresponding to these four transitions will lead to four measures supported within β′

0, α0, γ0, β
′
1.

When we relate the setting to the full Markov chain and µ, we observe that the probability of the
Markov chain being in B′

0 is xB′

0
and so is the weight of µB′

0
in the expression of µ.

After a step in the Markov chain, the probability distribution at any node, say A0, is the aggregated
probability of the incoming transitions, from B′

0, B
′
1, B

′′
0 , B

′′
1 . In the same way µ+

A0
is the mixture

of measures coming from the corresponding transformations of µB′

0
, µB′

1
, µB′′

0
, µB′′

1
. Observe that the

initial probability distribution of the Markov chain and the weights in the expression of µ match. Even
more, the transition probabilities and the mixture weight are the same. Therefore the new probability
distribution of the Markov chain an the mixture weights of the new measure must agree as well.

Let us now initiate the process with µ = ν, the push-sum coefficient measure, and with the probability
distribution δC1

for the Markov chain putting all weight on C1. This µ is indeed supported within [0, 1],
so this is a consistent choice. Remixing µ according to (18) does not change it as it is the solution of the
invariance equation (10) mentioned before. On the other hand, the Markov chain will approach its unique
stationary distribution step by step. According to Lemma 16 we get that ν can be expressed as the mixture
of measures supported within α0, α1, . . . with the weights being the values of the stationary distribution of
the Markov chain.

We now calculate this stationary distribution. Let ai, ci be the stationary probabilities of being in states
Ai, Ci. Using the symmetry of B′

i and B′′
i let bi the stationary probabilities of being in states B′

i or B′′
i .

Also, let us define the total weights of the different types of states as

SA =

∞
∑

i=0

ai,

SB = b0 + b1,

SC = c0 + c1.

15



Figure 6: Transitions with probability (1− p)/2.

Looking at the scheme of possible transitions, we immediately find that

SA = (1− p)SA +
1− p

2
SB ,

SB = pSA +
1

2
SB + (1− p)SC ,

SC =
p

2
SB + pSC .

Knowing also that these three sum up to one, we get

SA = (1− p)2, SB = 2p(1− p), SC = p2.

For ai we see the simple recursion ai = (1− p)ai−1. Taking into account their sum SA we get

ai = p(1− p)i+2.

For the other nodes, we have the equations.

b0 = pSA +
1− p

2
b0 + (1− p)c0,

c0 =
p

2
b0.

These finally lead to

b0 =
2p(1− p)2

1 + p2
,

b1 =
2p2(1− p2)

1 + p2
,

c0 =
p2(1− p)2

1 + p2
,

c1 =
2p3

1 + p2
.
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Figure 7: Transitions with probability p/2.

We get an upper bound on the error R of the measure ν if we combine upper bounds for the different
intervals αi, β

′
i, β

′′
i , γi with the weights of the stationary distribution of the Markov-chain. Recall that we

have an error bound for a certain interval if we find the furthest point z from 1/2 and then evaluate (1−2z)2

for the quadratic error. We will use r to denote these errors for the different intervals. By omitting the
obvious calculations we get

r(αi) =
1

(2i+1 + 1)2
,

r(β′
0) = r(β′′

0 ) =
9

25
,

r(β′
1) = r(β′′

1 ) = 1,

r(γ0) =
9

25
,

r(γ1) = 1.

Finally, let us combine all our estimates.

R ≤
∞
∑

i=0

air(Ai) + b0r(B0) + b1r(B1) + c0r(C0) + c1r(C1)

=

∞
∑

i=0

p(1− p)i+2

(2i+1 + 1)2
+

9

25

2p(1− p)2

1 + p2
+ 1

2p2(1− p2)

1 + p2
+

9

25

p2(1− p)2

1 + p2
+ 1

2p3

1 + p2
.

≤
∞
∑

i=0

p(1− p)i+2

(2i+1)2
+

p

25(1 + p2)

(

18 + 23p+ 50p2 − 41p3
)

=
p(1− p)2

4

1

1− (1− p)/4
+

p

25(1 + p2)

(

18 + 23p+ 50p2 − 41p3
)

=
p(1− p)2

3 + p
+

p

25(1 + p2)

(

18 + 23p+ 50p2 − 41p3
)

.

This is exactly the not so simple formula we were aiming for.
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4.3 Upper bound for high failure rate

When we compare simulation results with the general upper bound on Figure 4, we see that the bound is
rather conservative for high p. In this subsection we introduce an alternative upper bound tailored specially
for the case of p near 1.

We only investigate the first few steps of the process. We stop after the second successful transmission
and check the ratios at the two nodes. We claim that the error corresponding to the ratio further from 0 is
a valid upper bound on the final error of this instance. Indeed, the ratios only get closer, so the error of the
worse can only get better through the subsequent steps.

We analyze the case where the two successful transmission occur in different directions, we assume
(without loss of generality) from node 1 to 2 and then from node 2 to 1. If the two transmissions happen
in the same direction, we just assume that the error is trivially bounded by 1. Let us describe the joint
distribution of the ratios at the 2 nodes at this point in time.

We focus on the values xi(t) first. We clearly start with

−1 and 1.

Assume that before the first successful transmission, node 1 had k1 unsuccessful attempts and node 2 had
l1 of those. After the first successful transmission from node 1 to 2 we have the values

−2−k1−1 and − 2−k1−1 + 2−l1 .

We now assume k2 and l2 unsuccessful transmissions, respectively. After the second successful transmission,
now from node 2 to node 1 we get

−2−k1−k2−1 − 2−k1−l2−2 + 2−l1−l2−1 and − 2−k1−l2−2 + 2−l1−l2−1.

We can do the same computation for the weights wi(t), the only difference is that they are both initialized
as 1. Note that the weights and values evolve together, so the values ki, li stay the same. For simplicity, we
introduce the notation t1 = k1 − l1 and t2 = l2 − k2. In the end, for the ratios we get

x1

w1
=

−2t2 + 2t1 − 1
2

2t2 + 2t1 + 1
2

and
x2

w2
=

2t1 − 1
2

2t1 + 1
2

.

Next we describe the distribution of ti. The event {ti = a} means that there is some l such that l halvings
have been made in one direction, l + a in the other. For non-negative a this leads to the formula

P (ti = a) =

∞
∑

l=0

(1− p)p2l+a

(

2l + a

l

)

2−2l−a.

By symmetry we have P (ti = a) = P (ti = −a). Using the generating functions of binomial coefficients the
formula can be simplified to

P (ti = a) =

√

1− p

1 + p

(

1−
√

1− p2

p

)|a|

. (20)

To get an error bound, we have to check which ratio xi/wi is the worse based on the values of t1, t2,
and use the error corresponding to that ratio. Evaluating which ratio is the worse is a simple but somewhat
tedious exercise. The summary of the different cases is shown in Figure 8. Knowing that t1, t2 are integers
We identify the following regions:

a) t1 ≤ −1, both ratios are non-positive, the first is the worse.

b) t1 ≥ 0, t1 ≥ t2 + 1, both ratios are non-negative, the second is the worse.

c) t1 ≥ 0, t1 ≤ t2, 2t1 ≥ t2, one is positive, one is negative, the second is the worse.

d) t1 ≥ 0, 2t1 + 1 ≤ t2, one is positive, one is negative, the first is the worse.

18



Figure 8: Different cases based on t1, t2.

The overall error bound is obtained by summing up all the cases, from which we get

R ≤ 1

2
+

1

2

∞
∑

a1=−∞

∞
∑

a2=−∞

P (t1 = a1)P (t2 = a2)r(a1, a2).

Here r(a1, a2) is the error corresponding to the situation when t1 = a1, t2 = a2. These are well defined
expressions based on the two ratios and on the actual region for the pair. This is the square of one of the
two ratios, depending on which region we are in, as described above. By substituting the formulas for the
probabilities we arrive at the following statement.

Theorem 17. Using the definition of r(a1, a2) above, we get the following bound for the quadratic error:

R ≤ 1

2
+

1− p

2(1 + p)

∞
∑

a1=−∞

∞
∑

a2=−∞

(

1−
√

1− p2

p

)|a1|+|a2|

r(a1, a2).

The numerical performance of this upper bound is shown in Figure 9. We see indeed that this upper
bound captures the behavior of the error when p is close to 1.

5 Comparison of methods

After analyzing the push-sum algorithm, let us compare its behavior to traditional consensus. Let us quickly
remind what this algorithm is.

Again, every agent stores its measurement xi(t). At every time step, an ij edge is chosen randomly, then
agent i sends his measurement and thus influences agent j. To be more precise, we do the following update:

xi(t+ 1) = xi(t),

xj(t+ 1) = (xj(t) + xi(t))/2.
(21)

It is easy to see that this also converges to consensus. However, even with no communication error the
consensus value might deviate from the real average. On the other hand, transmission failures won’t increase
this error, only slow down the process.
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Figure 9: Performance of upper bound for high p

For a good comparison it will be useful to allow a bit of tweaking of both algorithms. In both cases, we
have a hard-coded parameter of influence set at 1/2. This is the ratio sent for the push-sum algorithm and
the strength of influence for traditional consensus. We get valid and convergent algorithms if we change this
value to some other α.

This way the algorithm has two parameters: the external error probability p and the chosen influence
ratio α. We also have two performance metrics: the error from the real average and the speed to reach
consensus. Therefore we get a legitimate comparison in the following way. Given an error probability p and
a desired error R, we choose α for both algorithms to achieve this error. Knowing that now they perform
the same computation, the comparing the speed of the two will tell us which one is more efficient.

Therefore we generate a large number of instances, randomly choosing p and α and compute the speed
and error the algorithms give. We generated over 60M instances for the push-sum algorithm, and over 35M
for traditional consensus (for the latter we can simplify a bit as p only simply scales the speed without
changing the error, we can fix it to 1 and then scale it to other values). In Figure 10 we numerically compare
the performance of the two algorithms for a network of fully connected 5 nodes. We identify the following
regions:

a) Traditional consensus performs faster. This is the case when we want low error despite the extremely
high p.

b) Push-sum is the faster choice.

c) None of the random instances of the push-sum algorithm ended up in this region.

To understand the region c), note that the push-sum algorithm will always give 0 error when p = 0, so it is
reasonable to see that we do not get high errors when p is very small.

We conclude that the push-sum algorithm is the better alternative for a wide range of setups, but we
should be careful when the transmission failure probability p is extremely high.

6 Conclusions

We have analyzed the push-sum algorithm in the presence of transmission failures. This algorithm was orig-
inally designed to perform perfect averaging on a network with directed communication. When transmission
failures are possible, the values of the nodes of the network still converge to a common value, but this might
not be the exact average of the original inputs.
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Figure 10: Comparison of push-sum and traditional consensus for 5 nodes

The final value is a random variable determined by the sequence of communication steps and the sequence
of transmission failures. We develop new tools to better understand the resulting value, and we form an
equation that implicitly describes the distribution of this random variable. Further investigation is performed
for the simple case when there are only two nodes, we develop lower and upper bounds on the expected
error.

There are very natural follow-up questions to consider for future research. For the case of two nodes,
the error bounds do still have a gap between them, there is still room for improvement. It would be even
more interesting to extend the results for networks with more nodes. We already have an insight on the
distribution of the final value, but it is not straightforward how this could be translated into numerical
bounds.

Acknowledgments

We would like to thank Asuman Ozdaglar for the inspiring discussion that eventually lead to this research
question being investigated.

References

[1] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using
nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[2] L. Moreau, “Stability of multiagent systems with time-dependent communication links,” IEEE Trans-
actions on Automatic Control, vol. 50, no. 2, pp. 169–182, 2005.

[3] G. Cybenko, “Dynamic load balancing for distributed memory multiprocessors,” Journal of Parallel
and Distributed Computing, vol. 7, no. 2, pp. 279–301, 1989.

[4] J. N. Tsitsiklis, Problems in decentralized decision making and computation. PhD thesis, Massachusetts
Institute of Technology, 1984.

[5] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology
and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[6] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,” in Proceed-
ings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 482–491, 2003.

21

https://www.researchgate.net/publication/4006465_Coordination_of_groups_of_mobile_autonomous_agents_using_nearest_neighbor?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/4006465_Coordination_of_groups_of_mobile_autonomous_agents_using_nearest_neighbor?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/4038189_Gossip-based_computation_of_aggregate_information?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/4038189_Gossip-based_computation_of_aggregate_information?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/222444728_Dynamic_Load_Balancing_for_Distributed_Memory_Multiprocessors?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/222444728_Dynamic_Load_Balancing_for_Distributed_Memory_Multiprocessors?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/235129142_Problems_in_Decentralized_Decision_Making_and_Computation?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/235129142_Problems_in_Decentralized_Decision_Making_and_Computation?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/3032048_Stability_of_multiagent_systems_with_time-dependent_communication_links?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/3032048_Stability_of_multiagent_systems_with_time-dependent_communication_links?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/292215410_Consensus_problems_in_networks_of_agents_with_switching_topology_and_time-delays?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==
https://www.researchgate.net/publication/292215410_Consensus_problems_in_networks_of_agents_with_switching_topology_and_time-delays?el=1_x_8&enrichId=rgreq-ec193ec4e77dcfac7e201ad4963d3ebb-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY2OTM3MjtBUzoyMjkyOTM2NzAyNjg5MjhAMTQzMTY3OTI3OTU3NA==


[7] P.-A. Bliman and G. Ferrari-Trecate, “Average consensus problems in networks of agents with delayed
communications,” Automatica, vol. 44, no. 8, pp. 1985–1995, 2008.

[8] F. Fagnani and S. Zampieri, “Average consensus with packet drop communication,” SIAM Journal on
Control and Optimization, vol. 48, no. 1, pp. 102–133, 2009.

[9] W. Ren, R. W. Beard, et al., “Consensus seeking in multiagent systems under dynamically changing
interaction topologies,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[10] I. Matei, J. S. Baras, and C. Somarakis, “Convergence results for the linear consensus problem under
markovian random graphs,” SIAM Journal on Control and Optimization, vol. 51, no. 2, pp. 1574–1591,
2013.

[11] M. Huang and J. H. Manton, “Coordination and consensus of networked agents with noisy measure-
ments: stochastic algorithms and asymptotic behavior,” SIAM Journal on Control and Optimization,
vol. 48, no. 1, pp. 134–161, 2009.
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