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Push-to-Peer Video-on-Demand System:
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Varvello

Abstract—We propose Push-to-Peer, a peer-to-peer system to
cooperatively stream video. The main departure from previous
work is that content is proactively pushed to peers, and persis-
tently stored before the actual peer-to-peer transfers. The initial
content placement increases content availability and improves
the use of peer uplink bandwidth.

Our specific contributions are: (i) content placement and
associated pull policies that allow the optimal use of uplink band-
width; (ii) performance analysis of such policies in controlled
environments such as DSL networks under ISP control; (iii) a
distributed load balancing strategy for selection of serving peers.

Index Terms—Peer-to-Peer networks, Video on Demand ser-
vice, push service, rateless coding, randomized peer selection

I. INTRODUCTION

OVER the past five years, there has been considerable

research in the use of peer-to-peer networks for distribut-

ing both live [6], [28], [21], [20] and stored [7], [2] video. In

such systems, peer interest plays the central role in content

transmission and storage - a peer pulls content only if the

content is of interest. Once pulled content has been stored

locally, the peer may then in turn distribute this content to yet

other self-interested peers. Such a pull-based system design

is natural when individual peers are autonomous and self-

interested. However, when individual peers are under common

control, for example in the case of residential home gateways

or set-top boxes under the control of a network or content

provider, a wider range of system designs becomes possible.

The use of home gateways or set-top boxes under the control

of a network or content provider is motivated by the fact

that the they meet much stronger reliability requirements in

terms of system and bandwidth availability. In fact, many ISPs

and content providers have already deployed or have plans to

deploy such equipment (though they do not have peer-to-peer

functionality) in subscribers’ premises to offer billable content

services.

Our objective is to design a reliable VOD architecture

that relies on peer-to-peer transfer as a primary means to

provide high-quality streaming. To the best of our knowledge,
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most pull-based video streaming services either provide only

low-quality video (i.e., less than 500Kbps) or use hybrid

approaches in which the role of P2P streaming is limited to

reducing the traffic load posed on their streaming infrastructure

(e.g., ZATTOO [27] and JOOST [12]). Though PPLIVE [20]

has been successful in providing video streaming without

much infrastructure support, it has been reported that it relies

heavily on hosts in university networks [10].

In this paper, we investigate the design space of a Push-to-

Peer Video-on-Demand (VoD) system. In such a system, video

is first pushed (e.g., from a content creator) to a population of

peers. This first step is performed under provider or content-

owner control, and can be performed during times of low

network utilization (e.g., early morning). Note that as a result

of this push phase, a peer may store content that it itself has

no interest in, unlike traditional pull-only peer-to-peer systems.

Following the push phase, peers seeking specific content then

pull content of interest from other peers, as in a traditional

peer-to-peer system. The Push-to-Peer approach is well-suited

to cooperative distribution of stored video among set-top

boxes in a DSL network, where the set-top boxes themselves

operate under provider control. We believe, however, that the

Push-to-Peer approach is more generally applicable to cases

in which peers are long-lived and willing to have content

proactively pushed to them before video distribution among

the cooperating peers begins.

In this paper, we consider the design and analysis of a

Push-to-Peer system in a network of long-lived peers where

upstream bandwidth and peer storage are the primary limiting

resources. We consider a controlled environment, with a set

of always-on peers, constant available bandwidth among the

peers, and the possibility of centralized control, assumptions

appropriate in the specific setting of a VoD system consisting

of set-top boxes within a single DSLAM [11] in a DSL

network. DSLAMs of providers such as France Telecom

typically connect around 800 DSL users. With this number

of users, if 50 GigaBytes of storage is available on each DSL

gateway, it is possible to store up to 5600 DVD-quality movies

under a single DSLAM. This number of movies would be

scaled down by a suitable factor for the replicated placement

schemes we advocate later.

We begin by describing an idealized policy for placing video

data at the peers during the push phase - full striping - and

its consequent pull policy for downloading video. We also

consider the practical case in which the number of peers from

which a peer can download is bounded, and propose a code-

based scheme to handle this constraint. We demonstrate that

these two placement policies are optimal among policies that
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make use of the same amount of storage per movie, in that

they maximize the demand that the system can sustain.

We analyze the performance of these policies (in terms of

blocking under a no-wait blocking model, and delay under

a model in which blocked requests are queued until they

can be served). Our performance models can be used not

only to quantitatively analyze system performance but also to

dimension systems so that a given level of user performance

is realized - an important consideration if Push-to-Peer is

provided as a billable service by the network provider. We

also consider the case of prefix caching at the peers.

The remainder of this paper is structured as follows. In

Section II, we describe the controlled DSLAM setting, and the

push and pull phases in more detail. We also summarize some

of the important differences between the Push-to-Peer and

traditional peer-to-peer approaches for VoD. In Section III, we

describe two policies for placing video data at the peers during

the push phase. In Section IV we analyze the performance

of the previous schemes under both a blocked-calls-lost and

blocked-calls-queued model. We apply those analytical results

to address prefix sizing problem. In Section V we propose

a distributed job placement algorithm and investigate its

performance. Section VI discusses related work. Section VII

concludes this paper.

II. NETWORK SETTING AND PUSH-TO-PEER OPERATION

In this section, we describe the network setting for the Push-

to-Peer architecture and overview the push and pull phases

of operation. We also describe our video playback model, in

terms of user requirements and performance metrics.

We will describe the Push-to-Peer architecture in the context

of a number of always-on set-top boxes (STBs) or Residential

Home Gateways (RHGs) that collectively sit below a DSLAM

in a DSL network and cooperatively distribute video amongst

themselves.

The Push-to-Peer system comprises a content server, a

control server, and boxes at the user premises. The content

server, located in the content provider’s premises, pushes

content to the boxes during the push phase, as described

below. A control server is also located in the content provider’s

premise; it provides a directory service to boxes in addition to

management and control functionalities. The always-on STBs

or RHGs reside at the customer premises. Although there are

important technological and commercial differences between

STBs and RHGs, we will refer to these devices generically

as boxes in the remainder of this paper, since the crucial

capabilities - the ability to download, upload, and store video

under provider control - are common to both STBs and RHGs.

Content distribution proceeds in two phases in our Push-to-

Peer system.

• Push Phase. During the push phase, the content server

pushes content to each of the boxes. We envision this

occurring periodically, when bandwidth is plentiful (e.g.,

in the early AM hours), or in background, low priority

mode. After pushing content to the peers, the content

server then disconnects (i.e., does not provide additional

content), until the next push phase. A crucial issue for

the push phase is that of data placement: what portions

of which videos should be placed on which boxes; we

address this problem in Section 3.

• Pull Phase. In the pull phase, boxes respond to user

commands to play content. Since a box typically does

not have all of the needed content at the end of the push

phase, it will need to retrieve missing content from its

peers. While it is possible for the boxes to proactively

push content among themselves (not in response to user

commands) we do not consider that possibility here. We

assume that a user will watch only one video at a time.

We make the following assumptions about the DSL network,

and the boxes at the user premises:

• Upstream and downstream bandwidth. We assume that

the upstream bandwidth from each box to the DSLAM

is a constrained resource, most likely smaller than the

video encoding/playback rate 1. We assume that when a

peer uploads video to N different peers, the upstream

bandwidth is equally shared among those peers. We also

assume that video is transferred reliably, either using FEC

or ARQ. We assume that the downstream bandwidth is

sufficiently large that it is never the bottleneck when a

peer downloads video from other (possibly many other)

peers (instead, the upstream bandwidths at those other

peers are collectively the limiting resource). We thus also

assume that the downstream bandwidth is larger than the

video encoding/playback rate.

• Peer storage. We assume that boxes have hard-disks that

can store content that is pushed to the box during the

push phase. This content can then be uploaded to other

peers upon request, during the pull phase. The disk may

also store movie prefixes, that are used locally at the

box to decrease startup delay, as discussed in Section 4.

We note that when a box needs to pull video from other

boxes for playout, this video must also be stored in a

local playout buffer, but we do not consider the (relatively

small) requirements of this playout buffer here.

• Peer homogeneity. We assume that all peers have the

same upstream link bandwidth and the same amount of

hard disk storage.

Each movie is chopped into windows of contiguous data

of size W . A full window needs to be available to the user

before it can be played back. However a user can play such

a window once it is available, without waiting for subsequent

data. The window size is a tunable parameter: the smaller the

window size, the smaller the startup delay for video playback.

Since the window is a unit of random access to a video, the

window also allows us to support VCR operations such as

jump forward and jump backward. A viewer only needs to

wait until a single window to which a jump operation is made

is fully available. Each window is further divided into smaller

data blocks that are stored onto distinct boxes.

1For example, AT&T lightspeed network and Verizon FiOS allocate up to
1Mbps and 2Mbps upload bandwidth to each home respectively. The video
encoding rate for high-definition (HD) video uses 6 Mbps bandwidth and
the rate for standard-definition (SD) uses 2Mbps bandwidth [5]. Clearly, the
aggregate upstream bandwidth of peers may be smaller than the aggregate
downloading bandwidth needed to support high-quality p2p video streaming
service. More importantly, the maximum upstream bandwidth could be
reliably achieved only when the traffic is sent locally among the nodes
connected by a same switch such as DSLAM [5].
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In the sequel we will consider two modes of operation. In

the first mode, when a new request to play a movie cannot

be served at an aggregate speed that matches the encoding /

playback speed, the request is dropped. In the second mode,

the request is enqueued, until a sufficient amount of bandwidth

to play back the video becomes available.

We refer to the first approach as the blocking model, and to

the second as the waiting model. Depending on which model

we consider, we measure system performance using either the

request blocking rate or the mean startup delay.

III. DATA PLACEMENT AND PULL POLICIES

In this section we first propose the full-striping data place-

ment and code-based data placement schemes. In contrast to

full striping, the latter allows a box to download a video from

a small number of boxes. This is useful when the number of si-

multaneous connections that a box can support is constrained.

We then state and prove optimality properties of both schemes,

in terms of the demands they can accommodate. We consider

both deterministic and stochastic models of demands.

VCR operations such as jump forward, jump backward, and

pause can be supported by both schemes though we assume

sequential access when those schemes and their corresponding

demand models are presented. In architectural perspective, it is

a simple modification 2. Since the only resource constraint that

our demand models pose is the downloading rate, it does not

matter whether the window for a video is requested in order

in terms of time (i.e., sequential access) or they are requested

out of order (i.e., controlled random access required by VCR

operations).

We don’t consider the full striping to be a practical scheme,

since it is not resilient to box failures. We present it to obtain

the benchmark performance bound of the push-to-peer system,

which is meant to be compared to the performance of the

code-based scheme.

In the remainder of the paper we assume that there are M
boxes and that each window of a video is of size W .

A. Full Striping scheme

A full striping scheme stripes each window of a movie over

all M boxes. Specifically, every window is divided into M
blocks, each of size W/M , and each block is pushed to only

one box. Consequently, each box stores a distinct block of a

window. A full window is reconstructed at a particular box

by concurrently downloading M − 1 distinct blocks for the

window from the other M − 1 boxes. Hence a single movie

download request generates M −1 sub-requests, each targeted

at a particular box.

A box serves admitted sub-requests according to the Proces-

sor Sharing (PS) policy, forwarding its blocks of the requested

video to requesting boxes. PS is an adequate model of fair

sharing between concurrent TCP connections, when there is no

2The following modification should be made: (1) Each box requires
additional memory space of size equal to the size of a single movie. The
additional memory caches a full copy of the video that a box is currently
watching. (2) The window that a jump operation is made to by the box is
downloaded if a copy of the window has not been cached in the additional
memory space. Otherwise, the box continues to download all windows of the
video in order until it has a full copy of the video in the additional memory.

round-trip time bias and the bottleneck is indeed the upstream

bandwidth.

We further impose a limit on the number of sub-requests

that a box can serve simultaneously. Specifically, to be able

to retrieve the video at a rate of Renc, one should receive

blocks from each of the M − 1 target boxes at rate at least

Renc/M , where Renc is the video encoding/playback rate.

Hence we should limit the number of concurrent sub-requests

being served by each box to at most Kmax := ⌊BupM/Renc⌋,

where Bup is the upstream bandwidth of each box. We

envision two approaches for handling new video download

requests that are blocked because one of the M − 1 required

boxes is already serving Kmax distinct sub-requests. In the

first approach, we simply drop the new request. In the second

approach, each of the M − 1 sub-requests generated by the

new request is managed independently at each target box. If

there are fewer than Kmax concurrent jobs at the target box,

then the sub-request enters service directly. Otherwise, it is

placed in a FIFO queue local to the serving box, and waits

till it can start service.

B. Code-based placement

We describe a modification of full striping, namely code-

based placement, under which the maximum number of simul-

taneous connections that a box can serve is bounded by y, for

some y < M − 1. This scheme applies rateless coding [16],

[17]. A rateless code such as the LT code [16] can generate

an infinite number of so-called coded symbols by combining

the k source symbols of the original content. These k source

symbols can be reconstructed with high probability from any

set of (1 + ǫ) ∗ k distinct coded symbols. In practice, the

overhead parameter ǫ falls in [0.03, 0.05], depending on the

code that we use [4], [17].

The code-based scheme we propose divides each window

into k source symbols3, and generates Ck = (M(1+ ǫ)/(y +
1))k coded symbols. We call C the expansion ratio, where

C > 1. For each window, the Ck symbols are evenly

distributed to all M boxes such that each box keeps Ck/M =
(1+ ǫ)k/(y +1) distinct symbols. A viewer can reconstruct a

window of a movie by concurrently downloading any Cky/M
distinct symbols from an arbitrary set of y boxes out of

(M − 1) boxes.

The code-based scheme is similar to full striping in the

sense that distinct (coded) symbols are striped to all M boxes.

However, unlike full striping, only y boxes are needed to

download the video.

We now define the pull strategy used for the code-based

scheme. The maximum number, K ′
max, of sub-requests that

can be concurrently processed on each box to ensure delay-

free playback now reads K ′
max = ⌊(y +1)Bup/Renc⌋. Under

the blocking model, a new request is dropped, unless there are

y boxes currently handling less than K ′
max sub-requests. In

that case, the new request creates y sub-requests that directly

enter service at the y boxes currently handling the smallest

3With rateless codes the greater the value of k, the greater is the probability
of reconstructing content with small overhead [4]. Consequently, the symbol
size should be as small as possible, and therefore in our case symbol size
should be equal to packet size (i.e. MTU).
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number of jobs. Under the waiting model, each box has a

queue from which it selects sub-requests to serve. Each new

movie download request generates M−1 sub-requests that are

sent to all other boxes. Upon receipt at a receiving box, each

sub-request either enters service directly, if there are less than

K ′
max sub-requests currently served by that box. Otherwise it

is placed in a FIFO queue specific to the box. Once a total of

y sub-requests have entered service, all other M − 1− y sub-

requests are deleted. Thus each request eventually generates

only y sub-requests.

C. Deterministic demands

We first consider a model where the demand is specified

by the maximum number of concurrent viewings, Nj , of each

movie j, that the system is expected to face at any given

time. The quality of a placement strategy is then evaluated by

determining the demand profiles it can handle. Here a demand

profile is {Nj} such that no additional request can be served.

The demand profiles {Nj} can be thought of as describing

the maximum demand that can be handled at a busy hour, or

during a flash crowd event.

We first consider full striping. One has the following.

Proposition 1: Under full striping, a sufficient condition for

a demand profile {Nj}j=1,...,J to be sustained is

J
∑

j=1

NjRenc/M ≤ Bup. (1)

Under any scheme which stores a single copy of

each movie, a necessary condition for a demand profile

{Nj}j=1,...,J to be sustained is

J
∑

j=1

NjRenc(1 − 1/M) ≤ MBup. (2)

Proof: To see the sufficiency of (1), we note that each

particular viewing request is broken into M − 1 sub-requests,

mapped to M − 1 boxes, and each such sub-request re-

quires a rate of (1/M)Renc in order to allow delay-free

playback. Thus the rate demand on a particular box is at

most
∑J

j=1 NjRenc/M . It can therefore be met under Con-

dition (1).

To establish the second part, let Aj,m denote the amount

of memory dedicated to movie j on box m. By assumption,
∑M

m=1 Aj,m = TjRenc. Let Tj denote the length of movie j
in seconds. Consider a random assignment of movie requests

to boxes, under the constraint that no two requests come from

the same box. Then for a given box m, the rate at which it

must handle sub-requests is, on average, given by

J
∑

j=1

Aj,m

Tj
Nj(1 − 1/M).

Indeed, each request to view movie j has probability (1 −
1/M) of coming from another box, in which case it creates a

sub-request to box m, that must be served at rate Aj,m/Tj to

allow delay-free playback. Summing this expression over m
yields the average total service rate for the system. This also

coincides with the left-hand side of (2), which by assumption

is strictly larger than the total uplink capacity MBup. Thus

there must exist specific assignments of viewing requests Nj to

boxes m that are infeasible, for otherwise the average service

rate would not exceed the total uplink bandwidth.

Note that the conditions (1) and (2) cover the cases where

the ratio
∑

j NjRenc/(MBup) is respectively less than one

and greater than M/(M − 1). The intermediate range is of

vanishing length when M is large. In this sense we can claim

that full striping is asymptotically optimal among policies that

store only one copy of each movie.

Let us now turn to code-based placement. Again, we assume

that the amount of storage dedicated to each movie j is

CTjRenc, for some common factor C > 1. We then have

Proposition 2: Under coding, a sufficient condition for the

demand profile {Nj}j=1,...,J to be sustained is

Renc

⎡

⎣

C

1 + ǫ
+

J
∑

j=1

Nj

(

1 −
C

M(1 + ǫ)

)

⎤

⎦ ≤ MBup. (3)

Under any scheme which stores at most CTjRenc for movie

j, a necessary condition for demand profile {Nj}j=1,...,J to

be sustained is

Renc

J
∑

j=1

Nj(1 − C/M) ≤ MBup. (4)

Proof: Each request to view movie j generates y sub-

requests, where y is related to C via C = M(1 + ǫ)/(y + 1).
Delay-free playback is possible if each sub-request can be

served at a rate of Renc/(y + 1). A balanced assignment of

sub-requests to boxes can ensure that each box deals with at

most

⎡

⎢

⎢

⎢

1

M

J
∑

j=1

Njy

⎤

⎥

⎥

⎥

≤ 1 +
1

M

J
∑

j=1

Njy

sub-requests. Thus demand is feasible if

Renc

y + 1

⎡

⎣1 +
1

M

J
∑

j=1

Njy

⎤

⎦ ≤ Bup.

Replacing y by its expression (1+ ǫ)M/C−1 in the above

inequality yields Condition (3).

To establish the second part, consider a random assignment

of viewing requests to boxes. Let Aj,m denote again the

amount of storage dedicated to movie j on box m. Because

of the constraint
∑

m Aj,m = CTjRenc, each request to view

movie j has on average a fraction C/M of the required data

stored locally on the box, and thus requires on average a

service rate of Renc(1 − C/M). Thus, the left-hand side of

(4) represents the average service rate required for delay-free

playback of all requests. When (4) is not satisfied, this is

larger than the total uplink bandwidth MBup, and necessarily

there exist specific assignments of viewing requests to boxes

that cannot be satisfied, for otherwise the average service rate

needed would not exceed the available uplink bandwidth.
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D. Stochastic models of demand

Let us introduce the following stochastic model for demand.

Requests for movie j arrive according to a Poisson process

with rate νj . Each request originates from box m with proba-

bility 1/M , for all m ∈ {1, . . . , M}. This last assumption can

be interpreted as follows. We assume that no knowledge is

available regarding which user is more likely to request which

movie. We make this assumption for simplicity. In practice

we expect to have information about user preferences, either

communicated explicitly by users to the system, or inferred

from past usage behaviour.

We note that, although the Poisson arrival model is standard

in queueing theory, it is not entirely realistic in the present set-

up. In particular one would not expect the same movie to be

viewed several times from the same box, or several movies

to be viewed simultaneously from the same box. However,

the model allows to gain insight in the design challenges

of placement schemes. This is illustrated further in the next

section where we discuss prefix caching strategies.

1) Optimality of full striping: Denote by Lj the size of

movie j in bytes, and by Aj,m the amount of memory in bytes

dedicated to movie j on box m. Then the average size of a

download request for movie j is Lj − (1/M)
∑M

m=1 Aj,m.

We shall assume that a single copy of each movie is stored

in the system, which can be translated into the constraint
∑M

m=1 Aj,m = Lj . It is natural to ask whether under such

constraints, there exists a placement strategy that is optimal

with respect to the demand rates νj that it can accommodate.

The following shows that full striping is such an optimal

placement strategy:

Proposition 3: Assume that a single copy of each movie

is stored in the whole system. Then under full striping data

placement, and for the waiting model, the system is stable

(i.e., download times do not increase unboundedly) whenever

J
∑

j=1

νjLj (1 − 1/M) < M ∗ Bup. (5)

Moreover, for any other placement strategy specified by the

Aj,m, the set of rates νj accommodated without rejection is

strictly smaller than that under full striping.

Proof: Note that for any placement policy in which

movies are stored only once, the work arrival rate at a given

box m is given by

ρ(m) := (1 − 1/M)
J

∑

j=1

νjAj,m. (6)

Under full striping, one has Aj,m = Lj/M . Thus condition

(5) is equivalent to the condition that the work arrival rate

ρ(m) is less than the service rate Bup of box m. This condition

does not depend on m, and is thus necessary and sufficient

for stability of the whole system.

Consider now a different placement strategy, for which there

exists a pair (j∗, m∗) such that Aj∗,m∗ > Lj∗/M . For any

demand rates νj , j = 1, . . . , J , assume that there exists a

pull strategy that can stabilize the system under such demand.

Then necessarily, for all m ∈ {1, . . . , M}, one has ρ(m) <

Bup. Summing these inequalities one obtains (5), hence such

demand can also be handled under full striping.

Consider now a particular demand vector where νj = 0 for

all j �= j∗, and

νj∗(1 − 1/M)Lj∗ = MBup − ǫ,

for some small ǫ > 0. Clearly this verifies (5). However,

the load placed on box m∗ is precisely

ρ(m∗) = (1 − 1/M)νj∗Aj∗,m∗ .

By our choice of (j∗, m∗), we thus have that

ρ(m∗) > (1 − 1/M)νj∗Lj∗/M.

Thus for small enough ǫ, one must have ρ(m∗) > Bup.

Therefore, this box is in overload and the system cannot cope

with such demands, while full striping can.

As shown in [23], this result can be further extended to non

Poisson arrivals, and strengthened by showing that at any

given time, the average work to be done at a particular box is

minimal under full striping.

2) Near-optimality of the code-based scheme: We assume

additional storage is used per movie as described before.

Specifically, we assume that a total storage capacity of C ∗Lj

is devoted to movie j, where C = M ∗ (1 + ǫ)/(y + 1)
is the expansion ratio introduced in the previous section.

The solution based on encoding assumes that for movie j,

a total quantity of Aj,m ≡ C ∗ Lj/M data is stored on each

individual box m. This data consists of symbols, such that for

any collection of y + 1 = M/C boxes, each movie can be

reconstructed from the joint collections of symbols from all

these y + 1 boxes. We then have the following proposition:

Proposition 4: By using the pull strategy described in Sec-

tion III-B, the system is stable whenever the Poisson arrival

rates νj verify

J
∑

j=1

νjLj [1 − C/((1 + ǫ)M)] < M ∗ Bup. (7)

Moreover, any scheme that uses C ∗ Lj storage for movie

j cannot cope with demand rates νj , unless the following

condition

J
∑

j=1

νjLj [1 − C/M ] < M ∗ Bup (8)

holds.

The proof relies on standard Lyapunov function techniques,

using as a Lyapunov function the unfinished work in the

system. It is omitted in the present document for brevity. We

only note that the average amount of data that needs to be

downloaded for a request for movie j is Lj(1−C/M) when

the overall storage devoted to movie j is CLj , and hence the

left-hand side of (8) is indeed the rate at which work enters

the system, while the right-hand side is an upper bound on

the service capacity of the system. Thus with the assumed

total storage per movie, Condition (8) is indeed necessary to

ensure the existence of a pull strategy for which the system is
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stable. The code-based scheme is indeed nearly optimal, since

Conditions (8) and (7) coincide when the overhead parameter

ǫ tends to zero.

IV. PERFORMANCE ANALYSIS

A. Blocking model

We now propose simple models to predict the blocking

probability of the system when requests are dropped (blocking

model) when resources are not available.

We first consider full striping. In the actual system, the

number of requests in progress varies from box to box, because

a requesting box does not place a request on itself. Also,

the overall service speed varies between (M − 1)Bup and

MBup depending on the system state: when a single video

download takes place, it proceeds at speed (M −1)Bup, while

an overall service rate of MBup is achieved when sub-requests

are served on all boxes.

However we consider simplified dynamics, where the num-

ber of sub-requests is the same on each box, and the total

service capacity is also constant. Specifically, we consider a

total service capacity of Btotal = MBup and assume this is

shared evenly among active downloads. The total amount of

data that needs to be downloaded for the playback of movie

j is then taken to be Lj(1 − 1/M). We assume movie j
download requests arrive according to a Poisson process with

rate νj , and a maximum number of concurrent downloads

of Kmax = ⌊Btotal/[Renc(1 − 1/M)]⌋. These simplified

dynamics correspond to the classical M/G/1/K/PS model, the

blocking probability of which is given by (see e.g. [14])

P I
b :=

(1 − ρ)ρKmax

[(1 − ρKmax+1)]
(9)

where

ρ =

∑J
j=1 νjLj(1 − 1/M)

Btotal
· (10)

To model the performance under coding we make similar

simplifying assumptions. We again assume that each box

handles the same number of sub-requests, so that the system

state is captured by the total number of movie download

requests. However we account for the fact that each movie

request is served by a maximum of y boxes, by taking the

total service rate, when there are n movie requests, as the

minimum of Btotal and nB̃ where B̃ := yBup.

Under such simplifying assumptions, the system state

evolves as a birth and death process on {0, . . . , Kmax}, where

Kmax = ⌊Btotal/[Rency/(y + 1)]⌋. The birth rate equals

ν =
∑

j νj in all states except Kmax, and the death rate in

state n is 4

min(n ∗ B̃, Btotal)

σ

where σ is the average job size,

4We would indeed have a Markovian birth and death process if job sizes
were exponentially distributed, and with mean σ. Insensitivity results on Pro-
cessor Sharing systems, see e.g. [13] guarantee that the rejection probability
is insensitive to the actual service time distribution and justify formula (11)
for the case of mixtures of deterministic service time distributions.
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Fig. 1. Rejection probability with M = 128, Video encoding rate Renc =

2Mbps, Upstream bandwidth Bup = 1Mbps, Size of Video L = 2Gbytes,
Coding overhead ǫ = 0.05, and Maximum number of simultaneous incoming
connection y = 31.

σ = (1 + ǫ)
∑

j

(νj/ν)Lj(y/(y + 1))·

For this system the blocking probability, which coincides

with the steady state probability of being in state Kmax, is

P II
b :=

ρk
1/k! ρKmax−k

0
∑k−1

i=0
ρi
1

i! +
ρk
1

k!
1−ρKmax−k+1

0

1−ρ0

(11)

where we have introduced the notations

ρ0 := νσ
Btotal

, ρ1 := ρ0
Btotal

B̃
,

k := ⌊Btotal

B̃
⌋.

The derivation is a simple exercise, and is omitted for

brevity.

We plot the rejection rate for the proposed data placement

schemes in Figure 1. In the simulation, we assume that the

arrival of user requests is a Poisson process and that the

probability that the request originates from a specific box is

1/M . Note that the code-based scheme pushes 4 copies of the

video to 128 boxes collectively. On the other hand, the full

striping scheme pushes only 1 copy of the video. The x-axis

indicates the normalized arrival rate of user requests and the

y-axis indicates the rejection probability of user requests.

The rejection rates do not differ much between the two

schemes. Perhaps surprisingly, the full striping scheme con-

sistently outperforms the code-based scheme, even though the

last scheme benefits from larger amounts of data stored on

each box. This is explained by the fact that there is 5% coding

overhead for the code-based scheme and the full striping

scheme allows viewers to take advantage of the bandwidth

from all 128 boxes regardless of the number of served viewers,

while the code-based scheme constrains the number of boxes

that are concurrently used to 31.
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B. Full striping: waiting model

In this section we consider the performance of the system

under full striping and when requests are allowed to queue up

for resources. As for blocking, we make simplifying assump-

tions to define a tractable performance model. Specifically, we

again assume that all boxes handle the same numbers of sub-

requests. Thus, an incoming movie request is accepted on all

boxes, in which case it gets a fair share of the overall system

upstream bandwidth, provided there are fewer than Kmax jobs

in the system. Otherwise, the job is put in a single FIFO queue.

Again Kmax is determined to ensure that effective download

rate is at least playback rate Renc.

We call this system the FIFO+PS service system. While

its performance is well understood under the assumptions of

Poisson job arrivals and exponential service times, to our

knowledge its performance has not been analysed previously

when the assumption of exponential service times is relaxed.

One of our contributions is to provide such an analysis, in a

heavy traffic regime.

Notations are as follows. Service capacity is normalised to

1. Jobs arrive at instants of a Poisson process with intensity

νℓ. Jobs are i.i.d. with some fixed distribution; we denote by

σ a typical job service time. Kmax still denotes the maximum

number of jobs that can be served concurrently. The index ℓ
is introduced to set the stage for the heavy traffic analysis.

Denoting by ρℓ := νℓE(σ) the traffic intensity, we shall

assume that, as ℓ tends to infinity, the load approaches 1 from

below:

ρℓ < 1, ℓ ≥ 1; lim
ℓ→∞

ρℓ = 1.

We shall further assume some scaling behaviour for param-

eter Kmax, namely the existence of a positive number m such

that:

lim
ℓ→∞

(1 − ρℓ)Kmax = m.

We then have the following result, the proof of which can

be found in [23]:

Theorem 1: Assume that the service time distribution is a

finite mixture of Exponential distributions. Denote by Zℓ the

number of jobs in steady state in the ℓ-th system. One then

has the following convergence, for all t > 0:

lim
ℓ→∞

P

(

Zℓ >
t

1 − ρℓ

)

=

⎧

⎨

⎩

e−m−2(t−m)σ2/σ2

if t > m,
e−t if t ≤ m.

(12)

Furthermore, denoting by W ℓ the waiting time of a job

in steady state in the ℓ-th system, one has the following

convergence, for all t ≥ 0:

lim
ℓ→∞

P
(

(1 − ρℓ)W
ℓ > t

)

= e−m−2tσ/σ2

. (13)

In particular the probability of not waiting satisfies

lim
ℓ→∞

P(W ℓ = 0) = 1 − e−m. (14)

Remark 1: Although we have established the theorem only

for the case of service times that are mixtures of exponential
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Fig. 2. Waiting time distribution for full striping with M = 128, Video
encoding rate Renc = 2Mbps, Upstream bandwidth Bup = 1Mbps, Size
of Video L = 2Gbytes and a normalized load of ρ = 0.98

distributions, we expect it to hold more generally, and in

particular to apply to the present setup where service time

distributions are concentrated on a finite set of values.

We now indicate how to use this result. For given system

parameters, we approximate the distribution of the waiting

time of an arbitrary job as follows:

P(W ℓ > t) ≈ e−(1−ρℓ)[Kmax+2tσ/σ2]. (15)

We plot the waiting time distribution for full striping,

obtained by simulation, and the corresponding analytical pre-

diction from Equation (15) in Figure 2. While the shapes

are similar, the match is not perfect. We observed better

matches when instead of deterministic service times, we used

exponential service times in simulations. We suspect that the

heavy traffic approximation becomes accurate only at very

high loads when service time distributions are not exponential.

C. Application: sizing prefixes

We now show how to use the previous results to further

optimize content placement assuming extra storage is avail-

able. We again assume there are J movies, all encoded at a

constant bit rate Renc, and denote by Lj the size of movie j.

For movie j, we assume that a prefix of size Pj is stored

locally on each box. This ensures that each user can play

back the first tj := Pj/Renc seconds of movie j without

downloading extra content. We further assume that encoded

symbols are created and placed on each box so that for each

movie j, its remainder can be reconstructed from the symbols

present at any y + 1 boxes.

Let D denote the memory space available on each box. The

above described placement strategy will be feasible provided

the following constraint is satisfied:

J
∑

j=1

Pj + (Lj − Pj)/(y + 1) ≤ D. (16)

Denote by νj the rate of requests for movie j. The amount

of movie j that needs to be downloaded for the playback is

then
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Fig. 3. Waiting time against prefixes balanced popularity (ν1 = ν2 = 0.99,
Renc = Btotal = 1, L1 = L2 = 1, P1 + P2 = 1, y ≫ 1)

σj =
y

y + 1
(Lj − Pj). (17)

Indeed, the prefix of size Pj is stored locally, as well as

a fraction 1/(y + 1) of the remainder of the movie. The

normalised load on the system is thus:

ρ =

∑J
j=1 νjσj

Btotal
. (18)

1) Blocking probabilities: We first consider performance

under blocking. The maximum number of concurrent jobs is

Kmax = ⌊Btotal/[Rency/(y + 1)]⌋. The blocking probability

is given by (9) in the particular case where y+1 = M , that is

to say under full striping. This probability is then minimized

by making the load as small as possible.

Using linear programming, one can easily see that, to

minimize the load ρ as given by (18) and (17) under memory

constraints (16) one should aim to cache locally the most

popular movies in full.

2) Waiting times: We now assume that requests are queued

and scheduled according to FIFO rather than dropped when

the number of concurrent requests in service equals Kmax.

The evaluations (15) give us an approximation of the

distribution of the delay W between request initiation and

download beginning. The actual delay can be reduced because

playback can start tj seconds before download starts.

This yields the following expression for the average delay

D̄j experienced by requests for movie j:

D̄j = E [max(0, W − tj)]

=
∫ ∞

tj
(x − tj)

2σ(1−ρ)

σ2
e−(1−ρ)[Kmax+2xσ/σ2]dx.

We thus obtain the formula

D̄j =
σ2

2σ(1 − ρ)
e−(1−ρ)[Kmax+2tjσ/σ2]. (19)

We use a simple example to illustrate how a fixed amount of

memory in a box can be optimally allocated to preload prefixes

of movies depending on their relative popularities. Figures 3
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Fig. 4. Waiting time against prefixes distinct popularity (ν1 = 0.99 ∗ 4/3,
ν2 = 0.99 ∗ 2/3, Renc = Btotal = 1, L1 = L2 = 1, P1 + P2 = 1,
y ≫ 1)

and 4 show plots of the mean waiting times Dj obtained from

Formula (19). In each case, there are two movies, and there

is a fixed amount of memory that can be used for prefixes of

either or both movies. In Figure 3, the popularities of both

movies are same. In this case, the figure indicates that both

movies should get prefixes of equal sizes. Note that for equal

popularities, varying prefixes does not change the normalized

load ρ. Also, it does not affect the average service time σ̄. It

would appear then that one movie would benefit from having a

larger prefix. This is however not the case, because unbalanced

prefixes lead to a large variance in the service times and thus

a large second moment σ2.

In Figure 4, movie 1 is twice as popular as movie 2. The

figure indicates that it is beneficial to both movies to allocate

the prefix memory to movie 1. By storing large prefixes for

movie 1, we reduce the system load ρ, and this is the leading

effect.

V. RANDOMIZED JOB PLACEMENT

In the previous sections we considered the case where all

boxes are centrally coordinated. With such an assumption the

job placement strategies, i.e. the decision where to place and

serve the sub-requests of a job, are optimal. However, in

practice a centralized system does not scale in the number of

boxes. In this section we therefore propose a distributed load

balancing strategy for the selection of serving peers. Although

we only consider the case that upstream bandwidth is not

variable here for the interest of space, we also consider the

case that upstream bandwidth is dynamically changing in our

technical report [23]. More specifically, we propose resource

overbooking scheme to hedge against upstream bandwidth di-

versity and dynamic job migration scheme to address upstream

bandwidth fluctuations. Details can be found in [23].

The strategy we consider for initial job placement is as

follows. When a download request is generated, d distinct

boxes are randomly chosen from the overall collection of M
boxes. The load, measured in terms of fair bandwidth share

that a new job would get, is measured on all probed boxes.

Finally, sub-requests are placed on the y least loaded boxes
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among the d probed boxes, provided that each of the y sub-

requests gets a sufficiently large fair bandwidth share, i.e.

larger than or equal to (y/(y + 1))Renc with our previous

notation. If any of the least loaded boxes cannot guarantee

such a fair share, then the request is dropped.

We assume as before that each box has a fixed overall

upstream bandwidth of Bup. Thus the maximum number of

sub-requests on each box is Kmax = ⌊Bup/[y/(y+1)Renc]⌋.

Many results are available on the performance of related

randomized load balancing schemes. If we assume requests

arrive according to a Poisson process with rate λ ∗ M/y, no

rejection (Kmax = ∞), y = 1 (requests generate a single sub-

job), and exponential job size distribution, we have exactly the

model analyzed by Vvedenskaya et al. [26] (see also Eager

et al. [8] and Mitzenmacher et al. [19]). For this system they

show that, in the large M limit, in steady state the fraction φi

of all M boxes that contain at least i jobs is given by

φi = ρ
di

−1

d−1 ,

where ρ is the normalized load on each box.

The system we consider differs by the fact that there are

several sub-jobs, and by the possibility of job rejection. It is

however amenable to a similar analysis. We now determine

fixed point equations that characterize the fraction of boxes

holding a given number of sub-jobs in equilibrium. We do

not claim the derivation is rigorous, but instead validate it by

simulations.

The heuristic derivation proceeds as follows. Fix i ∈
{0, . . . , Kmax}. For a new request, denote by X<i (respec-

tively Xi, X>i&<Kmax
and XKmax

) the number of sampled

boxes with less than i jobs (respectively i, more than i and less

than Kmax, and Kmax). The vector of these four quantities

follows a multinomial distribution with parameters d and

(p<i, pi, p>i&<Kmax
, pKmax

), where

p<i :=
∑

j<i

pj , p>i&<Kmax
:=

∑

i<j<Kmax

pj.

Denote by Fi(u, v, w, z) the probability that this multi-

nomial distribution puts a job on the vector (u, v, w, z). Its

dependence on the parameters pj is not made explicit to

simplify notation. Denote by Gi the expected number of boxes

which previously had i jobs and receive a new one from such

a new request. This can be written as

Gi =
∑

u,v,w,z

Fi(u, v, w, z)min(v, max(0, y − u)) 1z≤d−y.

Indeed the factor 1z<d−y retains only terms in the sum-

mation where all sub-jobs can get enough bandwidth, and the

term min(v, max(0, y−u)) counts the number of least loaded

boxes that currently have i jobs. We obtain the following

heuristic differential equation using the notations:

d

dt
Mpi = M(λ/y)(Gi−1 − Gi) − µM(pi − pi+1).

The rationale is that new boxes with i jobs appear at rate

Mλ/yGi−1 because of extra jobs being placed on boxes

previously holding i−1 jobs, and also at rate µMpi+1 because
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Fig. 5. Numerical solutions and simulation results for rejection probability
using the proposed load balancing scheme

of departures from boxes previously holding i + 1 jobs. The

rationale for the departure rates is similar.

The fixed point equation for pi is then obtained by setting

the left-hand side of the previous equation to zero. Introduce

now the notation

λi :=
λ

y

Gi

pi
·

The fixed point equations may then be written as

pi+1µ = λipi, i = 0, . . . , Kmax − 1.

Since
∑Kmax

i=0 pi = 1, we obtain in turn

p0 = 1

1+
PKmax

i=1
[(

Qi−1

j=0
λj)/µi]

(20)

pn =
Qn−1

j=0
λj

µn−1 p0, n = 0, . . . , Kmax. (21)

Note that the parameters λi in the right-hand sides of these

expressions depend on the pi’s themselves. The fixed point

equations (20), and (21) cannot be solved explicitly. However

we obtain a numerical approximation by applying iteratively

the function specified by (20), and (21) on an initial guess

for the pi’s. We observed fast numerical convergence of the

iterations in our experiments. Once the parameters pj are

determined, the rejection probability is determined according

to the formula

preject =

d
∑

i=d−y+1

(

d

i

)

pi
Kmax

(1 − pKmax
)d−i.

Figure 5 shows the numerical solutions and simulation

results we obtain for distinct choices of parameters (y, d) for

varying normalized load ρ = λ/µ, and setting Kmax to 3.

Here, the simulation results is obtained using M = 50 boxes.

The numerical solutions match reasonably well the simulation

results. We believe that the fixed point equations we just

described are accurate in the large M limit.

More importantly, we observe that even at normalised loads

close to 100%, the rejection probabilities remain small: below
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15% when only two additional boxes are probed and down to

10% when three additional boxes are probed.

VI. RELATED WORK

Peer-to-peer networks for streaming video on the Internet

have generated a lot of interest recently [6], [28], [20], [25].

However, most of the efforts have focused on efficient tree and

mesh construction, assuming the upstream bandwidths of peers

are larger than video playback rate. Under this assumption

p2p systems can scale to support arbitrarily large numbers

of clients. In contrast, we can cope with uplink bandwidths

smaller than video playback rate, a condition that holds

in most access networks, particularly DSL. More recently,

Dana et al. [7] and Tewari et al. [24] proposed BitTorrent-

based live streaming service under the same assumption of

limited upstream bandwidth. In both proposals, the upstream

bandwidth limitation is overcome by the assistance of server-

based stream delivery in their proposed systems. However, the

Push-to-Peer system does not rely on content servers except

in the push phase.

Load balancing strategies have also been investigated in

the context of job scheduling in distributed systems and more

general bins and balls problems [8], [18], [19]. To the best of

our knowledge, all of the proposed load balancing schemes are

targeted to balance loads of independent jobs. On the contrary,

we address the problem of balancing the load imposed by sub-

requests from a job, that should be co-scheduled ideally. More

recently, load balancing in the case of bulk arrivals of jobs has

been investigated by Adler et al. [1], however, the balancing

decision is made per job rather than per set of jobs arriving

together. Our proposed scheme collectively balances all sub-

requests for a job.

Another related area of work is the data placement and pull

scheme for video streaming services. Several methods have

been proposed in the literature [15], [3], [21], [22]. Particu-

larly, random duplicated assignment strategy of data blocks

and mirroring are proposed for VoD servers by Korst [15]

and Bolosky et al. [3] respectively to address the problem of

disk failure. However, we use a code-based placement that

addresses the problem of box failures. The prefix prefetching

schemes for p2p video streaming [21], [22] require upstream

bandwidth of a peer to be larger than video playback rate, an

assumption we do not make.

Rateless coding schemes have been proposed by [4], [17],

[16]. While these works discuss how to use the codes to

download files using multicast/broadcast transmissions [4] or

using peer-to-peer networks [17], none of these works address

the usage of coding for video streaming or video-on-demand.

Other work proposed the use of network coding to accelerate

file download in peer-to-peer networks [9] or to ameliorate

VoD for p2p [2]. Because of the push-phase, our approach

does not require that peers serve content that they downloaded

previously from other peers. Therefore network coding is not

needed in our context.

Our work is different from a streaming service provided by

multiple servers in the following aspects. First, unlike multiple

streaming servers, the boxes are also clients in our case.

The implication is that by placing more data, the bandwidth

requirements become lower, which is not the case in the

multi-server streaming. Secondly, in case of a multi-server

streaming service, a client is redirected to a set of streaming

servers, which are under complete control of the provider and

well-connected through high-speed networks. However, in our

work, the client chooses a set of best peer nodes in distributed

fashion, i.e., using the proposed randomized peer selection

algorithm.

VII. CONCLUSION AND FUTURE WORK

We proposed Push-to-Peer, a novel peer-to-peer approach to

cooperatively stream video using push and on-demand pull of

video contents. We showed the theoretical upper performance

bounds that are achieved if all resources of all peers are

perfectly pooled, and present the placement (namely full-

striping and code-based scheme) and pull policies that achieve

those bounds. However, perfect pooling is only possible with

global knowledge of system state, which in practice is not fea-

sible. Therefore, we proposed and analysed a randomized job

placement algorithm. We are currently developing a prototype

system.

We plan to do a more systematic analysis of placement

schemes that take into account movie popularity. The non-

uniform size of prefixes preloaded for different movies makes

the use of processor sharing scheduling less effective, because

the deadline for downloading a window is determined by the

size of preloaded prefix. To address this issue, we plan to adopt

Earliest Deadline First (EDF) scheduling policies developed

for multiprocessors.
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