
Pushdown Multi-Agent System Verification

Aniello Murano1∗ and Giuseppe Perelli1,2 ∗

1Università degli studi di Napoli “Federico II”, 2University of Oxford

Abstract

In this paper we investigate the model-checking
problem of pushdown multi-agent systems for
ATL⋆ specifications. To this aim, we introduce
pushdown game structures over which ATL⋆ for-
mulas are interpreted. We show an algorithm that
solves the addressed model-checking problem in
3EXPTIME. We also provide a 2EXPSPACE lower
bound by showing a reduction from the word ac-
ceptance problem for deterministic Turing machines
with doubly exponential space.

1 Introduction

Model Checking is a well-established method widely used to
verify hardware and software systems [Clarke et al., 2002].
The idea is simple and appealing: we use a mathematical
model of the system we want to validate and check it over a
formal specification of its desired behavior [Clarke and Emer-
son, 1981; Queille and Sifakis, 1981].

In the eighties, early use of model checking mainly consid-
ered finite-state closed systems, modeled as Kripke structures,
and specifications given in terms of temporal-logic formu-
las [Pnueli, 1977]. The conceived algorithms, however, turn
less appropriate in open-system verification as one has to take
into account also the uncertainty about the agents’ behavior.
As a first solution, module checking [Kupferman et al., 2001]

came out with its ability of handling the interaction between
the system and an external unpredicted environment. Precisely
it takes as inputs a graph partitioned in two sets (called a mod-
ule) M and a formula ϕ, and checks whether M reactively
satisfies ϕ, i.e., no matter how the environment behaves.

Starting from the works on module checking, two signifi-
cant directions have been taken in open-system verification.
One concerns extending the framework to more sophisticated
systems while maintaining the dichotomy system-environment
states in modeling. In this context, worthy of mention is the
work on pushdown module checking [Bozzelli et al., 2010].
This has the merit of having handled the verification of infinite-
state open systems and, thanks to the fact that the infinite

∗This work has been partially supported by the ERC Advanced
Grant “RACE” (291528) at Oxford and the FP7 EU project 600958-
SHERPA.

number of states is induced by a recursive structure of fi-
nite size, the problem turns out to be decidable and precisely
3EXPTIME-COMPLETE for specifications in CTL⋆. Another
direction has instead completely redesigned the module check-
ing approach in order to handle the more involved scenario of
multi-agent (concurrent) systems. To let the temporal-logic
framework working within this setting, Alternating-Time Tem-
poral Logic (ATL⋆, for short) [Alur et al., 2002] has been
introduced. This logic generalizes CTL⋆ by means of strate-
gic quantifiers. ATL⋆ formulas are interpreted over concurrent
game structures (CGS, for short). Given an ATL⋆ formula
〈〈A〉〉ψ, with A set of agents, it is satisfied over a CGS G if
there exists a strategy for the agents in A such that, no matter
which strategy is executed by agents not in A, the resulting
outcome in G satisfies ψ. As for finite-state CTL⋆ module
checking, the model-checking problem for specifications in
ATL⋆ turns out to be 2EXPTIME-COMPLETE. However, the
two approaches are incomparable as in module checking it is
possible to use nondeterministic strategies.

Despite the undoubted utility of considering, from one hand,
infinite-state open-system models induced by finite-size recur-
sive structures and, from the other hand, multi-agent specifica-
tions, to the best of our knowledge no work has been devoted
to the combination of the two.

In this paper, we consider multi-agent pushdown systems
and address the related model checking problem for specifi-
cations expressed in ATL⋆. To this aim, we first introduce
pushdown game structures to properly model the infinite-state
multi-agent system and formalize the model checking question.
Then, by means of an automata-theoretic approach, we provide
a 3EXPTIME solution to the addressed problem. Precisely, we
construct a doubly-exponential size pushdown parity tree au-
tomaton that collects all execution trees satisfying the ATL⋆

formula. Then by using the fact that the emptiness of this
automaton can be checked in exponential time [Kupferman
et al., 2002], we get the desired result. We also provide a
2EXPSPACE lower bound by showing a reduction from the
word acceptance problem for a deterministic Turing machine
with doubly exponential space.

Related works. In recent years, model checking of push-
down systems has received a lot of attention, largely due
to the ability of these systems to capture the flow of pro-
cedure of calls and returns in programs [Alur et al., 2005].

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1090

The work in this area started with Muller and Schupp, who
showed that the monadic second-order theory of graphs in-
duced by pushdown systems is decidable [Muller and Schupp,
1985]. Walukiewicz in [Walukiewicz, 1996] showed that
the model checking for pushdown systems with respect to
modal µ-calculus is EXPTIME-COMPLETE. The problem re-
mains EXPTIME-COMPLETE also for CTL and LTL, while
it becomes 2EXPTIME-COMPLETE for CTL⋆ [Walukiewicz,
2000; Bouajjani et al., 1997]. In [Bozzelli et al., 2010], open
pushdown systems along with the module checking paradigm
have been considered. This setting has been investigated un-
der several restrictions including the imperfect-information
case [Aminof et al., 2013].

Literature on model checking of ATL⋆ is also wide. This
problem has been investigated under different settings and
inspired powerful formalisms for the strategic reasoning
(see [Bulling, 2014], for a recent survey). Model checkers
for ATL and ATL⋆ also exist, such as MCMAS [Lomuscio
and Raimondi, 2006; Cermák et al., 2014; 2015].

Outline The rest of the paper is organized as follows. In
Section 2 we introduce PGSs and provide an example to help
clarifying the setting. There, we also show how a PGS can
be embedded into an infinite-state CGS. In Section 3 we
recall the syntax and the semantics of ATL⋆ over CGSs and
define the model-checking problem of ATL⋆ over PGSs. In
Section 4 we show that the latter can be solved in 3EXPTIME

by means of an automata-theoretic approach. There, we also
show a 2EXPSPACE-hard lower bound. Finally, in Section 5
we summarize the achieved results and discuss some future
work.

2 Pushdown Game Structures

Classically, ATL⋆ formulas are interpreted over Concurrent
Game Structures [Alur et al., 2002]. In this paper, we instead
interpret ATL⋆ formulas over a new semantic framework,
which we call Pushdown Game Structure. Intuitively, this
new formalism provides a concurrent game structure in which
a stack is added and the labeling and transition functions
depend on its content. In this section, we also show that
every pushdown game structure can be transformed into a
suitable concurrent game structure, so providing the required
interpretation of ATL⋆ formulas over the former. However,
note that the latter requires a infinite number of states, used to
represent all the possible configurations the pushdown system
can enter. We start with the definition of pushdown game
structures.

Definition 2.1 (Pushdown Game Structure) A Pushdown
Game Structure (PGS, for short) is a tuple P = 〈AP,Ag,
Ac,Loc,Γ, tr, ap, l〉, where AP, Ag, Ac, Loc and Γ are fi-
nite sets of atomic propositions, agents, actions, locations, and
stack alphabet, respectively, l ∈ Loc is an initial location,
and ap : Loc × Γ⊥ → 2AP is a labeling function, where
Γ⊥ = Γ ∪ {⊥} and ⊥ is the special bottom stack symbol not

contained in Γ. Let Dc , AcAg be the set of decisions, i.e.,
functions from Ag to Ac representing the action choices for
each agent. Then, tr : Loc × Γ⊥ × Dc → Loc × Γ∗

⊥ is a

transition function mapping a location, a stack symbol, and a
decision to a location and a word in the stack alphabet.

A pair s = (l, α) ∈ St , Loc× (Γ∗ · {⊥}) is called state
or configuration. We write top(α) for the left most symbol of
α and call it the top of the stack content α. The PGS moves
according to the transition function. This means that, if it is in
the location l, the top of the stack content is γ, and the agents
make a decision d, then tr(l, γ, d) = (l′, α) means that the
execution moves to the location l′ and the symbol γ is replaced
with α on the top of the stack content. We assume that, if ⊥
is popped, then it is pushed right back, and that is the only
case in which it is pushed. This means that ⊥ is always on the
bottom of the stack and nowhere else. The stack containing
only the symbol ⊥ is said to be empty.

As the stack has no a priori bound on its size, the set St is
assumed to be possibly infinite. Saying this, it turns out that
PGSs are infinite-state multi-agent systems.

The notion of labeling and transition can be lifted to states,
as follows. For a state s = (l, α), we define ap(s) =
ap(l, top(α)). Moreover, for a decision d ∈ Dc, we define
tr((l, γ · α), d) = (l′, β · α), with (l′, β) = tr(l, γ, d).

Note that for a classical pop we write the empty word ε
on the stack. To make a classical push one has to first put
back the read top symbol and then push the required word.
The transition function also allows to perform in one step a
pop-push operation that replaces the top stack symbol with the
required word.

For our convenience, we consider also two-player turn-
based one-symbol stack games of the form P =〈AP, {E, A},
Loc,LocE,LocA,R, ap, l〉 where LocE and LocA are the sets
of locations belonging to players E and A, respectively, and
R ⊆ (Loc×{γ,⊥})× (Loc×{push, , pop}), where γ is the
only alphabet symbol of the stack, and push, pop, and are the
push, pop, and null operation on the stack. If (l, x, l′, op) ∈ R,
then, for each configuration (l, α) with top(α) = x we can
move to the configuration (l′, α′) with α′ being the string
obtained from α by applying the stack operation op. At each
configuration (l, α) of the game, the owner of the location l
can pick a successor, according to the relation R. It is not hard
to see that two-player turn-based one-symbol stack games are
special cases of PGSs

To get familiar with PGSs, we give an example.

Example 2.1 (Pushdown scheduler) Take a system consist-
ing of two processes a and b that may access to a common re-
source via the respective requests ra and rb and a scheduler s
that can grant in a LIFO order the processes requests, all mem-
orized into a stack. As model we use a PGS P = 〈AP,Ag,
Ac,Loc,Γ, tr, ap, l〉, with AP = {ra, rb, ga, gb, a, b, e},
Ag = {s, a, b}, Ac = {a, b, un, 0, 1}, Loc = {l, la, lb, lun},
and Γ = {ra, rb}. The scheduler s controls the location l by
means of the actions a, b, and un, standing for “a can make a
request”, “b can make a request”, and “the system can unload
the stack requests”, respectively. Accordingly, they lead to
the locations la, lb, and lun. On la and lb, the agents a and b,
respectively, can either make a request via action 1 or skip it
with action 0. In the former case, the request is recorded into
the stack by writing the symbol rx, for x ∈ {a, b}; otherwise,
in the latter case there is no operation over the stack. Finally,

1091

l, β

lun, β

lun,⊥

l,⊥

la, α lb, α

a ∗ ∗; ε b ∗ ∗; ε

a ∗ ∗; ε b ∗ ∗; εun ∗ ∗; ε

∗1∗; push(ra)
∗0∗; ε

∗ ∗ 1; push(rb)
∗ ∗ 0; ε

∗∗∗; pop

∗∗∗; pop

∗ ∗ ∗; ε

Figure 1: A Pushdown system scheduler.

the location lun triggers the granting phase by emptying the
stack. During this phase, neither a nor b can make any further
request. This can be seen as a legitimate constraint by thinking
how classical synchronizing and backup systems are designed.

The labeling function, for all γ ∈ Γ⊥ and x ∈ {a, b}, is
defined as follows: ap(l,⊥) = ∅, ap(l, rx) = {x},
ap(lx, γ) = {x}, ap(lun, rx) = {gx}, and ap(lun,⊥) = {e}.
Intuitively, propositions a and b means that agents a and b are
authorized to make a request, respectively. The proposition
rx, instead, occurs when the corresponding request has been
just made by agent x. On the other hand, the proposition gx
occurs when the request rx has been just granted. Finally, e
indicates that the unloading phase is terminated and so the
stack is empty.

The transition function tr is described directly in Figure 1.
The labeling of the edges have the following meaning. First,
note that it is composed of two parts separated by a semi-
column. The left part represents the decision of the agents,
given in the order s < a < b. The right part represents
the stack operation. As an example, the label ∗1∗; push(ra)
says that agent a is making a request ra and the symbol ra is
pushed on the stack, where the symbol ∗ denotes any possible
action for the other agents.

The nodes represent all possible states. Note that, for the
locations la and lb we have collapsed the two possible configu-
rations with β = ⊥ and β 6= ⊥ since the transition over them
does not depend on the stack content.

Finally, observe that the stack is unbounded and so an
execution might generate an infinite number of distinguished
states. Also, observe that the stack is fundamental to keep
track of the order in which the requests appear.

To correctly interpret ATL⋆ formulas over PGSs, we show
that a PGS can be represented as an infinite-state concurrent
game structure, whose definition follows. Note that we use
the one reported in [Mogavero et al., 2014].

Definition 2.2 (Concurrent Game Structures) A concur-
rent game structure (CGS, for short) is a tuple G ,〈AP,Ag,
Ac, St, tr, ap, s〉, where AP, Ag, and Ac are as in PGS. St
is an enumerable non-empty set of states, s ∈ St is an initial
state, and ap : St → 2AP is a labeling function mapping each
state to a set of atomic propositions true in that state. Finally,
tr : St × Dc → St is a transition function mapping pairs of
states and decisions to states, where the set Dc is as in PGS.

Clearly, a PGS P = 〈AP,Ag,Ac,Loc,Γ, tr, ap, l〉 can
be suitably turned into a CGS GP =〈AP,Ag,Ac, St, tr, ap,
s〉, where St = Loc × Γ∗

⊥, s = (l,⊥), and the functions
ap and tr are the lifting on states of the corresponding func-
tions in P . Intuitively, the states of G are used to implicitly
represent both the current location and store the stack content.
Despite this, it is important to observe that, while a PGS has
a finite number of control locations, the corresponding CGS
necessarily has an infinite number of control states, as the
number of different stack contents is unbounded.

We conclude this section by briefly recalling the classical
notions of track, path, strategies and assignments, which are re-
quired for the semantics of ATL⋆ (see [Mogavero et al., 2014],
for more). Intuitively, tracks and paths are legal sequences
of reachable states, respectively seen as partial and complete
descriptions of possible outcomes over a CGS. Formally, a
track (resp., path) in a CGS is a finite (resp., an infinite) se-
quence of states ρ ∈ St∗ (resp., π ∈ Stω) such that, for all
i ∈ [0, |ρ| − 1[(resp., i ∈ N), there is a decision d ∈ Dc with
(ρ)i+1 = tr((ρ)i, d) (resp., (π)i+1 = tr((π)i, d)). The set

Trk ⊆ St+ (resp., Pth ⊆ Stω) contains all non-empty tracks

(resp., paths). Moreover, Trk(s) , {ρ ∈ Trk : (ρ)0 = s}
(resp., Pth(s) , {π ∈ Pth : (π)0 = s}) denotes the subsets
of tracks (resp., paths) starting at a state s.

A strategy for an agent is a scheme containing all choices
of actions, depending on the current outcome. Formally, a
strategy in a CGS is a function f : Trk → Ac that maps
each non-empty track to an action. The set Str contains all
strategies. For a given subset A ⊆ Ag of agents, an assign-
ment over A is a partial function χA : Ag ⇀ Str, mapping
each agent in A to a strategy. By Asg we denote the set of
assignments. A path is compatible with an assignment χA

if it is obtained by agents in A using strategies in χA. More
formally, for a given set A ⊆ Ag and an assignment χA over
A, we say that a path π is compatible with χA if, for all i ∈ N

it holds that (π)i+1 = tr((π)i, d), for some d ∈ Dc with

d(a) , χAsg(a)((π)≤i), for each a ∈ A. By play(χA, s) we
denote the set of paths starting from s that are compatible with
χA. Note that, for an assignment χAg over the full set Ag of
agents, there exists only one compatible path. In this case, by
abuse of notation, we denote it with play(χAg, s).

3 ATL*

In this section, we recall the syntax of ATL⋆ and introduce its
semantics over PGS via its representation in terms of CGS
(with infinite states). We start with the definition of ATL⋆

syntax.

Definition 3.1 (ATL⋆ Syntax) ATL⋆ formulas are built in-
ductively from the set of atomic propositions AP and agents
Ag, by using the following grammar, where p ∈ AP and
A ⊆ Ag:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈A〉〉ϕ.

As syntactic sugar we also use ϕ1 ∨ ϕ2 , ¬(¬ϕ1 ∧ ¬ϕ2),

ϕ1 → ϕ2 , ¬ϕ1∨ϕ2, ϕ1 ↔ ϕ2 , (ϕ1 → ϕ2)∧(ϕ2 → ϕ1),

[[A]]ϕ , ¬〈〈A〉〉¬ϕ, Fϕ , tUϕ, and Gϕ , ¬F¬ϕ.
A sentence is a Boolean combination of ATL⋆ formulas of

the form 〈〈A〉〉ψ. Intuitively, 〈〈A〉〉ψ means that each agent in

1092

A has a strategy such that, whatever the other agents do, the
resulting play satisfies ψ.

We now provide some examples of ATL⋆ formulas that
will be useful in the sequel. Precisely, we consider ϕ1 =
〈〈{s}〉〉(GFa ∧ GFb ∧ GFe), ϕ2 = 〈〈∅〉〉(GFa ∧ GFb ∧ GFe) and
ϕ3 = 〈〈∅〉〉((ra ∧ X(¬eUrb)) → (Fgb → XFga)) over the sets
AP and Ag given in Example 2.1. The formula ϕ1 states that
agent s has a way to let propositions a, b, and e to occur
infinitely often. The formula ϕ2 states that, no matters how
the agents behave, propositions a, b, and e occur infinitely
often. Finally, the formula ϕ3 states that, whenever a request
rb occurs after an ra one in the same loading phase, then, if
rb is eventually granted, then ra is granted later on as well.

We now provide the semantics of ATL⋆.

Definition 3.2 (ATL⋆ Semantics) For a CGS G = 〈AP,
Ag,Ac, St, tr, ap, s〉 and a path π ∈ Pth, the modeling
relation G, π |= ϕ is inductively defined as follows:

• The atomic and boolean cases are defined as usual;

• G, π |= 〈〈A〉〉ϕ if there is an assignment χA such that
G, π′ |= ϕ, for all π′ ∈ play(χA, (π)0);

• G, π |= Xϕ if G, (π)≥1 |= ϕ;

• G, π |= ϕ1Uϕ2 if there exists j ∈ N such that G, (π)≥i |=
ϕ1, for all i < j, and G, (π)≥j |= ϕ2.

For a sentence ϕ and two paths π, π with (π)0 = (π)0,
it holds that G, π |= ϕ iff G, π |= ϕ. Indeed, according to
the semantics of the existential quantification 〈〈A〉〉ψ, the only
element of the path to take into account is the first one. For
this reason, for a sentence ϕ we write G, s |= ϕ if G, π |= ϕ
for some π ∈ Pth(s). Finally, we say that G satisfies ϕ, and
write G |= ϕ, if G, s |= ϕ.

To get familiar with the semantics, consider the PGS P
given in Example 2.1 and the formulas ϕ1, ϕ2, and ϕ3 given
above. It is easy to see that GP |= ϕ1. Indeed, the strategy f
that allows the scheduler to pick infinitely often the actions a,
b, and un, makes all the generated paths to satisfy GFa∧GFb∧
GFe. On the other hand, it is easy to see that GP 6|= ϕ2. Indeed,
the strategy f for s such that f(ρ) = a, for all ρ ∈ Trk, never
makes b and e to occur in the generated paths. Finally, we
have that GP |= ϕ3.

Definition 3.3 (Model-checking) For a given PGS P and an
ATL⋆ formula ϕ, the model-checking problem is to decide
whether GP |= ϕ.

4 Model Checking

In this section, we provide a 3EXPTIME upper-bound and a
2EXPSPACE lower-bound for the model-checking problem of
ATL⋆ over PGS.

4.1 Upper-bound Complexity

For the upper bound we use an automata-theoretic approach.
We start with some notation and the definition of nondeter-
ministic pushdown automata. See [Kupferman et al., 2002;
2000b] for more.

For a given set D ⊆ N, a D-tree T is a prefix closed subset
of D∗, i.e., a set in which, if x·d ∈ T then x ∈ T. The elements
of T are called nodes and the empty word ε is called the root

of T. For x ∈ T, the set of children of x is children(T, x) ,
{x · i ∈ T : i ∈ D}. For x, y ∈ T, we write x ≺ y to
mean that x is a proper prefix of y, i.e., there exists z ∈ D∗

such that x · z = y. For x ∈ T, a path in T from x is a
minimal set π ⊆ T such that x ∈ π and for each y ∈ π
such that children(T, y) 6= ∅, there exist exactly one node
in children(T, y) belonging to π. For an alphabet Σ, a Σ-
labeled tree is a pair T = 〈T,V〉 where T is a tree and V :
T → Σ maps each node in T to an element in Σ. In the
following, we mainly consider Σ to be the set power set 2AP

of atomic propositions AP.

A Nondeteriministic Pushdown Tree Automata (PD-NTA,
for short), over Σ-labeled trees, is a tuple A = 〈Σ,Γ,Q, q,
α0, δ,F〉, where Σ and Γ are finite input and stack alphabet
sets, Q is a finite set of states, q is an initial state, α0 ∈ Γ∗ ·⊥

is an initial stack content, δ : Q × Σ × Γ⊥ → 22
(Q×Γ∗)

is a
transition function such that, for all (q, σ, γ) ∈ Q× Σ× Γ⊥,
δ(q, σ, γ) is a finite set, and F is an acceptance condition over
Q.

When the automaton is in a state q, reading an input node x
labeled with σ ∈ Σ, and the stack contains a word γ ·α in Γ∗

⊥,
it chooses, for some k ∈ N, a tuple〈(q, β1), . . . , (qk, βk)〉 ∈
δ(q, σ, γ) and splits in k copies such that, for each 1 ≤ i ≤ k,
the i-th copy is in the state qi and the stack content is updated
by removing γ and pushing βi. Then, it reads the node x · i of
the tree.

A run of a PD-NTA on a Σ-labeled tree T = 〈T,V〉 is
a (Q × Γ∗

⊥)-labeled tree 〈T, r〉 such that r(ε) = (q, α0)
and for each x ∈ T with r(x) = (q, γ · α), there is a tu-
ple 〈(q, β1), . . . , (qk, βk)〉 ∈ δ(q,V(x), γ) for some k ∈ N,
such that, for all 1 ≤ i ≤ k, r(x · i) = (qi, βi · α) if γ 6= ⊥,
and r(x · i) = (qi, βi · ⊥), otherwise.

Given a path π starting from ε, by inf r(π) we denote the
subset of states q such that there are infinitely many x ∈ π
such that r(x) ∈ {q} × Γ∗

⊥. A path satisfies a parity condition
F = {F1, . . . ,Fk}, with Fi ⊆ Fi+, for all i < k, and Fk =
Q, if the minimum index 1 ≤ i ≤ k such that inf r(π)∩Fi 6= ∅
is even. A run 〈T, r〉 is accepting if every path satisfies the
acceptance condition. The PD-NTA A accepts an input tree
〈T,V〉 iff there is an accepting run of A over it. The language
of A, denoted by L(A), contains all the trees accepted by
A. The emptiness problem for PD-NTA is to decide, for a
given A, whether L(A) = ∅. In [Kupferman et al., 2002] it is
reported the following.

Theorem 4.1 The emptiness problem for a parity PD-NTA
is EXPTIME-COMPLETE.

In several branching-time temporal-logic verification set-
tings, the automata-theoretic approach has been fruitfully ap-
plied. Very close to our case are the procedures deployed
for model checking pushdown systems over CTL⋆ specifica-
tions [Bouajjani et al., 1997; Bozzelli et al., 2010] and finite-
state CGSs over ATL⋆ specifications [Alur et al., 2002]. The
former is a top-down procedure that first builds an automaton
accepting all the trees that satisfy the formula and then checks
for the membership problem of the tree unwinding of the push-
down model. Precisely, to get a tight complexity, it starts

1093

with a single-exponential alternating 1 parity tree automaton
and the membership problem results in a special alternating
pushdown tree automaton named one-letter, with no blow-
up in size, whose emptiness can be checked in exponential-
time2 resulting in an overall doubly-exponential time solution.
The procedure for ATL⋆, instead, uses a doubly-exponential
bottom-up approach based on the idea of labeling each state of
the structure with subformulas true in that state. In our setting
we can neither proceed with the membership problem nor use
a bottom-up procedure. Indeed, because of ATL⋆, we need
to consider not just the unwinding of the model but the tree
execution induced by the player existentially quantified in the
formula. Moreover, because of the possible infinite number
of configurations induced by the PGS, a bottom-up procedure
could never terminate. For this reason, we use a top-down
approach that constructs a doubly exponential PD-NTA that
simultaneously checks whether a tree is an execution of the
structure and a model of the formula. As far as we know, this
is the first top-down automata-theoretic approach exploited
for ATL⋆. Some details about this automata construction are
reported in the following.

Theorem 4.2 The model-checking problem for ATL⋆ on
PGS can be solved in 3EXPTIME.

Proof sketch: We give an intuition behind the automata
construction by providing some details on how to extend the
one introduced in [Bouajjani et al., 1997] used to solve the
model-checking problem for branching-time specifications
over pushdown systems. The mentioned approach starts with
a tree automaton accepting all tree models of a formula ϕ,
namely the formula automaton Aϕ, over which one can build
a PD-NTA AP,ϕ accepting the unwinding of the pushdown
structure P iff it is contained in the language of the formula
automaton Aϕ. To handle ATL⋆, one can start with a doubly-
exponential parity tree automaton as an adaptation of the one
provided in [Schewe, 2008]3. Moreover, in order to correctly
evaluate the formula over a PGS we need not just to consider
the unwinding of the structure but rather the execution trees
induced by the formula and precisely from the players exis-
tentially quantified in it. This results in selecting at each node
subsets of children upon the choices of the players. As the
number of these subsets is linear in the number of the decisions
of the structure, the overall size of the PD-NTA we construct
remains doubly-exponential. Thus, from Theorem 4.1 we
derive a 3EXPTIME procedure. �

4.2 A Lower-bound Complexity

In this section, we show that the model-checking problem
for ATL⋆ over PGSs is 2EXPSPACE-HARD by means of a
reduction from the word acceptance problem for a determin-
istic Turing machine with doubly exponential space. Such

1Automata having as transition relation a positive Boolean com-
bination of states and directions [Kupferman et al., 2000b].

2Recall that in general the emptiness check for alternating push-
down automata is undecidable [Kupferman et al., 2002].

3In [Schewe, 2008] it is given a single-exponential alternating
automaton that can be easily translated into a non-deterministic one
with a single exponential-time blowup.

reduction is inspired by the one provided in [Vester, 2014] for
one-counter games.

Let T = 〈Q, q,Σ, δ, qF 〉 be a Turing machine that uses

at most 22
n

cells on an input w of length n where, Q is the
set of control states, q and qF are the initial and final states,
respectively, Σ = {0, 1, a, r, ♯} is the finite alphabet set, and
δ : Q×Σ → Q×Σ×{−1, 0,+1} is the (deterministic) tran-
sition function. For our convenience, if δ(q, a) = (q′, a′, x)
we write δ1(q, a) = q′, δ2(q, a) = a′, and δ3(q, a) = x, re-
spectively. The input set of T is given by ΣI = Σ \ {♯}. From
this, we can construct a PGS PT ,w and an ATL⋆ formula ϕ
such that T accepts w iff PT ,w |= ϕ. To do this, we need
some auxiliary notation. First, w.l.o.g., we can assume that T
always accepts when the symbol a is read, and always reject
when the symbol r is read. Moreover, we can assume that
T always halts in the position 1 of the tape and that there
are two additional cells at the ends, numbered with 0 and
22

n

+1 containing the symbol a. Let ∆ = Σ∪ (Q×Σ). Then

a configuration is a sequence in ∆22
n

+2 containing exactly
one element in Q × Σ. Since T is deterministic, then there
is a unique run Cw

 · Cw
 · . . . of computations starting from

Cw
 = a · (q, w) · . . . wn · ♯ · . . . · ♯ · a. Cw

i (j) denotes the
j-th symbol of the i-th configuration in the computation. Ob-
serve that, given the three elements Cw

i (j − 1), Cw
i (j), and

Cw
i (j + 1), then the symbol Cw

i+(j) is uniquely determined,
according to the definition of transition function. Then, for
d ∈ ∆, by Pre(d) we denote the set of triples (d, d, d)
such that d = Cw

i (j − 1), d = Cw
i (j), d = Cw

i (j + 1), and
d = Cw

i+(j).
At this point, we consider the auxiliary two-player turn-

based one-symbol stack game RT ,w = 〈AP, {E, A},Loc,
LocE,LocA,R, ap, l〉 where:

• Loc = ([0, 22
n

+ 1]× (∆ ∪∆3)) ∪ {l, lz, lr, lF };

• LocE = ([0, 22
n

+ 1]×∆) ∪ {l};

• LocA = ([0, 22
n

+ 1]×∆3) ∪ {lz, lr, lF };

• R is the smallest relation such that:

– (l, x, l, push), for x ∈ {⊥, γ};

– (l, x, (1, (qF , a)), null) for x ∈ {⊥, γ};

– ((j, d), γ, (j, (d, d, d)), null) for all (d, d, d) ∈
Pre(d) and j ∈ [1, 22

n

];

– ((j, a), x, lF , null) for all j ∈ [1, 22
n

];

– ((j, d), x, lr, null) if j = 0 or j = 22
n

+ 1;

– ((j, d), x, lz, null) if Cw
 (j) = d;

– (lz, γ, lF , null);

– (lz, γ, lr, pop);

– ((j, (d, d, d)), γ, (j− 1, d), pop), for all j ∈ [0, 22
n

]
and d, d, d ∈ ∆;

– ((j, (d, d, d)), γ, (j, d), pop), for all j ∈ [0, 22
n

] and
d, d, d ∈ ∆;

– ((j, (d, d, d)), γ, (j+1, d), pop), for all j ∈ [0, 22
n

]
and d, d, d ∈ ∆.

Intuitively, player E pushes the symbol γ into the stack a
number of times that corresponds to the length of the com-
putation accepting w. After this, the game starts from the

1094

configuration (1, (qF , a), γ) and proceeds back-way along the
computation of T over w. In the configurations with locations
of the form (j, d), player E selects a possible predecessor triple
(d, d, d) of d. At this point, player A selects one of the ele-
ments in (d, d, d), while a pop operation is performed on
the stack. Finally, if the stack is empty and the location (j, d)
is such that Cw

 (j) = d, then player E can move to configura-
tion (lz,⊥), from which player A is forced to move in location
lF , since the transition (lz, γ, lr, pop) on empty stacks is deac-
tivated. It is not hard to see that w is accepted by T iff player
E can force the game RT ,w to reach lF .

This reasoning allows us to reduce the accepting problem to
a reachability game played on RT ,w, which is of size doubly
exponential w.r.t. to T , that can be specified by the ATL⋆

formula 〈〈E〉〉Fp, where p is the proposition labeling all the
configurations having lF as location. Now, having RT ,w in
mind, we can build a PGS PT ,w and an ATL⋆ formula ϕ such
that PT ,w |= ϕ iff T accept w.

The construction of PT ,w is essentially a modification of
RT ,w in which the position of the head on the tape is encoded
by a suitable LTL formula ψ, rather than the set of states.
This allows such a model to have polynomial size w.r.t. T and
w. The way the formula ψ works is folklore and completely
described in [Bozzelli et al., 2005; Kupferman et al., 2000a].
We omit it here due to the lack of space.

Finally, we can prove that PT ,w |= 〈〈E〉〉(ψ ∧ Fp) iff T
accepts w, from which we derive the following theorem.

Theorem 4.3 The model-checking problem for ATL⋆ over
PGS is in 2EXPSPACE-HARD.

5 Conclusion

In the last years, open pushdown models have received a lot
of attention from the formal verification community, largely
due to their ability to capture the control-flow of procedure
calls and returns in reactive systems [Alur et al., 2005]. In
several settings, the use of pushdown models allows to verify
the correctness of infinite-state systems with a decidable com-
plexity [Piterman and Vardi, 2004; Kupferman et al., 2002;
Song and Touili, 2014]. As far as we know, all the work so
far has concentrated on models with at most two-agents and
with respect to specifications given in terms of classic tem-
poral logics [Abdulla et al., ; Chatterjee and Velner, 2012;
Bozzelli et al., 2010].

In this paper, we have introduced multi-agent pushdown
game structures to model more involved infinite-state sce-
narios (as induced by a recursive structure) in which several
agents can cooperate or act in an adversarial way in order to
achieve a certain goal. As main contribution related to these
structures we have introduced and studied the model checking
problem with respect to the logic ATL⋆ and showed that this
problem can be solved in 3EXPTIME. We recall that the same
complexity holds also for pushdown module checking with
respect to specifications given in CTL⋆. The latter is a special
two-player setting, where one of the player, the environment,
can also use nondeterministic strategies. We also provide a
non tight 2EXPSPACE lower bound. Our conjecture is that
the investigated problem is 3EXPTIME-COMPLETE. We leave
this as future work.

On some extent, the high complexity of the addressed prob-
lem relies on the fact that the rich formalisms of pushdown
models and ATL⋆ specification we combine are complex by
themselves. While this allowed us to provide a result for a
very general framework, the overall complexity can be easily
reduced by considering opportune restrictions on both sides.
Indeed, regarding the specification, by using ATL, the proce-
dure easily reduces to 2EXPTIME. This is due the fact that
it suffices to build a Büchi PD-NTA of single exponential
size [Alur et al., 2002]. Further, one can restrict to push-
down models with bounded-stack. In several settings, it has
been shown that under such a restriction the problem has
the same or slightly higher complexity than the correspond-
ing one for finite-state systems [Alur and Yannakakis, 2001;
Aminof et al., 2012]. By employing techniques similar to the
ones reported in [Alur and Yannakakis, 2001], we are confi-
dent that the model-checking problem of ATL specifications
over bounded-stack PGS is PTIME-COMPLETE as it is for the
case for CGS. If so, one can think of implementing an efficient
model checker, as it has been done with MCMAS [Lomus-
cio and Raimondi, 2006; Cermák et al., 2014]. This will be
addressed as future work.

Another interesting setting to investigate is that of imperfect
information under memoryless strategies. We recall that this
setting is decidable in the finite-state case[Alur et al., 2002].
However, moving to pushdown systems one has to distinguish
whether the missing information relies in the locations, in the
pushdown store, or both. We recall that in pushdown module
checking only the former case is decidable for specification
given in CTL and CTL⋆ [Aminof et al., 2007; 2013].

References

[Abdulla et al.,] P. A. Abdulla, M. F. Atig, P. Hofman,
R. Mayr, K. N. Kumar, and P. Totzke. Infinite-state en-
ergy games. In CSL-LICS’14.

[Alur and Yannakakis, 2001] R. Alur and M. Yannakakis.
Model Checking of Hierarchical State Machines. ACM
Trans. Program. Lang. Syst., 23(3):273–303, 2001.

[Alur et al., 2002] R. Alur, T.A. Henzinger, and O. Kupfer-
man. Alternating-Time Temporal Logic. JACM, 49(5):672–
713, 2002.

[Alur et al., 2005] R. Alur, M. Benedikt, K. Etessami,
P. Godefroid, T. W. Reps, and M. Yannakakis. Analysis
of Recursive State Machines. ACM Trans. Program. Lang.
Syst., 27(4):786–818, 2005.

[Aminof et al., 2007] B. Aminof, A. Murano, and M.Y. Vardi.
Pushdown Module Checking with Imperfect Information.
In CONCUR ’07, LNCS 4703, pages 461–476. Springer-
Verlag, 2007.

[Aminof et al., 2012] B. Aminof, O. Kupferman, and A. Mu-
rano. Improved Model Checking of Hierarchical Systems.
Inf. Comput., 210:68–86, 2012.

[Aminof et al., 2013] B. Aminof, A. Legay, A. Murano,
O. Serre, and M. Y. Vardi. Pushdown Module Checking
with Imperfect Information. Inf. Comput., 213:1–17, 2013.

1095

[Bouajjani et al., 1997] A. Bouajjani, J. Esparza, and
O. Maler. Reachability Analysis of Pushdown Automata:
Application to Model-Checking. In CONCUR’97, pages
135–150, 1997.

[Bozzelli et al., 2005] L. Bozzelli, A. Murano, and A. Peron.
Pushdown Module Checking. In LPAR’05, LNCS 3835,
pages 504–518. Springer-Verlag, 2005.

[Bozzelli et al., 2010] L. Bozzelli, A. Murano, and A. Peron.
Pushdown Module Checking. FMSD, 36(1):65–95, 2010.

[Bulling, 2014] N. Bulling. A Survey of Multi-Agent Deci-
sion Making. KI, 28(3):147–158, 2014.

[Cermák et al., 2014] P. Cermák, A. Lomuscio, F. Mogavero,
and A. Murano. MCMAS-SLK: A Model Checker for the
Verification of Strategy Logic Specifications. In CAV, pages
525–532, 2014.

[Cermák et al., 2015] P. Cermák, A. Lomuscio, and A. Mu-
rano. Verifying and Synthesising Multi-Agent Systems
against One-Goal Strategy Logic Specifications. In
AAAI’15, pages 2038–2044, 2015.

[Chatterjee and Velner, 2012] K. Chatterjee and Y. Velner.
Mean-Payoff Pushdown Games. In LICS’12, pages 195–
204, 2012.

[Clarke and Emerson, 1981] E.M. Clarke and E.A. Emerson.
Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In LP’81, LNCS 131,
pages 52–71. Springer, 1981.

[Clarke et al., 2002] E.M. Clarke, O. Grumberg, and D.A.
Peled. Model Checking. MIT Press, 2002.

[Kupferman et al., 2000a] O. Kupferman, P. M., P. S. T., and
M. Y. Vardi. Open Systems in Reactive Environments:
Control and Synthesis. In CONCUR’00, pages 92–107,
2000.

[Kupferman et al., 2000b] O. Kupferman, M.Y. Vardi, and
P. Wolper. An Automata Theoretic Approach to Branching-
Time Model Checking. JACM, 47(2):312–360, 2000.

[Kupferman et al., 2001] O. Kupferman, M.Y. Vardi, and
P. Wolper. Module Checking. IC, 164(2):322–344, 2001.

[Kupferman et al., 2002] O. Kupferman, N. Piterman, and
M. Y. Vardi. Pushdown Specifications. In LPAR’02, pages
262–277, 2002.

[Lomuscio and Raimondi, 2006] A. Lomuscio and F. Rai-
mondi. MCMAS: A Model Checker for Multi-agent Sys-
tems. In TACAS’06, pages 450–454, 2006.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli,
and M.Y. Vardi. Reasoning About Strategies: On
the Model-Checking Problem. volume 15, 2014.
doi:10.1145/2631917.

[Muller and Schupp, 1985] D. E. Muller and P. E. Schupp.
The Theory of Ends, Pushdown Automata, and Second-
Order Logic. Theor. Comput. Sci., 37:51–75, 1985.

[Piterman and Vardi, 2004] N. Piterman and M. Y. Vardi.
Global Model-Checking of Infinite-State Systems. In
CAV’04, pages 387–400, 2004.

[Pnueli, 1977] A. Pnueli. The Temporal Logic of Programs.
In FOCS’77, pages 46–57. IEEE Computer Society, 1977.

[Queille and Sifakis, 1981] J.P. Queille and J. Sifakis. Speci-
fication and Verification of Concurrent Programs in Cesar.
In SP’81, LNCS 137, pages 337–351. Springer, 1981.

[Schewe, 2008] S. Schewe. ATL* Satisfiability is 2ExpTime-
Complete. In ICALP’08, LNCS 5126, pages 373–385.
Springer, 2008.

[Song and Touili, 2014] F. Song and T. Touili. Efficient CTL
model-checking for pushdown systems. Theor. Comput.
Sci., 549:127–145, 2014.

[Vester, 2014] Steen Vester. Model-checking Quantitative
Alternating-time Temporal Logic on One-counter Game
Models. Technical report, ArXiv, 2014.

[Walukiewicz, 1996] I. Walukiewicz. Pushdown Processes:
Games and Model Checking. In CAV’96, pages 62–74,
1996.

[Walukiewicz, 2000] I. Walukiewicz. Model Checking CTL
Properties of Pushdown Systems. In FSTTCS’00, pages
127–138, 2000.

1096

