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Abstract. We define topdown pushdown tree automata (PDTA~s) which 

extend the usual string pushdown automata by allowing trees instead of 

strings in both the input and the stack. We prove that PDTA's recognize the 

class of context-free tree languages. (Quasi)realtime and deterministic PDTA's 

accept the classes of Greibach and deterministic tree languages, respectively. 

Finally, PDTA's are shown to be equivalent to restricted PDTA's, whose 

stack is linear: this both yields a more operational way of recognizing 

context-free tree languages and connects them with the class of indexed 

languages. 

1. Introduction 

Many structures in computer science can be represented by trees: derivation trees, 

syntax directed translations, search in files, etc . . . .  There was thus developed, at 

first, a theory of recognizable tree languages, tree grammars and tree transducers 

[3, 11, 25, 31]. Tree language theory has since been helpful in a broad range of 
domains, e.g. decision problems in logics [24], formal language theory [26, 31] and 

program scheme theory [7, 8, 16, 18, 22]. In order to be applicable to such a wide 

range of problems, the tree language theory had to be extended to allow context 

free tree languages; it thus became possible to model program scheme theory 
(which is our motivation) and also more general language theory (e.g. Aho's 

indexed languages [1, 10, 13, 15, 25]--since an indexed language is the yield of a 

context free tree language). Now, any language theory usually presents three 

complementary aspects: grammatical, set-theoretical or algebraic, and automaton 

theoretic. For recognizable tree languages, all three aspects have been well 

studied, even for infinitary languages [23, 24], and comprehensive accounts can be 

found in the above given references [3, 11, 31, 32]. For context free languages, the 
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grammatical point of view was first studied in [10, 15, 25], the algebraic aspects 
were considered in [7, 13, 18, 22], and comprehensive and exhaustive surveys can 

be found in [7, 12, 27]. But the automaton theoretical aspect has not been studied 

at all; it is merely hinted at in [7, 25], but we can say that the prevailing point of 

view is grammatical and no attempt has been made to find a more operational 

way of looking at context free tree languages. This paper is one of the first steps 

in that direction; a more general approach, introducing abstract families of 

automata and relating them to AFL's can be found in [14]. 

We define pushdown tree automata (PDTA's) which extend usual string 

pushdown automata [6, 19] by allowing trees instead of strings in both the input 

and the pushdown. 

The machine reads its input like a finite top down tree automaton [31, 32], 

while scanning the top (root) of the store (the root is the only stack symbol 

accessible at a given moment). We prove that PDTA's recognize context-free tree 

languages. A different model, called TPDA is investigated in [28, 29]: it stresses 

the parsing standpoint. Henceforth, TPDA's process trees in a bottom-up manner. 

The advantage of TPDA's is that a wide subclass of context-free tree languages 

can be recognized by deterministic TPDA's. The trade-off is that TPDA's are of 

course much more complicated than PDTA's. The latter stick more closely to the 

behaviour of grammars and their pushdown consists of a single tree; whereas the 

former's pushdown consists of arbitrary sets of trees whose roots must be 

simultaneously accessible and they consult appropriate shift-reduce tables. PDTA's 

thus provide a parallel LL-parsing method for context free tree languages, as 

opposed to the parallel LR-parsing of TPDA's. 

We then improve vastly that parsing and make it more operational by 

restricting the pushdown and allowing only words instead of trees on it: i.e. we 

linearize the pushdown; this would be difficult to realize with TPDA's and is also 

one of the advantages of our model. We show that the corresponding parsers, 

called RPDTA's, still recognize the class of context-free tree languages: the 

intuition behind our construction is the classical idea of storing return addresses 

of recursive calls in the pushdown. The technical application of this idea to 

formal language and automata theory first appears in [16] whose construction 

inspired ours. Meanwhile, this automaton standpoint gives very easy connections 

with Rounds' creative grammars [25] and Aho's indexed languages [1, 12, 15]; we 

hope that this different method of interrelating known classes of languages will 

help in giving more insight to tree language theory. 
The paper is organized as follows: section 2 is devoted to fixing the notations. 

In section 3 we introduce PDTA's and prove that the class of languages 
recognized by PDTA's is exactly the class of context-free tree languages. In 

section 4 the classes of languages accepted by (quasi)real-time and deterministic 

automata are shown to coincide with Greibach and deterministic tree languages. 

In section 5, we show how every context-free tree language can be accepted by a 

restricted PDTA (with a linear stack). We prove that some special PDTA's can be 

viewed as indexed grammars. 
This paper is self-contained. No previous knowledge of context-free tree 

languages is required. All introduced notions are carefully defined, illustrated via 

examples and related to the literature. This makes the paper slightly longer than 

strictly needed and hopefully more readable. We hope the tree language experts 
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will forgive us tiffs extra length: we tried to make it easy for them to hop their 

way throughout the paper. 

2. Notations 

Let F (resp. @) be a finite ranked alphabet of base function symbols (resp. of 

variable function symbols). The rank of a symbol s in F U @ is denoted b y r ( s ) .  

Symbols in F are denoted f ,  g, h . . . .  if they have rank > 1, and a, b, . . .  if they 

have rank 0; F~ denotes the symbols of rank i in F. Symbols in @ are denoted 

G, H, . . . .  Let V be a set of variables: the variables have rank 0 and are denoted 

by u, o, w . . . .  possibly with indices. 

The notions of tree, node in a tree, occurrence of a variable or a subtree in a 

tree, substitution, etc . . . .  are supposed to be known (see [18]). We .recall however 

those notions we shall use in the paper in order to fix the notations. 

We use the Dewey notation for trees (see also [17]): nodes in a tree are 

denoted by finite words over the alphabet N, i.e. elements of the free monoid N*.  

Formally, a tree on F is a pair (Dr, t) consisting of: 

a tree domain D t which is a finite subset of (N  - {0})* such that if o = nl . . . r ip 

is in D t then (a) every left factor o'= nl . . .nq,  q <~ p, also is in Dr, (b) for all 

i ~ r ip ,  o "  = nl . . .np_l i  also is in D t 

a total mapping t from D t into F such that, for any o in D t, if t(o) = f ~ F 

and f is of rank p then o has exactly p "sons" (i.e. nodes o' of the form 

o'= on i ) in D r 

In the sequel, D t will be omitted and a tree will be denoted by t. A node in a 

tree is an element of Dr; t(o) is called the label of node o; o is also called an 

occurrence of t(o) in t; nodes or occurrences will be denoted by o. Note that D t 

contains the empty word e: the root of t. 

Let t, t" be trees on F and o be a node in t; t ( t ' /o )  denotes the tree obtained 

by substituting t '  for the node o in t and is defined by: 

(a) t ( t ' /o ) (oo ' )  = t'(o') for any o' in D t, and 

(b) t ( t ' / o ) (o" )=  t(o") if o is not a left factor of o" (recall that o is a left 

factor of o" iff there exists an o' with o" = oo'). 

The subtree tlo of t (at occurrence o) is the tree t "  defined by: t"(o')  = t(oo') 

for any oo' in D r 

The depth d( t )  of a tree t is defined by: 

d ( t ) = s u p ( l o l + l / o ~ D t } ,  where Iol is the length of o considered as an 

element of N*.  

Let A ( F )  denote the set of trees on F; a tree with variables in V is a tree on 

F U V; the set of trees with variables is denoted b y A ( F  U V) or, when we want to 

point out the variables, A(F,  V): intuitively, the variables are intended to range 

over a set of trees, e.g. A ( F )  or A(F,  V). A ( F )  (resp. A(F,  V)), with the obvious 

algebraic structure, is called the free F-magma, or F-algebra (resp. the free 

F-magma over V), and is denoted, in the ADJ terminology T F (resp. TF(V)). 

A i ( F , V  ) denotes the trees having at most i variables, and Ai (F)  (resp. 

Ai( F, V)) denotes the trees of depth i; dearly, Vi: Ai( F )  c A~( F, V)  and A~( F )  c 

A ( F )  c A(F,  V), and similar relations hold for the Ai's. 
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Throughout this paper we will use the word notation for trees. A tree is 

represented by a word over the alphabet F U ((,) ,  c}, where c is the comma, as 

follows: 

a stands for a ~ F 0 

f ( q , . . . , t ~ )  stands for the tree having r o o t f  ~ F~ and direct subtrees t l , . . .  ,tr, 

and would be pictured as: 

A tree t in Ap(F ,  V )  will be denoted by t (v  I . . . . .  vp) in order to point out the 

variables; the shorthand vector notation t(vD will be used; t ( t  1 . . . . .  tp) denotes the 

tree obtained by simultaneously substituting ~ for each occurrence of v i in 

t (v  1 . . . . .  vp), for i = l , . . . , p ;  formally, t ( t  1 . . . . .  tp) is the image of t (v  1 . . . . .  Vp) by 

the F U V-algebra morphism h defined by: h(v i )  = t i for i = 1, .:: ,p, and h ( f )  = f 

for f in F. We will also use a vector shorthand notation t ( t )  for t ( t  1 . . . . .  tp). 

Alternatively, when wanting to point out which t reesa re  being substituted for 

which variables, we will note: t ( t a / v  1 . . . .  , t ? / vp )  (or t ( t / ~ ) .  

A pref ix  of t ~ A ( F , V )  is a tree _ t ~ A ( F , ( w  1 . . . . .  w,}), with ( w  1 . . . .  ,Ws} 

disjoint from V, D~ c Dt ' and such that there exist subtrees t~ . . . . .  t s of t with 

t =_ t ( t a /w  I . . . . .  t J w , ) .  

Recall finally that the yield of a tree is its image under the homomorphism h: 

A ( F )  ~ Fo*, where Fo* is viewed as an F-algebra where all f in F~, r > 1, are 

interpreted as concatenation. Formally, h is defined inductively by: 

h(a )  = a for a in F o 

h ( f (  q . . . . .  tr)) = h ( q ) . . . h (  t~) for f i n  F r, r >1  and t x . . . . .  t r in A (  F) .  

We will write yield(t) rather than h( t ) .  

These notations are illustrated in Figure 1 below. For more details on trees 

consult [18]. 

3. Pushdown Tree Automata and Context-Free Grammars 

Definition 1. A context- free  tree grammar ~is  a 4-tuple (F, d#, p ,  Go) , where: 

(a) F is a finite ranked alphabet (of terminal symbols) 

(b) ¢ = (G 0, G 1 . . . .  , Gn ) is a finite ranked alphabet of function variables (or 

nonterminal symbols) 
(c) P is a finite set of pairs <Gi(x x . . . . .  xr(G~)) , t J> where, for i =  0 . . . . .  n, 

j =1  . . . . .  ni, t~ ~ A ( F  U ¢,  (Xl, . . . ,xr(ci)  }) 
(d) G 0, the axiom or initial nonterminal, is a distinguished symbol of rank 0 

in ¢ .  
We will use a vector shorthand notation and abbreviate G ( x  1 . . . . .  xr(c) ) in 

G()?). Each pair (Gi (£ ) ,  t / )  in P is called a production of f¢, and is denoted by 

Gi(Y  ) ~ t/. Productions of f¢ turn into rewriting rules: consider the Xk'S as 

dummy variables (or parameters) standing for trees in A ( F ) .  The triple (F, ~,  P )  

can thus be viewed as a nondeterministic recursive program scheme, or a tree 

rewriting system. Grouping together all right hand sides of productions having 
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the same nonterminal as left hand side, we get the following synthetic notation for 

a tree rewriting system: 

Gi(x ) - - -~  T i =  t ~ +  " " + t n i c  . . . .  • xr (c , )} )  

where  + deno tes  the  set theoret ical  union .  

I m m e d i a t e  rewri t ings  ( ~ ) and  der iva t ions  ( *~¢ ) a cco rd ing  to f¢ are  def ined  

as usual  (cf. [18]). Let  us recall  the def in i t ions  here  for  the reader ' s  convenience .  

T h e  immed ia t e  rewri t ing  acco rd ing  to ~ is the re la t ion  ~ def ined  on  A ( F  u dp)× 

A ( F  u ¢ )  by" t =, t '  iff  there  exists s o m e  pre f i x  t of  t, an  occu r r ence  o in t labeled 

by the function vanable G~ of rank s (i.e. t ( o ) =  G~), and subtrees t l , . . . , t  s of t 

such that: t = t ( G i ( t  1 . . . .  , % ) / o )  and t '=t_( tJ( t l  . . . . .  L ) / o )  for some t / in T,.. 

t = t ( o ~ , v 2 ) = d ? ) g  

h a 

I 
V2 

t ~ A(F,{v 1, v2} ) with F = { a , h , g )  
r(a) =0 r(h) =1 

D t = { e,1,2,21,22,211} 

d(t) = 4 t(e) = t(2) = g 

t(211) = v 2 

t ' =  t( t /1) = t(t, Vz) can be drawn as: 

Sg\ 

/\a 
, I 
U2 /)2 

yield ( t') = vlv2av2a. 

g 

Let: t = w ( ~ g , k ,  

W2 W3 

t is a prefix of t and t'. 

Fig. 1 

r(g) = 2 

t(1) = v 1 t(21) = h 
t(22) = a 



2 4 2  I .  G u e s s a r i a n  

Intuitively, at occurrence o, G; is macroexpanded, i.e. replaced by the right 

handside t j of production G i ( x  1 . . . . .  Xs) ~ t[; simultaneously, q , . . . , L  are sub- 

stituted for x x . . . . .  x,.  Whenever no ambiguity can occur, the subscript ~ is 

omitted and ~ is denoted by =,,  as will be done in the sequel. The derivation 
, ff¢ . . . . .  

relation ~ according to ~ ~s the reflexave and t ransmve closure of ~ .  

More operationally, we can view ~ as a semi-thue system with variables. 

Recall from [11] that a semi-thue system with variables is a 4-tuple 5 ~ = 

(A, X, D, R)  with 

A an alphabet of terminal symbols 

X a set (disjoint from A) of variable symbols 

D a mapping from X into the power set of A* 

R c (A U X)* × ( A  to X)* a finite set of rules denoted by r:  q~ ~ 4- 

Each variable x in X i s  meant  to range over D ( x )  so, for each rule r :  ~p ~ ~p in 

R, s (r )  is defined to be the set of all rules a ~ fl in A* × A* such that there exists 

a homomorphism h :(A tO X)* ~ A* with h ( x )  ~ D ( x )  for all x in X, h (a)  = a 

for all a in A, h(qo) = a and h(~p) =f t .  Let s ( R )  = 1,3 s(r) .  ~ is then defined on 
r ~ R  

* is the reflexive A* × A* by, for any a ---, fl in s (R) ,  71 and 0 in A*, *taO ~ ~lflO. 

and transitive closure of ~ .  

Note now that ~ can be viewed as a semi-thue system with variables. 

A = F U ~ U ( ( , ) , c } ,  

where V =  ( x  1 . . . .  Xsup(r~G~)/i= 1 ..... ,)  } and c is the comma symbol. 

X = V  

D ( x )  = A ( F U r b ) f o r  everyx  ~ X 

R = P .  

Then, * is the derivation relation of the semi-thue system. 

A derivation t = t l . . .  ~ t~ consisting of p immediate rewritings will be 

denoted by t P~ tp. 

A derivation t * t '  is said to be OI, or outside-in [15, 13] iff for all immediate 

rewritings t k = t ( G i ( t l , . . ; , t s ) / o ) ~ t k + l = t ( t J ( t x  . . . . .  t s ) /o  ) composing it, and 

for all left factors o'  of o (i.e. o = o'o'), tg(o ') ~ F; in other words, no ancestor of 

o is labeled by a function variable. 

Recall [15, 13] that any t '  in A ( F )  such that t * t '  can also be obtained from 

t by an OI derivation. 

The context-free tree language L(f#) generated by ~¢ is L ( ~ ) =  ( t ~  

A ( F ) / G  o * t}. 
also generates [12] a macro string language Ls(~¢ ) obtained by concatenat- 

ing the leaves of each tree in L ( ~ ) :  

Ls(f~) = (y ie ld( t ) / t  ~ L( fg ) )  c. Fo*. The Ls (~ ) ' s  coincide with the class of 

indexed languages [1, 12, 15]. 

Example 1. Let fCbe defined by: F = ( a, g, h, f }, r ( a ) = 0 ,  r ( g ) = r ( h ) = l ,  

r ( f )  = 2; ~b = (Go, K ), r( K )  = 1 and P = (Go ---> K(a) ,  K ( x )  ~ f ( x ,  K ( h ( x ) ) ) +  
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g( x ) } then 

= 

= 

(g (a) ,  f ( a ,  g(h(a) ) )  ..... 

f ( a , f ( h ( a ) , . . . , f ( h " - l ( a ) , g ( h " ( a ) ) ) . . . ) ) ,  ... } 

{ a " / n > l }  

~and  L ( ~ )  are displayed in a tree like form in Figure 2 below. 

A pushdown tree automaton is a generalization of topdown tree automata 

[31, 32]: it is obtained by allowing an auxiliary storage consisting of a single tree. 

The root of this pushdown tree is always accessible, and according to the state 

and the input symbol scanned, this root can be popped or replaced by a tree. Like 

top-down tree recognizers, pushdown tree automata have the essential ability of 

duplicating themselves, and also their pushdown store, as they go down in the 

input tree. Bottom-up pushdown tree automata have also been investigated [28, 

29]: they, of course, don't duplicate themselves, but their storage consists of finite 

sets of trees, whose roots must be simultaneously accessible; this is, in some sense, 

unavoidable, due to the inherent parallelism present in context-free tree lan- 

guages. 

Intuitively, PDTA's (pushdown tree automata) can be viewed as an extension 

of both: 

• finite top down tree automata [31]: like usual (string) PDA's extend 

finite automata, PDTA's extend finite tree automata by allowing an auxiliary 

storage consisting of a tree and the possibility of e-moves ignoring the input. 

• usual PDA's by allowing trees instead of strings in both the input and 

the store: as in the PDA case, the finite state control processes both input and 

stack in a left-to-right (i.e. top down) manner; namely the machine can read 

only the root of each input and stack tree, and processes the stack by 

substituting a tree for the root (pushing) or deleting the root and sdecting one 

of its sons (popping) (see Figure 3). 

D e f i n i t i o n  2. A pushdown tree automaton (PDTA) 

(Q, F, II, q0, Z0, R), where: 
Q is a finite set of states 

F is a finite ranked alphabet, called the input alphabet 

M is a six-tuple 

f 

K g 

I I + I 
X h x 

1 
x 

g f ~  

! / , 
t (~)  s { ' a I • 

h 

I 
& 

Fig. 2 

f 

a h /  \ g  
I I 
a h 2 

I 
a 

K 

a 

• . . . . -  } 
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II is a finite ranked alphabet, called the pushdown alphabet. We may 

suppose, w.l.o.g, that 1-I and F are disjoint alphabets. 

qo is the initial state, qo ~ Q 

Z o is the start symbol, appearing initially on the pushdown store, Z o ~ II  0. 

R is a finite set of rules (or moves) of the form: 

(i) read rule 

q ( f ( v l  . . . . .  Vr), E (X l  . . . .  ,Xs) ) ~ f ( q l ( V l ,  7/'1) . . . . .  qr(Vr, 7rr)) 

where 

f ~ F r ,  E ~ I I ~ , ~ r i ~ A ( I I , ( x  I . . . .  , x , } )  f o r i = l  . . . . .  r, q, q i ~ Q .  

(ii) e-rule 

q ( v , E ( x l  ..... xs)) ~ q'(v, Tr') 

where E ~ I-I,, ~r' ~ A(II ,  ( x 1 . . . . .  x s }), q, q' ~ Q, v ranges over A ( F ) .  
A PDTA M is said to be deterministic (DPDTA) iff for any pair (q, E),  either 

there exists at most one e-rule in state q with pushdown root E and no read move, 

or there exists no e-rule and at most one read rule for each f in F (in state q with 

pushdown root E).  

An instantaneous description (ID) of M is a triple q(t, ~r) ~ Q × A ( F ) x  A(II) .  

If t = f ( t  I . . . .  , t , )  and ~r = E(I  h . . . . .  ~rs), then M is currently in state q, reading 

input symbol f and scanning root (top) of stack E. An initial ID is of the form 

 !tro, 
j stack 

input 

Fig. 3 
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qo( t ,  Zo) .  ID's might also be called configurations [6]. We here follow the 

terminology of [19]. 

Notation. Elements of II  are denoted by B , C ,  D . . . .  (symbols of rank 0), 

E, G, H, K . . . .  (symbols of rank > 1); xl, x a . . . .  are variables representing trees of 

A(II) .  Elements of F are denoted by the corresponding lower-case letters 

( b , c , d  . . . .  e , f , ' g , h , k  . . . .  and u , v ,  vl ,  v z . . . .  for variables). Trees (or terms) in 

A ( F )  (resp. A(II) )  are denoted by t, t ' ,  t i (resp. ~r, ,r', ~ri). Variables v[s (resp. x[s) 

are dummy variable symbols intended to represent positions (or parameters) to be 

replaced by elements ranging over A ( F )  (resp. A(II))  in the set of instantaneous 

descriptions of M. 

A configuration c of M is an element of the form t ( i d l , . . . , i d n )  , where 

t ~ A ( F , { v  1 . . . .  ,on} ) and id I . . . . .  id n are ID's of M, i.e. c ~ A ( F , Q × A ( F ) ×  

A(n)). 
The move  relation p of M is the relation defined on configurations by: 

c = t ( i d  1 . . . .  , id i_  1, id  i, idi+ 1 . . . . .  idn)  ~ -  c" 

= t ( i d l , . . . , i d i _  1 , c i , i d i + l , . . . , i d n )  

iff either id i = qi ( f ( tl . . . .  , tr) , E (  ,r{ . . . . .  rt~')) 

and ci = f (  q l (  t l ,  ~h ( ~ ' / Y ) )  . . . . .  qr( tr, ~rr(ff~/~?))) 

where q t ( f (  v l , . . .  ,or), E ( x  x . . . . .  x s ) )  ~ f (  q l (  Vl, ~'1) . . . .  ,qr(  Vr, ~rr) ) is a read 
rule of M, i f ' =  (Tr 1' . . . . .  ~r f)  and ~?= (x l , . . . , x s )  

o r  i d  i = q i ( t , E ( ~ r ;  . . . . .  , r / ) )  and  c i = q ' ( t , ~ r ( ~ ' / £ ) )  

where qi (v ,  E ( x  1 . . . .  , x s )  ) ~ q ' ( v ,  ~r) is an e-rule of M, i f ' =  (~rl',...,~r~') 

and ~?= (x 1 . . . . .  xs). 

Let the computat ion relation 1"--- of M be the reflexive and transitive closure 

of ~ .  

A s e n t e n t i a l f o r m  of M is a configuration c =  t ' ( i d  1 . . . .  , idn)  such that, for 

some t in A ( F ) , q o ( t ,  Zo)I*--c.  Notice that, if i d  i = qi( t i ,  Iri) for i =1  . . . .  ,n, then 

t = t ' ( t l , . . . , t n ) .  

A PDTA M is said to be real- t ime (resp. quasireal - t ime)  iff it has no e-rule 

(resp. a bounded number of consecutive e-moves). 

t 

Remark 1. Note that, if we consider all states to have rank 2, left and right-hand 

sides of the rules (i) and (ii) in definition 2 are trees; hence these rules can be 

viewed as ordinary tree rewriting rules. Namely, we can view M as a semi-thue 

system with variables 

M = (~¢, £r, ~ ,  ~ ) ,  where: 

~¢ = F to II tj Q to (( ,) ,  c} where c is the comma. 

5Y = Xto  Vwhere X =  {XI,  X 2 . . . .  ) and V =  ( v ,  v l ,  v z . . . .  ) 

~ ( v )  = A ( F ) ,  ~ ( x )  = A(II) ,  for all v in V, x in X 

~ = R  
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Then, }-- coincides with ~ .  The sentential forms of M thus coincide with the 
sentential forms of the rewriting system. 

Remark 2. Note that, in read rules, in the special case that r = 0, the rule is 

q(a, E ( x  1 . . . . .  x , ) )  ~ a. The current stack is thus deleted; this means intuitively 

that "q is a final state with respect to a and E "; namely final states are implicitly 

present: the automaton knows it has successfully completed a computation when 

it reads a symbol of rank 0. This naturally leads to acceptance by "final states" 

rather than by "empty store". 

Definition 3. The tree language accepted (by final state) by M is defined by: 

T ( M )  = { t ~ A ( F ) / q o ( t ,  Zo)l*-- t} .  

M is said to accept by empty store (and final state) iff all read rules (i) which 

read an input symbol of rank 0 are of the form: q(a, B)  ~ a, i.e. b o t h f  = a and 

E = B are of rank 0. 

Thus, intuitively acceptance occurs whenever M processes the whole of t; if 

moreover read moves on leaves always result in popping a leaf of the push down 

M accepts by empty store. 

Example 2. Let M be defined by 

Q = { q }, F = ( a, g, h, f } as in example 1, 

I I =  { Zo, B , H , K } ,  r( Zo )=  r ( B ) = O  and r ( n ) =  r ( K ) =  l, qo = q, 
Z 0 = Z 0, and R is the following set of rules (all of type (i)): 

q(g(u) ,  Zo) -~ g(q(u,  B))  

q ( f ( u ,  v), Zo) --" f ( q ( u ,  B), q(v, K ( H ( B ) ) ) )  

q ( f ( u ,  v), K ( x ) )  ~ f ( q ( u ,  x),  q(v, K ( H ( x ) ) ) )  
q(a, B) ~ a 

q(h(u) ,  H ( x ) )  ~ h(q(u,  x))  

q(g(u) ,  K ( x ) )  ~ g(q(u,  x)). 

This automaton recognizes the language L(f¢) of example 1. Moreover, this is 

an example of a real-time (without e-rules), deterministic, and restricted automa- 

ton (i.e. its pushdown alphabet consists only of words, see definition 4 of section 

5) which accepts by empty store. 

Proposition 1. I f  a tree language is accepted by some ~PDTA M, it can be accepted 
by empty store by some PDTA M'. 

Proof. M" will simulate M, but will delay reading the leaves by making a 

"guess" stored in the state and checking the guess while emptying the stack. 

Formally, M" has the same alphabets as M; its set of states Q" contains Q 

together with new states qa for each q in Q such that M has a "leaf-reading" rule 

q(a, E ( x  1 . . . . .  xs) ) ~ a. The rules of M" are then obtained by adding to the rules 
of M the following set of rules: 

for each rule q( a, E(  x 1 . . . . .  x , ) )  ~ a of M, add 
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the set of e-rules (popping the stack) 

q ( v , E ( x  x . . . . .  x , ) )  ~ qa(V,Xx) 

q ~ ( v , G ( x : , . . . , x , ) )  --* qa(v ,X l )  VG ~ I I s , s  > 1  

the set of read-rules 

qa(a, B)  ~ a VB ~ II 0 [] 

Several variants of PDTA's which do not extend the class of defined 

languages may be introduced: e.g. several initial states, a starting tree or a set of 

starting trees (of depth possibly greater than two) instead of a start symbol of 

rank 0, the ability to read in a single move input trees of depth greater than two, 

etc . . . .  These variants do not give additional power to the corresponding au- 

tomata. Let us check, for instance, the following two propositions, which will be 

useful in proving the equivalence of PDTA's and indexed grammars (section 5). 

Proposition 2. Any language accepted by a PDTA with additional generalized 

rules of the form: 

(iii) q ( f ( v  1 . . . .  ,Vr), x )  ~ f ( q l ( h ,  ¢rl),'" ",q~(Vr, ~#)) 
(iv) q( v, x )  ~ q'( v, ~r') 

with rr',~rl,...,~ # in A(II ,{x}) ,  and x ranging over A(II) ,  can be accepted by a 

normal PDTA. 

Proof. Note first that the move relation corresponding to, e.g. a type (iv) e-rule, 

is the following: id = q( t, ¢r ) ~-- q'( t, ~r'(rr)), with t ~ A(  F),  ¢r ~ A(II) .  It is then 

clear that any type (iv) e-rule can be simulated by the following set of type (ii) 
e-rules: 

q ( v , E ( x  x . . . . .  x s ) ) ~ q ' ( v , ~ r ' ( E ( X l , . . . , x s ) ) ) ,  fo rany  E i n I I .  

Similarly, any type (iii) rule can be simulated by the set of type (i) read rules: 

q ( f ( v :  . . . . .  vr) ,E( .~))  ~ f (q : (vx ,Tq(E( .~ ) )  ) . . . .  ,q , (v , ,~#(E( .~)) ) )  

for any E in II. [] 

Proposition 3. Let language L be accepted by a PDTA M with extended read rules 

of the form: 

(v) q( t ( v :  . . . .  ,Vr) , E(X: . . . . .  xs) ) ~ t(ql(Vl,~r:) . . . . .  qr(Vr,Crr)) 

with E, ~ as in definition 2, and t is in A(  F,{ vl , . . . ,vr} ), each variable v i occurs at 

most once in t, t has depth > 2. 

Then L can be accepted by a normal PDTA M'.  
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Proof Let m: q( t (v  x . . . . .  v,), E(xD. . . , x~) )  ~ t(ql(vl ,  ~rl) . . . . .  q,(v r, %)) be a type 

(v) rule of M. We will simulate m by a sequence of read rules of M' .  For each 

such m let Om = {O/O is an occurrence in t (v l , . . . ,vr)  such that t(v 1 . . . . .  vr) 

(o) ~ F} ;  O m is thus the set of occurrences not labeled by variables in t. Then, if 

m = (Q, F, l-I, qo, Z0, R), m '  = (Q', F, l-I, q0, Z0, R')  where: 

Q ' =  Q u {(m, o ) / m  is an extended read rule of M and o is in O,,} 

R'  is defined as follows: 

(1) type (i) and (ii) rules of R are in R'  

(2) each type (v) rule m of R is replaced by the following set of type (i) 

rules: 

for each o in O,,, let f o = t ( v l  . . . .  , v , ) ( o ) ~ F  n, n>O,  be the label of 

occurrence o in t(v 1 . . . . .  vr); then R'  contains the rule: 

p ( f o ( o l , . . . , v , ) ,  e ( X l  . . . .  ,xs))  - ,  fo( ia l  . . . . .  ia , )  

with 

(~  if o = 

P = rn,o)  if o4=e 

and for each j :  

i d s =  [ ( m ' ° j ) ( v j ' E ( x l  . . . . .  xs) )  i f ° j ~ O m  

~qk(vj,~rk) if ojq~O m and t ( v  1 . . . .  ,Vr) (Oj)=v ~ 

It should be clear that T ( M )  = T (M' ) .  [] 

Remark 3 (191). On the other hand, allowing PDTA's to read in a single move 

pushdown trees of depth > 2 (i.e. a "look-ahead" on the store which is operated 

as a stack rather than a pushdown) indeed results in a much more powerful device 

as soon as the pushdown alphabet X contains a symbol of rank > 1. Let e.g. G be 

a binary symbol in X, then one can simulate a Turing machine with a look-ahead 

of depth 1 on the store: the pushdown G(~q, ~r2) can be viewed as two push- 

downs, connected by G representing the Turing machine head; ~r 1 (resp. ~r2) 

stands for the part of the Turing machine tape lying to the left (resp. right) of the 

head. Since, as we shall see in theorem 1 below, PDTA's accept only context-free 

tree languages, such a look-ahead on the stack would vastly increase the class of 

accepted languages. 

Proposition 4. PDTA's accept the class of creative dendrolanguages [26]. 

Sketch of Proof When dropping all first arguments of states in rules (ii), (v) one 

obtains rewriting rules exactly similar to those of the creative dendrogrammars. [] 

Note that it is proved in Rounds' paper (theorem 7 of [25], see also [1]) that 

the number of states of a creative dendrogrammar can always be reduced to 1, 
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thereby proving that creative and context-free languages coincide. However, both 

Rounds and Boudors papers [25, 7] stress the grammatical aspects of the 

problem, whereas we want to consider its operational and automaton theoretical 

aspects. This is the reason why: 

1. We will give in Theorem 1 below a complete proof that PDTA's recog- 

nize context-free tree languages. Proposition 4 will then follow from Theorem 1. 

The spirit of our proof will be quite similar to the one in Rounds paper (Theorem 

7). 

2. We will later prove a more operational simplification theorem (Theorem 

3 below), more remote from the considerations in [7, 25], by reducing the 

pushdown to a linear one, i.e. simplifying the store instead of reducing the 

number of states. This leads to a simple proof of the equivalence of yields of 

context-free tree languages and indexed string languages. 

Theorem 1. A tree language is context-free i f  and only i f  it can be accepted by a 
PDTA. 

Proof. "Only  if" part: Let ~ = (F, ~,  P, Go) be a context-free tree grammar. For 

each production Gi(x  1 . . . .  ,x~) ~ t/, decompose t~ in the form: t / =  tij(O 1 . . . .  ,On) 

with t u ~ A ( F , ( v  I . . . . .  v~)),n>_O, V i = I  . . . . .  n, 9 i ~ A ( F U ~ , X ~ )  and Oi(e)~ 

U Xs where Xs = (xl  . . . . .  x , )  (i.e. tij is a prefix of t / a n d  the root of each 0 i is a 

function variable or an x~, namely we mark outermost occurrences of function 

variables in t/). 

Notice that, in case t / ( e ) ~  g9 U X~ the above decomposition reduces to 

t l  = v( t l ) .  
Now let M be the automaton having the single state q, input alphabet F, 

pushdown alphabet H = F U ~, start symbol Z 0 = Go and rules R defined by: 

for each production G~(x 1 . . . . .  x~) ~ t~ in P, R contains the rule: 

(vi) q ( t i j ( v  I . . . . .  vn ) ,G i ( x  1 . . . .  , x , ) )  "* t i j (q (v i ,O1)  . . . .  ,q (v~ ,8n) )  

for each terminal f in F~, R contains the rule: 

(vii) q ( f ( v  I . . . .  ,vn), f ( x  1 . . . . .  xn)  ) ~ f ( q ( v  1, x1) . . . . .  q(vn,  x~))  

Note that: 

1. R possibly contains extended type (v) read rules 

2. in the special case when the root of t / i s  labeled by a (function) variable, 

taking tij = v in the above rule (vi) leads to a type (ii) e-rule. 

Now the following fact is clear and gives the desired result: 

Fact 1. There exists an OI derivation sequence of ~: Gi( q . . . .  ,ts) * t ' ~  A ( F )  

iff there exists a successful computation sequence of M:  q(t ' ,  Gi( t  I . . . . .  ts)  ) 1"--~- t" 
(with t i in A ( F  U t~) for i = 1 . . . .  ,s). 

This fact shows that T ( M ) =  L ( ~ )  since it is well known that any tree in 

L ( ~ )  can be obtained by an OI derivation [12, 15]; this is also one of the reasons 



250 L G u e s s a r i a n  

in choosing a top-down behavior for our PDTA's in contrast to the TPDA's of 

[29]: by sticking more closely to the grammatical standpoint we obtain simpler 

automata. 

" i f "  part: Let M = (Q, F, I I ,  q0, Z0, R) 

The construction of a grammar G generating T ( M )  is somewhat more 

complicated. We first give the idea of it: essentially, the changes of the pushdown 

store will be modeled by the productions of the grammar, but we will have also to 

model the additional ability of changing the state; hence, the nonterminals of 

will encode pairs (state, top pushdown symbol). Moreover, the arguments of each 

nonterminal (q, K)  should render all possible "next states" after K has been 

popped. Formally, let k = card(Q), and ~ = {Gq /q  ~ Q,G ~ H )  where each G o 

in • has rank k × r(G); similarly, if X is the set of pushdown variable symbols of 

M, let X Q = { x q / x  ~ X, q ~ Q} be a set of variables ( x  q is intuitively intended to 

correspond to the selection of variable x and next state q). Define a by: a: 

Q × A(II,  X) ~ A(~,  X o) satisfies o(q, s)  = s q if s has rank 0 or is a variable, 

and, using a vector notation if(t) instead of o(q 1, t), a(q2, t) . . . . .  O(qk, t), define 

by induction: a(q, G( t l , . . . , t r (G)))= Gq( i ( t l ) , . . . , i ( t r (a ) ) )  (in short o ( q , G ( t ) ) =  

Gq(i( t))) .  

The grammar ~ generating T ( M )  is now defined as follows: ~ has terminal 

alphabet F and nonterminal alphabet ~, axiom G O = o(qo, Zo) and productions: 

o( q, G( x I . . . . .  Xs) ) ~ o( q', ~r') for each e-rule q( v, G( x 1 . . . . .  x , ) )  ~ q'( v, rr') 

of R 

o(q,  G ( x  1 . . . . .  x~)) ~ f ( o ( q  1, ~ h ) , ' . .  , ° (qr ,  ~rr)) for each read rule 

q( f (  v I . . . . .  v~), G( x 1 . . . . .  x~)) ~ f ( ql( va, ~h) . . . . .  q~( v~, ~r~)) of R. 

Notice that, if M is real-time, it has no e-rule, hence ff is Greibach. (See 

section 4 for the definition of Greibach grammar). 

We now can state: 

Fact 2. For every ~r in A(II),  t in A ( F )  and q in Q : o ( q , ~ r ) ~ t  by an OI 

derivation sequence of ff of length n iff there exists a successful computation 

sequence of length n q( t, ~r ) t n t of M. 

Proof By induction on n. We first prove the "only if" part 
1 

n =1 then, forcibly, ~r = G(q~ 1 . . . . .  q~s) and a(q, rr) ~ a ~ F 0 which can occur 

iff q(a, ~r) ~ a is a rule of M, hence gives a successful computation sequence of 

length 1 
n + l  

Inductive step: suppose o(q, ~') =, t, then ~r = G(~ 1 . . . . .  ~,) and: 

either o(q, ~r) = o(q', ~r'(~pl . . . . .  ff~)) ~ t and hence, by the construction of fg, 

there exists an e-rule q ( v , G ( X l , . . . , x s ) ) ~ q ' ( v , ~ r ' )  of M, and by the 

induction hypothesis, there exists a length n computation sequence 

q'(t, ~r'( qq . . . . .  q%)) ~ - t  of M; whence the successful computation sequence of 
F n 

length n + 1 : q( t, ~r) ~- q'( t, ~r ( ~1 . . . . .  qJ ,))  F- t .  
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or a(q, ,r) ~ f ( a ( q  v t~'l) . . . . .  tJ(qr, tp'r) ) and 

a) t = f (t 1 . . . . .  t r) 
? ni 

b) for each i = l , . . . , r ,  o(qi, t~t) ~ t  i by an OI derivation sequence and 

r 

E n i = r l  
i = 1  
then, there exists a read rule 

q ( f ( v l , . . . , V r ) , G ( X l , . . . , x s ) )  ~ f (q l (v l ,~r l )  . . . .  ,qr(Vr,~rr) ) of M, 

and, by the inductive hypothesis, there exist r successful computation sequences: 

q i ( t i ,~ )  I n--~ ti, for i = l , . . . , r .  Whence the successful computation sequence: 

q ( f ( t  1 . . . .  , t r ) ,  G ( ~ l , . . . , ~ s ) )  ~- f ( q l ( t l ,  ~1)  . . . . .  qr(t~,  ~ r ) ) I  n~ 
f ( t l ,  q2(t2, ~2) . . . .  ,qr(tr, ~'r))] n--2"'" I nr t = f ( t  1 . . . . .  tr) of length n +1. 

A very similar proof shows that, if there exists a successful computation 

sequence q(t,~r) ~-L}-t, we can translate it into an OI derivation sequence 

n + l  
o( q, ~r ) =* t. [ ]  

Fact 2 shows that f¢, with axiom O(qo, Z0) , generates T(M).  [] 

Example 3 (of the previous construction). Let M be defined by: Q = ( q0, ql, q2 }, 

F =  {b, Cl, C2} , I I= (G,C,  Zo} with r (b )= 2, r ( G ) = l , r ( C ) = r ( c l ) = r ( c 2 ) = O .  
The rules are the following: 

(0) qo( v, Zo) ~ qo(v, G( C)) 
(1) qo(v, G(x))  ~ qo(v, G2(x)) 

(2) qo(b(u, v), G(x))  --* b(ql(u, x), q2(v, x)) 
(3) for i = 1,2, qi(b(u, v), G(x))  ~ b(qi(u, x), qi(v, x)) 

(4) qi( ci, C) --, c i for i =1 ,2  
It is associated with ~ having nonterminals G°,G1, G 2, of rank 3, 

Z °, C °, C 1, C 2, of rank 0, axiom Zo °, and productions: 
(0) Z ° ~ G°(C °, C 1, C 2) 
(1) G°(x °, x I , X 2 ) --'> G°(G°(x  °, X 1 , X 2 ) ,  G l ( x  0 , x 1 , x 2 ) ,  G2(x ° , x 1, x2)) 

(2) G°(x °, X 1, X 2 ) -"> b ( x  1, x 2 ) 

(3) for i =1,2,  G i ( x  O, x 1, x 2)  ~ b ( x  i, x i) 

(4) for i =1,2,  C i ~ c i 

and L(f¢) = T ( M )  is the set of binary trees of the form: 

t n 
. } 

•" depth n 

• . . "  " " b  " . " ' ' b  

. . . .  c (  ',c, .. c I c I c 

2n-1 2n-1 
Cl cz vI 

Let us give as an example of application of this automaton theoretic char- 

acterization of context-free tree languages a very simple proof of the following: 
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Proposition. The intersection of a context-free and a regular tree language is 

context-free. 

Proof By a product construction used in many other proofs. E3 

On the other hand, if we already presume the above closure result and closure 

under linear (or alphabetic) erasing homomorphism, which are both special cases 

of closure under linear top-down transductions shown in [25, 26], a very elegant 

proof (due to J. Engelfriet) can be given to show that every T ( M )  can be 

generated by a context-free tree grammar; let f g ' = ( F ' , I I ,  R ' ,Zo)  be the 

context-free grammar defined by: 

each type (i) ru le  of M is t ranslated into the p roduc t ion  

E ( X  1 . . . .  ,Xs)  "-> f (q l , . . . ,qr ) (~ ' l  . . . . .  7rr) of R'  
each type (ii) rule of M is translated into the product ion  

E ( x  1 . . . .  ,Xs)  ~ dq , (~  ') 

where f~ql . . . . .  qr) is a new rank r symbol in F ' ,  for every type (i) rule, and dq q, is a 

new rank 1 symbol in F ' ,  for every type (ii) rule (d stands for "dummy").  Let L 

be the context-free language generated by ~ ' .  To obtain T ( M )  from L, it 

suffices: 

a) to intersect L with a recognizable tree language L'  (checking that every- 

where the subscript of the father is the sequence of superscripts of its sons) 
q b) to then erase all symbols d q, and rename each f(ql,"',qr) t o  f by a linear 

homomorphism h e" 

This can be formalized in the: 

Lemma. For any t in A( F )  and Ir in A(II),  there exists a computation sequence 

q( t, ~r ) ] n-- t i f f  there exists an OI derivation ~r =* t" ~ A( F ") of f¢" such that t" ~ L' 

and he(t" ) = t. 

4. Classes of Languages Recognized by PDTA's. 

We shall now characterize several known classes of tree languages by the 

automata which accept them and see that these results nicely extend string PDA 

theory in most cases and are more complicated in some cases. 

Let us say that a tree language L is a real-time (resp. quasireal-time, 

deterministic, etc. . . )  iff it can be accepted by a real-time (resp. quasireal-time, 

deterministic, etc. . . )  PDTA M. 
Note that it would be seemingly more restrictive to demand that L be 

accepted by empty store by some (quasi)real-time M: this stems from the fact that 

in proposition 1, we need extra e-moves in going from M to M '  and that it might 

possibly take an unbounded number of e-moves to pop a leftover stack. 

Let us recall first some terminology. A context-free tree grammar f¢ = 

( F , ~ ,  P, Go) is said to be: 
a) in Greibach normal form (in short Greibach) iff the root of the right hand 

side of each production is a terminal symbol in F [4]. Greibach grammars are 

called strict Greibach in [5] who allow for rules G(£)  ~ x i in Greibach grammars. 
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b) Deterministic iff it is Greibach, and moreover, for each left-hand side there 

exists at most one production whose fight-hand side has a given root f in F [8]. 

Such grammars are the natural extension to trees of simple deterministic gram- 

mars [20]. We call them deterministic because the languages they generate are 

accepted by deterministic PDTA's (Proposition 6 and Theorem 2 below). 

Proposition 5. L is realtime ( resp. realtime deterministic) i f f  it can be generated by 

a Greibach (resp. deterministic) grammar.  

Proof  "only if" part: the construction of the grammar ffgenerating T ( M )  given 

in theorem 1 clearly shows that if M is real-time (deterministic) then ff is 

Greibach (deterministic). 

"if" part: to any Greibach (deterministic) grammar ffwe can easily associate 

a "normal" Greibach (deterministic) grammar if '  which 

generates the same language as ff 

is Greibach (deterministic) 

has all its productions in the form: 

G ( x l , . . . , x ~ ) ~  f ( O x , . . . , O r )  with f ~ F r and, for i = 1  . . . . .  r, 

O i E A ( F U d P , { x  I . . . . .  x s }  ) and Oi(e) E ~ l , . J ( X  1 . . . . .  Xs} (the root of 0 i is 
labeled by a (function) variable). 

For such a if '  the construction given in the first part of Theorem 1 clearly 
defines a realtime (deterministic) automaton M. [] 

Proposition 6. A n y  deterministic language is real-time. 

Proof  Let L be accepted by a deterministic M and ff be the grammar associated 

with M in the construction of Theorem 1; the set • of function variables (or 

nonterminals) of ff can be partitioned in two disjoint sets: 

(i) nonterminals coming from read rules of M which lead to Greibach productions 

(a) Gi(x  1 . . . . .  x s )  --* t~ + . . .  + t 7' 

with, for j = 1 , . . . ,  n i, tJ(e) = f j  ~ F and j 4: j" ~ fj :~ fj,. 

(i.e. the type (a) nonterminals and associated productions define a determinis- 
tic grammar) 

(ii) nonterminals coming from e-rules which lead to productions: 

(b)  G i ( x  1 . . . .  ,Xs)  --~ G.: (01 . . . . .  Os, ) 

with, fo r j  =1 . . . . .  s ' ,  Oj ~ A ( F  U ¢b, ( x  1 . . . . .  x s )  ). 

Moreover, M being deterministic, if G i is the left-hand side of a type (b) 

production, this will be the unique production in ~ having Gi as left-hand side; 

this will help in getting rid of all type (b) productions, because in such a grammar, 
we can easily: 

1. Delete all circular nonterminals, namely nonterminals such that there 

exists a derivation G ( x  1 . . . . .  x s )  * G(O 1 . . . .  ,O~), while preserving the type (a) 
and (b) partitioning of productions, see also [4, 21] where such nonterminals are 

called left-recursive): any circular G is, in this special case, useless, i.e. cannot 
generate any tree in A ( F ) .  
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2. then, because of the "deterministic" property of ~, for any type (b) 

nonterminal Gs, there exists exactly one finite derivation sequence: 

= O~ . . . . .  = - . .  = G~k ox,..,o~k G i ( x  1 . . . . .  Xs) Gi 1 

such that: for j = l  .... k, pj is a type (b) production and Gik is a type (a) 

nonterminal. Then, the type (b) production associated with G~ can be replaced by 

the type (a) productions 

Gi(x 1 . . . . .  Xs) ~ t)k(O 1 . . . . .  Osk)+ . . .  + tTk~k(O i . . . . .  Osk) 

All type (b) productions can thus be deleted and we hereby obtain a 

deterministic Greibach grammar generating L. [] 

Remark 4. Obviously, not every real-time language is deterministic, e.g. L = 

{ f (a ,  a), f (b ,  b)} is realtime and not deterministic. 

Corollary 1. 

(i) Every DPDTA is equivalent to a realtime DPDTA. 

(ii) Not every PDTA is equivalent to a real-time PDTA. 

Proof. 

(i) is a restatement of proposition 6. 

(ii) results from proposition 5 and the fact that not every context-free tree 

language admits a grammar in Greibach normal form [21, 23]. [] 

This shows that the situation is somewhat more complex than in the case of 

context-free string languages and is further illustrated by the next proposition. 

Proposition 7. Any language accepted by a quasi-real-time PDTA can be gener- 

ated by a Greibach grammar. 

Proof. Let M =  (Q, F, II, q0, Zo, R) be a PDTA accepting L such that any 

computation sequence of M has at most k consecutive e-moves. 

Lemma 1. L can be accepted by a PDTA M" such that: 

(i) each sequence of consecutive e-moves in any computation sequence of M" has 

length exactly k 

(ii) in any computation sequence of M' ,  between any two read rules there is a 

sequence of k e-moves. 

Proof. Intuitively, the idea is to count the number of e-moves in the state and 

force it to be exactly k. Formally, M ' =  (Q', F, II, qo, Z o, R'), where Q ' =  

((q, i ) / q  ~ Q, i ~ {0 .. . . .  k}} 
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R'  is defined by: 

for each type (ii) e-rule of M, q( v, E(  x I . . . . .  xs) ) ~ q'( v, ~r'), R '  contains the 

e-rules: 

( q , i ) ( v , E ( x  I . . . . .  x , ) )  ~ ( q ' , i + l ) ( v , ~ r ' )  0 < i < k 

( q , i ) ( v , E ( x  1 . . . . .  x , ) )  ---> ( q , i + l ) ( v , E ( X l , . . . , x , ) )  0 < i < k - 1  

for each type (i) read rule of M 

q ( f ( v l , . . . , V r ) ,  E (X l  . . . . .  xs) )  ~ f ( q l ( V l ,  ¢q) . . . .  ,q~(vr, ~rr)) 

R' contains the read rule: 

(q,  k ) ( f ( v  t . . . . .  or), E ( x  1 . . . .  ,Xs) ) ---> f ( ( q l , 0 ) ( V l ,  ~rl) . . . .  , (q,,O)(vr, ~r~)) 

and the set of e-rules: 

( q , i ) ( v , E ( x  1 . . . . .  x , ) )  ~ ( q , i + l ) ( v , E ( x  1 . . . .  ,x~)) 0 < i < k .[]  

Lemma 2. Let M = (Q, F, H, qo, Zo, R )  be a PDTA; then there exists a real time 

PDTA M "  = (a ,  F U (d} ,  II, qo, Zo, R" )  such that T( M )  = ~p(T( M " ) )  where 

is the linear homomorphism A(  F U ( d }) ---> A( F )  defined by: 

rp ( f ( t  1 . . . . .  tr) ) = f (~P(t l ) , . . . ,ep( tr)  ) f o r f i n F a n d w ( d ( t ) )  = W(t) .  

Sketch of Proof The idea is to stuff the input with the dummy symbol d of rank 

1, and to transform e-rules of M into rules of M "  which read d; then ~o is the 

identity on F and erases d. Formally, R"  

contains all the read rules of M 

contains, for each e-rule q(v, E (X l , . . . , x s )  ) ~ q'(v, ~ ' )  of M, the read rule: 

q( d(  v ), E(  x 1 . . . .  ,x~)) ~ d( q'( v, ~r')). 
The proof is left to the reader. [] 

Lemma 3. Let M " be associated as in lemma 2 to the automaton M ' constructed in 

lemma 1. Then T( M ') = 6-1 (T(M") )  where lp is the linear homomorphism A ( F ) 

--> A ( F  U ( d  }) defined by: q~(f(q . . . . .  tr)) = d k ( f ( ~ / ( q )  . . . . .  qJ(tr))) (d  k denotes 
the composition of d with itself k times). 

Sketch of Proof. By the construction of M '  and M "  one can easily see that any 

tree accepted by M "  is of the form ~(t) ,  for some t accepted by M' .  C] 

Now, T ( M " )  is Greibach by proposition 5; L = T ( M ' ) =  ~k- I (T(M") )  is 

thus also Greibach, since (by theorem 24 of [4], Greibach languages are closed 
under inverse linear homomorphisms. [] 

Corollary 2. Every context-free tree language is the image of a Greibach language 
by a linear alphabetic homomorphism whose only erasing rules are monadic ( monadic 
nonstrictness in Leguy ' s terminology [21]). 
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This is simply a restatement of Lemma 2. 

Let (Q) RT denote the class of (quasi)real-time languages, (D)RT denote the 

class of (deterministic) real-time languages, G(resp. G__if_E) denote the class of 

languages which can be generated by a Greibach (resp. extended Greibach) 

grammar: an extended Greibach grammar is a grammar which would be 

Greibach but for erasing rules E ( x  1 . . . . .  xs) ~ x i which are allowed. Extended 

Greibach grammars are called Greibach in [5]. Let DG denote the class of 

languages generated by deterministic grammars. Let CFT denote the class of 

context-free tree languages, PDTA denote the class of languages accepted by 

PDTA's and PDTApo_ denote the class of languages accepted by PDTA's whose 

only e-rules a-~ ~-p6p ¢' rules: q(v, E (x l , . . .  ,xs)) ~ q(v', Xi). Then the following 

theorem summarizes the main results of this section: 

Theorem 2 

(i) D = DRT-- DG 

ii) RT = QRT = G 

(iii) GE = PDTApo p 

(iv) D ~ R T g PDTApo p ~ PDTA = CFT 

Proof. (i) and (ii) follow from propositions 5, 6, 7; (iii) is an easy consequence of 

the construction given in theorem 1; the strictness of the inclusions in (iv) is well- 

known, e.g. L = ( f ( a ,  a), f (b ,  b)) ~ R T -  D, L '  = ( g(dna, d " a ) / n  ~ N } ~ C F -  

GE [23], and G ~ GE follows from [21]. [] 

5. Restricted PDTA's and Indexed Grammars 

We will now give a more operational characterization of context-free tree lan- 

guages by simplifying our PDTA's: the pushdown is a usual string instead of a 

tree (but it never gets emptied). Formally: 

Definition 4. A restricted pushdown tree automaton (RPDTA) is a PDTA 

(Q, F, H, q0, Z0, R) where H = (Z0)UII1 ,  i.e. but for the start symbol Z o of 

rank 0, the pushdown alphabet contains only rank I symbols. The allowable rules 

are indicated below. 

Notation. The pushdown store will thus always be of the form 

HI(HE( . . . (Hn(Zo)) . . . ) ) :  omitting the parentheses we will denote it by w =  
* . . . . . .  

H 1//2... H~ Z 0 H 1 Z0: i.e. composition is denoted by concatenation and A(H)  Is 

identified with the subset H I Z  0 of the gree-monoid over II 1 U ( Z  0 ). Note that, 

because of the symbol Zo, the store never is empty. 

We allow the following types of rules for a RPDTA: 

(i) q ( f (v  1 . . . . .  Or), Ex)  "-', f ( q l ( v l ,  ~rlX ) . . . . .  qr(v,, OrrX)) 
(ii) q(v, Ex)  --> q'(v, ~r'x) 

(iii) q ( f ( v  1 . . . . .  or), x )  ~ f (q l ( v l ,  ¢qx) . . . . .  qr(vr, OrrX)) 
(iv) q(v, x )  ---, q'(v, ~ 'x)  
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with f ~ F~, E ~ I I t ,  ~r'~ I I t ,  for i = l , . . . , r ,  rri~l-I ~ and x a variable ranging 

over I I~Z 0. 

Note that (i) and (ii) are more restricted than those of arbitrary PDTA with 

II  = (Zo}U II 1. 

In the notations of [11] an RPDTA can be viewed as a semi-thue system with 

variables 6:  = (~¢., 5Y, 2 ,  ~ )  with 

~¢ = F U II  U Q u {(,), c}, where c is the comma. 

X = V U X, where V =  (v, v', or, v 2 . . . .  ) and X =  (x}  

variables in V ranging over A(F) ,  i.e. 2 ( 0 )  = A ( F )  for each v in V, and 

variables in X ranging over II~Zo, i.e. ~ ( x )  = I I~Z o 

~ = R  

The computation relation ~ of the RPDTA then coincides with the deriva- 

tion relation * of the semi-thue system ~ .  

We can now state the main theorem of this section: 

T h e o r e m  3. Any language accepted by a PDTA can be accepted by a restricted 
PDTA. 

To prove this theorem, one would expect to simply use the fact that, if L is 

context-free, then the set of branches of L is a context-free language, hence is 

recognized by a pushdown automaton. Then one could construct the correspond- 

ing PDTA (by "glueing" together productions of the pushdown automaton). 

Unfortunately, this PDTA will recognize a context-free tree language L '  which is 

usually strictly greater than L (except when L is "branch  closed" or "represent- 

able" [8, 27]). 

One might then hope to derive this theorem from Gallier's result [16] by some 

trick: e.g. add a binary base symbol + (representing set-theoretic union) to 

eventually substitute e-rules for all rules concerning the symbol + .  The previous 

remark also shows that all such hopes are futile. We thus have to find a direct 

construction. It nevertheless will be strongly inspired by Gallier's construction. 

We first give the idea of the construction. We have to show that every 

context-free language is a T ( M )  for some restricted PDTA M. We can no more 

have a single state PDTA where the whole tree which remains to be derived is 

stored in the pushdown store. Hence we shall use both the state and the 

pushdown store to code (or "remember")  the derivations which remain to be 

done: i.e., the state remembers at which occurrence we are currently located in the 

right-hand side trees at the present moment of the derivation, and the pushdown 

store remembers which occurrences of variable function symbols still have to be 

derived. The state and the pushdown store are then used interactively to recon- 
struct the derivation of a tree. 

Proof of Theorem 3. Let f¢ = (F, @, P, Go) be a context-free tree grammar with 
productions: 

a i ( x l , . . . ,Xr i  ) ~ { t / , j = l  .. . . .  ni)  i =  0 .. . . .  n. 

Then let M = (Q, F, H, qo, Go, R) be defined by: Q = ( q 0 ) u ( ( i ,  j ,  o ) / i  = 
0 . . . . .  n , j  = 1  . . . . .  n i and o is an occurrence in t{). 
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The input alphabet F i s  the terminal alphabet of f#, II = ((i, j ,  o ) / i  = 0 . . . . .  n, 

j = l , . . . , n  i and o is an occurrence of a Gk~aP in t / }U(Go) ,  and the rules are 

defined by: 

(1) initializations by e-rules of type (iv): 

q o ( v , x )  ~ (O, j , e ) ( v , x )  for j  = l , . . . , n  0. 

(2) to each occurrence o of a base function symbol f in a t~ (i.e. t J (o )=  f )  

corresponds a type (iii) read move: 

( i , j , o ) ( f ( v  1 . . . . .  o~) ,x)  -+ f ( ( i , j ,  o l ) ( v l , x  ) . . . . .  ( i , j ,  or)(vr,  x ) )  

Intuitively, reading f in a state corresponding to the position o in the tree t/, we 

have to go down in the input tree without changing the store. 

Notice that in the special case where f has rank 0, we get accepting rules 

which erase the stack. 

(3) to each occurrence o of a variable function symbol G k in a t/  (i.e. 

t / (o)  = Gk), correspond push moves where we store G k in the pushdown, thus 

remembering the recursive call which shall be done later, and reposition 

ourselves in a state which corresponds to beginning the derivation of Gg (i.e. 

at the roots of the right-hand sides t[' corresponding to Gk); i.e. we get the 

type (iv) e-rule: 

( i , j , o ) ( v , x ) - - - )  ( k , j ' , e ) ( v , ( i , j , o ) x ) ,  

for j '  = 1 . . . . .  nk, whenever tJ(o) = G k ~ d~. 

(4) to each occurrence of a variable xm indicating that the current recursive 

call has been completed, corresponds a pop move, i.e. going to the next 

recursive call and repositioning (by means of the state) to the xm argument of 

each occurrence of the popped symbol in the t / ' s ;  i.e. we get the type (ii) 

e-rule: 

( i , j , o ) ( v , ( i ' , j ' , o ' ) x ) - - - >  ( i ' , ; ' , o ' m ) ( v , x )  

for any (i, j , o ) ,  (i ' ,  j ' , o ' )  such that tJ(o) = x m ~ Xr, and tJ,'(o ") = G i ~ rb and 

Xr, = ( X l  . . . .  

Then, L ( ~ ) =  T ( M )  follows from the lemma: 

Lemma.. Let Gi(x 1 . . . .  ,xr, ) ---> t j be a rule of f~. Let t~ j be the prefix o f t / such  that: 

t:: ~ A ( F  t3 dp, W,)  with W n = ( w  1 . . . . .  w,}  disjoint from Xr,-- (Xl , . . . , x~ ,  } 

no two leaves of t[ J are labeled by the same variable w k 

t j =  t j ( x i J w  1 . . . . .  x i / w , ) ,  x ik~  X~,for k = l , . . . , n .  
Let t '  be a subtree of t[ j at occurrence o. Then t" * t"  ~ A( F, W.) by an OI 

derivation iff: (i, j ,  o ) ( t ' ,  ~ ) ~--t"(((i,  j ,  o l ) (w 1, ~ ) ) / w l , . . .  ,((i, j ,  o ,)(w, ,  ~ ) ) / w , )  

is a computation sequence of M,  where ~/ is an arbitrary pushdown in A(II),  and 

t;J( Ok) = wk, for k =1 . . . . .  n. 
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The proof proceeds by induction on the length of the OI derivation and of 

the computation sequence. [] 

Let now t be in L(ff ) ,  then G O ~ t~ * t is a derivation sequence of t and 

applying the lemma with t[ = tg, q~ = Go and t ' =  tJo (note that n = 0) shows that 

t ~ T ( M ) .  Conversely, any accepting computation sequence of t in T ( M )  has to 

start with some move qo(t,  Go)~---(0, j ,  e)(t, Go) and again we apply the lemma 

with t /=  [] 

Remark 5. Note that: 

1. The above construction is a generalization of LL parsing to a "parallel 

LL parsing" of trees: we read the tree in a topdown (or left to right) manner and 

construct an OI (or leftmost) derivation, by the usual method of stacking return 

addresses of recursive calls on the pushdown store. An alternate approach would 

be the one corresponding to the bottom-up TPDA's of [29], leading to a "parallel 

LR parsing": the storage of TPDA's consisting of set of trees whose roots are 

simultaneously accessible, an analogue of theorem 3 would be very hard to find: 

it thus seems impossible to linearize the storage of TPDA's. 

2. This construction can lead to a very simple parsing method for indexed 

languages (see proposition 9 and theorem 4 below). It does not use Fischer's 

macrogrammars [15], as is done in [29]. 

Let us apply the above construction to the following simple example: 

Example  4. Let ffbe the following grammar: 

G G 

Oo./\  ; / \ .  
a x 1 x 2 

j g  

/ / /G ~N~N + x  2 + c 

Xl h \ ~ 

I Xl X 2 

X 2 

Since n = n o = 1 and n 1 = 3, we shall omit the components i, j in the states 

and pushdown symbols and simplify the notations as follows: 

(0,1, e) is denoted by e ° 

(0,1,1) (resp. (0,1,2)) is denoted by 1 ° (resp. 2 °) 

(1,1, e) (resp. (1, 2, e), (1, 3, e)) is denoted by e(resp, e', e"). 

(1,1, o) with o ~ e is denoted by o; thus, e.g. e" corresponds to the root of tl 3 

which is labeled by c, 12 corresponds to occurrence 12 in t~ labeled by h (i.e. 

t~ (12) = h). The pushdown alphabet is then II  = {e°,l ,  G0}. The rules of M 
are defined by: 

initialization: qo( v, x )  ~ e°( v, x )  

occurrences of base function symbols: 

l°(a ,  x) ~ a; 2°(b, x)  ~ b and e"(c,  x )  ~ c 

12(h(v), x) --, h(121(v, x)) 

e (g (v  1, o 2, v3), x) ~ g(l(vl ,  x), 2(v2, x), 3(o3, x)) 
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occurrences of function variables: 

~°(v, x) -~ ~(v, ~°x)+ ~'(v, ~°x)+ ~"(v, ~°x) 
l(v, x)  ~ e(v, l x ) +  e'(v, l x ) +  e"(v, l x )  

occurrences of variables: 

occurrences of X 1: 

f o r q ~  {11,2} q(v, l x ) - - * l l ( v , x )  and 

q(v, e°x) ~ l°(v, x)  

occurrences of X2: 

for q ~ {121,3, e'} q(v, l x  ) --->12( v, x) 

q(v, e°x) ~ 2°(v, x). 

Remark 7. Alternatively, we might modify the definition of a RPDTA by letting 

H -- 1-Ix: we would then have to allow for rules with a possibly empty store (e.g. 

accepting rules on leaves, initializing rules .. . .  ). The bottom of pushdown G O 

symbol's sole use is in fact to ensure that the pushdown shall never get empty. 

It is well known that context-free tree languages are the sets of derivation 

trees of indexed languages [12, 15]. Now, we shall see that PDTA's can easily be 

viewed as indexed grammars and thus provide, to our belief, some more insight 

into the parsing of indexed languages [2]. Essentially, a RPDTA can be viewed as 

a slight generalization of an indexed grammar, as will be shown by the construc- 

tion below, due to J. Engelfriet. 

Recall first the definition of an indexed grammar from [1]. 

Definition 5. An indexed grammar is a 5-tuple ~ = (N, T, F, P, S) where: 

a) T(resp. N)  is a finite alphabet of terminal (resp. nonterminal) symbols 

b) S, the axiom, is a distinguished symbol in N 

c) F is a finite set of indexes; 

each f in F is a finite set of index productions of the index f of the form 

A ---> to, where A is in N and to in (N  U T)*. 

d) P is a finite set of ordinary productions of the form A ---> a, where A is in N 

and a in ( NF*  U T)*.  

The immediate rewriting relation =, according to fg is defined by: w ~ w' 
p " ~ t 

iff for w, w,  w 1, w 2 m ( N F *  t2 T)*, x t m N U T and tp, q~i, Vi in F*  for i = 1 . . . . .  k, 

1. Either w = wxAvw 2, A ---> XlC&...xkcpk is an ordinary production in P and 

w" = wxxxv]...xk~p'~w 2, where for i =1  . . . . .  k V~ = ¢PiV if x~ is in N and V~ = e if x i is 

in T. 

2. Or w = wxAfepw2, A ~ xx . . . x  k is in index f and w' = wxXlcPX . . .XkCPkW2, 
where for i = 1 . . . . .  k, ~0i = ~ if x~ is in N and % = e if x~ is in T. 

As usual, * T * / S  ~ w}. ~ is the reflexive and transitive closure of ~ , ,  and L(f~) -- (w 

Note that we may suppose without loss of generality that the only production 

rules in which terminals occur in right hand sides are of the form A ~ a, or A ~ a 

in some index f.  For each occurrence of a terminal a in a right-hand side w which 

is not of the above form, introduce a new nonterminal A', substitute A'  for a in w 

and add the production rule A'  ~ a in P. 

From now on, we will suppose that indexed grammars are of ~his restricted 

form, namely that in Definition 5 above, in case c) to is in N* U T and in case d) 

a is in ( N F * ) *  U T. 
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Definition 6. An indexed top-down tree automaton (ITA) is an RPDTA with 

rules of the form: 

(i') q ( f ( v  1 . . . . .  vr), E x )  ~ f ( q l ( v l ,  x )  . . . . .  qr(vr, X)) 

(ii') q(v ,  E x )  ~ q ' (v ,  x )  

(iii) q ( f ( v  1 . . . .  ,Vr) , x )  -* f ( q l ( v l ,  ~qx) . . . .  ,qr(vr, It, x ) )  

(iv) q( v, x )  ~ q'(  v, 7r'x ) 

where f is in F~, It' and Iri, for i = 1  . . . . .  r, are in II~, and x ranges over H~Z0; 

namely, i t ' =  ~r I . . . . .  7r r = e in type (i) and (ii) rules. 

Lemma 4. Any  RPDTA is equivalent to an ITA. 

Proof  For each type (i) rule 

m: q ( f ( v  1 . . . . .  or), E x )  ~ f (  ql(  vl, ~qx) , . . .  ,qr(Vr, 7rrX)), introduce r new states 
~1 ~r qx ,-.-, qr and replace rule m by the following r + 1 rules: 

q ( f ( v  x . . . .  , V r ) , E x ) ~ f ( q ~ l ( v l ,  x ) . . . .  ,q~r(Vr, X)) of type (i'), and, for i =  

1 . . . . .  r, qT'(v, x )  ~ qi(v,  Irix ), of type (iv). Similarly decompose each type (ii) 

rule: 

q(v ,  E x )  ~ q ' (v ,  ~r'x) into the two rules 

q( v, E x  ) ~ q ' ,  (o, x )  of type (ii') and 

q~,(v, x )  ~ q ' (v ,  ~r'x) of type (iv). [] 

Proposition 8. To each ITA corresponds an indexed grammar generating its yield. 

Proof  Recall first (cf. proposition 4) that, by dropping all first arguments of 

states, we can view a PDTA as a rewriting system generating the tree language 

accepted by the PDTA. 

Now, let M = (Q, F, H, q0, Z0, R) be an ITA. First dropping all first argu- 

ments of states and then applying the yield homomorphism to the right hand 

sides in A ( F ,  Q × II*),  but not to the pushdowns, we obtain a set of rules R"  with 

the following types of rules: 

• (i") q ( E x )  ~ q l ( x ) . . . q r ( x )  r > 1 

or q ( E x )  ~ a a ~ F o 

(iii") q ( x )  ~ q l (Tqx ) . . ,  qr(~rrX ) r > 1 

or q ( x ) ~  a a ~ F o 

We may omit rules (ii") and (iv') corresponding to (ii') and (iv) because they 

lead to special cases of ( i ' )  and (iii") with r = 1. 

Now x ' s  in the above rules can be viewed as variables ranging over the set F *  

of words on indexes of some indexed grammar ~where  F = YI. Namely, rules ( i ' )  

correspond to index productions, and mean that index E contains the production 

q ~ ql " ' 'qr or q---> a, and (i i i ' )  correspond to ordinary productions, and mean 

that q ---> ql~rl.., qr~rr or q ~ a are ordinary productions of ~ (in Aho's notations). 

Let N = Q tJ ( S }, T = Fo, F = II ,  P be the set of productions: 

(_i) for each E in II,  q in Q and type ( i ' )  rules of R",  index E contains the 

index productions q ~ ql . . .  qr and q ~ a, and nothing else. 

(iii) for each q in Q and type (i i i ' )  rules of R",  P contains ordinary 

productions q ---> ql~rl.., qr~r r and q ---> a 
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(o) initialization: letting S be the axion, P contains rule S-o qoZo" Each 

index E in II is identified with the corresponding set of productions (~). 

Then,  the above defined indexed grammar ~ is such that L ( ~ ) =  yield 

(T( M)). [] 

Theorem 4 115, 121. The class of indexed languages coincides with the class of 
yields of context-free tree languages. 

Proof. Proposition 8 shows that the yield of any context-free tree language is 

indexed. Conversely, the construction in proposition 8 immediately shows how to 

construct an ITA M accepting the language generated by an indexed grammar. If 

f ~ = ( N , T , F , P , S )  then M = ( N ,  T U  U {cr), F U ( Z o J ,  S, Zo, R), where for 
r>_l 

each r > 1, c~ is a rank r symbol intended to represent the r-ary concatenation, 

and R is deduced from P by introducting explicitly the concatenation operators. 

Formally, for each index production A ---, A1...A~ or A ~ a in index E in F, R 

contains type (i') rules: 

A(Cr(U 1 . . . . .  Vr),Ex ) --. c,(Al(Vl, X ) . . . . .  A . ( v , , x ) ) o r A ( a ,  Ex) ~ a. 

For each ordinary production A -o Alcpl...At% , with (~i E F*  for i =1 . . . .  ,r, 

(resp. A-o a production in P), R contains type (iii) rules: A(cr(vl,...,v~), x)-o  

cr( Al( Ol, fpl x) . . . . .  Ar( or, %x )) (resp. A( a, x) -o a) where x ranges over F *Z o. 
Then yield(T(M)) = L(G), except possibly for the empty string which may 

belong to L(G) but not to yield( T( M )). [] 
The above construction, besides providing an alternate proof of theorem 4, 

has the advantage of giving an explicit very simple transformation (basically a 

homomorphism) for going from a restricted pushdown automaton to the corre- 

sponding indexed grammar. 
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