
Math. Systems Theory 16, 237-263 (1983) Mathematical
Systems Theory
©1983 Springer-Verlag New York Inc.

Pushdown Tree Automata

Irrne Guessarian

LITP-CNRS-UER de Math+matiques, Universit~ Paris 7-T. 55/56, 2, P1. Jussieu-75251 PARIS

Cedex 05, France

Abstract. We define topdown pushdown tree automata (PDTA~s) which

extend the usual string pushdown automata by allowing trees instead of

strings in both the input and the stack. We prove that PDTA's recognize the

class of context-free tree languages. (Quasi)realtime and deterministic PDTA's

accept the classes of Greibach and deterministic tree languages, respectively.

Finally, PDTA's are shown to be equivalent to restricted PDTA's, whose

stack is linear: this both yields a more operational way of recognizing

context-free tree languages and connects them with the class of indexed

languages.

1. Introduction

Many structures in computer science can be represented by trees: derivation trees,

syntax directed translations, search in files, etc There was thus developed, at

first, a theory of recognizable tree languages, tree grammars and tree transducers

[3, 11, 25, 31]. Tree language theory has since been helpful in a broad range of
domains, e.g. decision problems in logics [24], formal language theory [26, 31] and

program scheme theory [7, 8, 16, 18, 22]. In order to be applicable to such a wide

range of problems, the tree language theory had to be extended to allow context

free tree languages; it thus became possible to model program scheme theory
(which is our motivation) and also more general language theory (e.g. Aho's

indexed languages [1, 10, 13, 15, 25]--since an indexed language is the yield of a

context free tree language). Now, any language theory usually presents three

complementary aspects: grammatical, set-theoretical or algebraic, and automaton

theoretic. For recognizable tree languages, all three aspects have been well

studied, even for infinitary languages [23, 24], and comprehensive accounts can be

found in the above given references [3, 11, 31, 32]. For context free languages, the

238 I. Guessarian

grammatical point of view was first studied in [10, 15, 25], the algebraic aspects
were considered in [7, 13, 18, 22], and comprehensive and exhaustive surveys can

be found in [7, 12, 27]. But the automaton theoretical aspect has not been studied

at all; it is merely hinted at in [7, 25], but we can say that the prevailing point of

view is grammatical and no attempt has been made to find a more operational

way of looking at context free tree languages. This paper is one of the first steps

in that direction; a more general approach, introducing abstract families of

automata and relating them to AFL's can be found in [14].

We define pushdown tree automata (PDTA's) which extend usual string

pushdown automata [6, 19] by allowing trees instead of strings in both the input

and the pushdown.

The machine reads its input like a finite top down tree automaton [31, 32],

while scanning the top (root) of the store (the root is the only stack symbol

accessible at a given moment). We prove that PDTA's recognize context-free tree

languages. A different model, called TPDA is investigated in [28, 29]: it stresses

the parsing standpoint. Henceforth, TPDA's process trees in a bottom-up manner.

The advantage of TPDA's is that a wide subclass of context-free tree languages

can be recognized by deterministic TPDA's. The trade-off is that TPDA's are of

course much more complicated than PDTA's. The latter stick more closely to the

behaviour of grammars and their pushdown consists of a single tree; whereas the

former's pushdown consists of arbitrary sets of trees whose roots must be

simultaneously accessible and they consult appropriate shift-reduce tables. PDTA's

thus provide a parallel LL-parsing method for context free tree languages, as

opposed to the parallel LR-parsing of TPDA's.

We then improve vastly that parsing and make it more operational by

restricting the pushdown and allowing only words instead of trees on it: i.e. we

linearize the pushdown; this would be difficult to realize with TPDA's and is also

one of the advantages of our model. We show that the corresponding parsers,

called RPDTA's, still recognize the class of context-free tree languages: the

intuition behind our construction is the classical idea of storing return addresses

of recursive calls in the pushdown. The technical application of this idea to

formal language and automata theory first appears in [16] whose construction

inspired ours. Meanwhile, this automaton standpoint gives very easy connections

with Rounds' creative grammars [25] and Aho's indexed languages [1, 12, 15]; we

hope that this different method of interrelating known classes of languages will

help in giving more insight to tree language theory.
The paper is organized as follows: section 2 is devoted to fixing the notations.

In section 3 we introduce PDTA's and prove that the class of languages
recognized by PDTA's is exactly the class of context-free tree languages. In

section 4 the classes of languages accepted by (quasi)real-time and deterministic

automata are shown to coincide with Greibach and deterministic tree languages.

In section 5, we show how every context-free tree language can be accepted by a

restricted PDTA (with a linear stack). We prove that some special PDTA's can be

viewed as indexed grammars.
This paper is self-contained. No previous knowledge of context-free tree

languages is required. All introduced notions are carefully defined, illustrated via

examples and related to the literature. This makes the paper slightly longer than

strictly needed and hopefully more readable. We hope the tree language experts

Pushdown Tree Automata 239

will forgive us tiffs extra length: we tried to make it easy for them to hop their

way throughout the paper.

2. Notations

Let F (resp. @) be a finite ranked alphabet of base function symbols (resp. of

variable function symbols). The rank of a symbol s in F U @ is denoted b y r (s) .

Symbols in F are denoted f , g, h if they have rank > 1, and a, b, . . . if they

have rank 0; F~ denotes the symbols of rank i in F. Symbols in @ are denoted

G, H, Let V be a set of variables: the variables have rank 0 and are denoted

by u, o, w possibly with indices.

The notions of tree, node in a tree, occurrence of a variable or a subtree in a

tree, substitution, etc are supposed to be known (see [18]). We .recall however

those notions we shall use in the paper in order to fix the notations.

We use the Dewey notation for trees (see also [17]): nodes in a tree are

denoted by finite words over the alphabet N, i.e. elements of the free monoid N*.

Formally, a tree on F is a pair (Dr, t) consisting of:

a tree domain D t which is a finite subset of (N - {0})* such that if o = nl . . . r ip

is in D t then (a) every left factor o'= nl . . .nq, q <~ p, also is in Dr, (b) for all

i ~ r ip , o " = nl . . .np_l i also is in D t

a total mapping t from D t into F such that, for any o in D t, if t(o) = f ~ F

and f is of rank p then o has exactly p "sons" (i.e. nodes o' of the form

o'= on i) in D r

In the sequel, D t will be omitted and a tree will be denoted by t. A node in a

tree is an element of Dr; t(o) is called the label of node o; o is also called an

occurrence of t(o) in t; nodes or occurrences will be denoted by o. Note that D t

contains the empty word e: the root of t.

Let t, t" be trees on F and o be a node in t; t (t ' /o) denotes the tree obtained

by substituting t ' for the node o in t and is defined by:

(a) t (t ' /o) (oo ') = t'(o') for any o' in D t, and

(b) t (t ' / o) (o")= t(o") if o is not a left factor of o" (recall that o is a left

factor of o" iff there exists an o' with o" = oo').

The subtree tlo of t (at occurrence o) is the tree t " defined by: t"(o') = t(oo')

for any oo' in D r

The depth d(t) of a tree t is defined by:

d (t) = s u p (l o l + l / o ~ D t } , where Iol is the length of o considered as an

element of N*.

Let A (F) denote the set of trees on F; a tree with variables in V is a tree on

F U V; the set of trees with variables is denoted b y A (F U V) or, when we want to

point out the variables, A(F, V): intuitively, the variables are intended to range

over a set of trees, e.g. A (F) or A(F, V). A (F) (resp. A(F, V)), with the obvious

algebraic structure, is called the free F-magma, or F-algebra (resp. the free

F-magma over V), and is denoted, in the ADJ terminology T F (resp. TF(V)).

A i (F , V) denotes the trees having at most i variables, and Ai (F) (resp.

Ai(F, V)) denotes the trees of depth i; dearly, Vi: Ai(F) c A~(F, V) and A~(F) c

A (F) c A(F, V), and similar relations hold for the Ai's.

240 I. Guessarian

Throughout this paper we will use the word notation for trees. A tree is

represented by a word over the alphabet F U ((,) , c}, where c is the comma, as

follows:

a stands for a ~ F 0

f (q , . . . , t ~) stands for the tree having r o o t f ~ F~ and direct subtrees t l , . . . ,tr,

and would be pictured as:

A tree t in Ap(F , V) will be denoted by t (v I vp) in order to point out the

variables; the shorthand vector notation t(vD will be used; t (t 1 tp) denotes the

tree obtained by simultaneously substituting ~ for each occurrence of v i in

t (v 1 vp), for i = l , . . . , p ; formally, t (t 1 tp) is the image of t (v 1 Vp) by

the F U V-algebra morphism h defined by: h(v i) = t i for i = 1, .:: ,p, and h (f) = f

for f in F. We will also use a vector shorthand notation t (t) for t (t 1 tp).

Alternatively, when wanting to point out which t reesa re being substituted for

which variables, we will note: t (t a / v 1 , t ? / vp) (or t (t / ~) .

A pref ix of t ~ A (F , V) is a tree _ t ~ A (F , (w 1 w,}), with (w 1 ,Ws}

disjoint from V, D~ c Dt ' and such that there exist subtrees t~ t s of t with

t =_ t (t a /w I t J w ,) .

Recall finally that the yield of a tree is its image under the homomorphism h:

A (F) ~ Fo*, where Fo* is viewed as an F-algebra where all f in F~, r > 1, are

interpreted as concatenation. Formally, h is defined inductively by:

h(a) = a for a in F o

h (f (q tr)) = h (q) . . . h (t~) for f i n F r, r >1 and t x t r in A (F) .

We will write yield(t) rather than h(t) .

These notations are illustrated in Figure 1 below. For more details on trees

consult [18].

3. Pushdown Tree Automata and Context-Free Grammars

Definition 1. A context- free tree grammar ~is a 4-tuple (F, d#, p , Go) , where:

(a) F is a finite ranked alphabet (of terminal symbols)

(b) ¢ = (G 0, G 1 , Gn) is a finite ranked alphabet of function variables (or

nonterminal symbols)
(c) P is a finite set of pairs <Gi(x x xr(G~)) , t J> where, for i = 0 n,

j =1 ni, t~ ~ A (F U ¢, (Xl, . . . ,xr(ci) })
(d) G 0, the axiom or initial nonterminal, is a distinguished symbol of rank 0

in ¢ .
We will use a vector shorthand notation and abbreviate G (x 1 xr(c)) in

G()?). Each pair (Gi (£) , t /) in P is called a production of f¢, and is denoted by

Gi(Y) ~ t/. Productions of f¢ turn into rewriting rules: consider the Xk'S as

dummy variables (or parameters) standing for trees in A (F) . The triple (F, ~, P)

can thus be viewed as a nondeterministic recursive program scheme, or a tree

rewriting system. Grouping together all right hand sides of productions having

Pushdown Tree Automata 241

the same nonterminal as left hand side, we get the following synthetic notation for

a tree rewriting system:

Gi(x) - - -~ T i = t ~ + " " + t n i c • xr (c ,)})

where + deno tes the set theoret ical union .

I m m e d i a t e rewri t ings (~) and der iva t ions (*~¢) a cco rd ing to f¢ are def ined

as usual (cf. [18]). Let us recall the def in i t ions here for the reader ' s convenience .

T h e immed ia t e rewri t ing acco rd ing to ~ is the re la t ion ~ def ined on A (F u dp)×

A (F u ¢) by" t =, t ' iff there exists s o m e pre f i x t of t, an occu r r ence o in t labeled

by the function vanable G~ of rank s (i.e. t (o) = G~), and subtrees t l , . . . , t s of t

such that: t = t (G i (t 1 , %) / o) and t '=t_(tJ(t l L) / o) for some t / in T,..

t = t (o ~ , v 2) = d ?) g

h a

I
V2

t ~ A(F,{v 1, v2}) with F = { a , h , g)
r(a) =0 r(h) =1

D t = { e,1,2,21,22,211}

d(t) = 4 t(e) = t(2) = g

t(211) = v 2

t ' = t(t /1) = t(t, Vz) can be drawn as:

Sg\

/\a
, I
U2 /)2

yield (t') = vlv2av2a.

g

Let: t = w (~ g , k ,

W2 W3

t is a prefix of t and t'.

Fig. 1

r(g) = 2

t(1) = v 1 t(21) = h
t(22) = a

2 4 2 I . G u e s s a r i a n

Intuitively, at occurrence o, G; is macroexpanded, i.e. replaced by the right

handside t j of production G i (x 1 Xs) ~ t[; simultaneously, q , . . . , L are sub-

stituted for x x x,. Whenever no ambiguity can occur, the subscript ~ is

omitted and ~ is denoted by =,, as will be done in the sequel. The derivation
, ff¢

relation ~ according to ~ ~s the reflexave and t ransmve closure of ~ .

More operationally, we can view ~ as a semi-thue system with variables.

Recall from [11] that a semi-thue system with variables is a 4-tuple 5 ~ =

(A, X, D, R) with

A an alphabet of terminal symbols

X a set (disjoint from A) of variable symbols

D a mapping from X into the power set of A*

R c (A U X)* × (A to X)* a finite set of rules denoted by r: q~ ~ 4-

Each variable x in X i s meant to range over D (x) so, for each rule r : ~p ~ ~p in

R, s (r) is defined to be the set of all rules a ~ fl in A* × A* such that there exists

a homomorphism h :(A tO X)* ~ A* with h (x) ~ D (x) for all x in X, h (a) = a

for all a in A, h(qo) = a and h(~p) =f t . Let s (R) = 1,3 s(r) . ~ is then defined on
r ~ R

* is the reflexive A* × A* by, for any a ---, fl in s (R) , 71 and 0 in A*, *taO ~ ~lflO.

and transitive closure of ~ .

Note now that ~ can be viewed as a semi-thue system with variables.

A = F U ~ U ((,) , c } ,

where V = (x 1 Xsup(r~G~)/i= 1 ,) } and c is the comma symbol.

X = V

D (x) = A (F U r b) f o r everyx ~ X

R = P .

Then, * is the derivation relation of the semi-thue system.

A derivation t = t l . . . ~ t~ consisting of p immediate rewritings will be

denoted by t P~ tp.

A derivation t * t ' is said to be OI, or outside-in [15, 13] iff for all immediate

rewritings t k = t (G i (t l , . . ; , t s) / o) ~ t k + l = t (t J (t x t s) /o) composing it, and

for all left factors o' of o (i.e. o = o'o'), tg(o ') ~ F; in other words, no ancestor of

o is labeled by a function variable.

Recall [15, 13] that any t ' in A (F) such that t * t ' can also be obtained from

t by an OI derivation.

The context-free tree language L(f#) generated by ~¢ is L (~) = (t ~

A (F) / G o * t}.
also generates [12] a macro string language Ls(~¢) obtained by concatenat-

ing the leaves of each tree in L (~) :

Ls(f~) = (y ie ld(t) / t ~ L(fg)) c. Fo*. The Ls (~) ' s coincide with the class of

indexed languages [1, 12, 15].

Example 1. Let fCbe defined by: F = (a, g, h, f }, r (a) = 0 , r (g) = r (h) = l ,

r (f) = 2; ~b = (Go, K), r(K) = 1 and P = (Go ---> K(a) , K (x) ~ f (x , K (h (x))) +

P u s h d o w n Tree A u t o m a t a 243

g(x) } then

=

=

(g (a) , f (a , g(h(a)))

f (a , f (h (a) , . . . , f (h " - l (a) , g (h " (a))) . . .)) , ... }

{ a " / n > l }

~and L (~) are displayed in a tree like form in Figure 2 below.

A pushdown tree automaton is a generalization of topdown tree automata

[31, 32]: it is obtained by allowing an auxiliary storage consisting of a single tree.

The root of this pushdown tree is always accessible, and according to the state

and the input symbol scanned, this root can be popped or replaced by a tree. Like

top-down tree recognizers, pushdown tree automata have the essential ability of

duplicating themselves, and also their pushdown store, as they go down in the

input tree. Bottom-up pushdown tree automata have also been investigated [28,

29]: they, of course, don't duplicate themselves, but their storage consists of finite

sets of trees, whose roots must be simultaneously accessible; this is, in some sense,

unavoidable, due to the inherent parallelism present in context-free tree lan-

guages.

Intuitively, PDTA's (pushdown tree automata) can be viewed as an extension

of both:

• finite top down tree automata [31]: like usual (string) PDA's extend

finite automata, PDTA's extend finite tree automata by allowing an auxiliary

storage consisting of a tree and the possibility of e-moves ignoring the input.

• usual PDA's by allowing trees instead of strings in both the input and

the store: as in the PDA case, the finite state control processes both input and

stack in a left-to-right (i.e. top down) manner; namely the machine can read

only the root of each input and stack tree, and processes the stack by

substituting a tree for the root (pushing) or deleting the root and sdecting one

of its sons (popping) (see Figure 3).

D e f i n i t i o n 2. A pushdown tree automaton (PDTA)

(Q, F, II, q0, Z0, R), where:
Q is a finite set of states

F is a finite ranked alphabet, called the input alphabet

M is a six-tuple

f

K g

I I + I
X h x

1
x

g f ~

! / ,
t (~) s { ' a I •

h

I
&

Fig. 2

f

a h / \ g
I I
a h 2

I
a

K

a

• - }

244 I. Guessarian

II is a finite ranked alphabet, called the pushdown alphabet. We may

suppose, w.l.o.g, that 1-I and F are disjoint alphabets.

qo is the initial state, qo ~ Q

Z o is the start symbol, appearing initially on the pushdown store, Z o ~ II 0.

R is a finite set of rules (or moves) of the form:

(i) read rule

q (f (v l Vr), E (X l ,Xs)) ~ f (q l (V l , 7/'1) qr(Vr, 7rr))

where

f ~ F r , E ~ I I ~ , ~ r i ~ A (I I , (x I , x , }) f o r i = l r, q, q i ~ Q .

(ii) e-rule

q (v , E (x l xs)) ~ q'(v, Tr')

where E ~ I-I,, ~r' ~ A(II , (x 1 x s }), q, q' ~ Q, v ranges over A (F) .
A PDTA M is said to be deterministic (DPDTA) iff for any pair (q, E), either

there exists at most one e-rule in state q with pushdown root E and no read move,

or there exists no e-rule and at most one read rule for each f in F (in state q with

pushdown root E).

An instantaneous description (ID) of M is a triple q(t, ~r) ~ Q × A (F) x A(II) .

If t = f (t I , t ,) and ~r = E(I h ~rs), then M is currently in state q, reading

input symbol f and scanning root (top) of stack E. An initial ID is of the form

 !tro,
j stack

input

Fig. 3

Pushdown Tree Automata 245

qo(t , Zo) . ID's might also be called configurations [6]. We here follow the

terminology of [19].

Notation. Elements of II are denoted by B , C , D (symbols of rank 0),

E, G, H, K (symbols of rank > 1); xl, x a are variables representing trees of

A(II) . Elements of F are denoted by the corresponding lower-case letters

(b , c , d e , f , ' g , h , k and u , v , vl , v z for variables). Trees (or terms) in

A (F) (resp. A(II)) are denoted by t, t ' , t i (resp. ~r, ,r', ~ri). Variables v[s (resp. x[s)

are dummy variable symbols intended to represent positions (or parameters) to be

replaced by elements ranging over A (F) (resp. A(II)) in the set of instantaneous

descriptions of M.

A configuration c of M is an element of the form t (i d l , . . . , i d n) , where

t ~ A (F , { v 1 ,on}) and id I id n are ID's of M, i.e. c ~ A (F , Q × A (F) ×

A(n)).
The move relation p of M is the relation defined on configurations by:

c = t (i d 1 , id i_ 1, id i, idi+ 1 idn) ~ - c"

= t (i d l , . . . , i d i _ 1 , c i , i d i + l , . . . , i d n)

iff either id i = qi (f (tl , tr) , E (,r{ rt~'))

and ci = f (q l (t l , ~h (~ ' / Y)) qr(tr, ~rr(ff~/~?)))

where q t (f (v l , . . . ,or), E (x x x s)) ~ f (q l (Vl, ~'1) ,qr(Vr, ~rr)) is a read
rule of M, i f ' = (Tr 1' ~r f) and ~?= (x l , . . . , x s)

o r i d i = q i (t , E (~ r ; , r /)) and c i = q ' (t , ~ r (~ ' / £))

where qi (v , E (x 1 , x s)) ~ q ' (v , ~r) is an e-rule of M, i f ' = (~rl',...,~r~')

and ~?= (x 1 xs).

Let the computat ion relation 1"--- of M be the reflexive and transitive closure

of ~ .

A s e n t e n t i a l f o r m of M is a configuration c = t ' (i d 1 , idn) such that, for

some t in A (F) , q o (t , Zo)I*--c. Notice that, if i d i = qi(t i , Iri) for i =1 ,n, then

t = t ' (t l , . . . , t n) .

A PDTA M is said to be real- t ime (resp. quasireal - t ime) iff it has no e-rule

(resp. a bounded number of consecutive e-moves).

t

Remark 1. Note that, if we consider all states to have rank 2, left and right-hand

sides of the rules (i) and (ii) in definition 2 are trees; hence these rules can be

viewed as ordinary tree rewriting rules. Namely, we can view M as a semi-thue

system with variables

M = (~¢, £r, ~ , ~) , where:

~¢ = F to II tj Q to ((,) , c} where c is the comma.

5Y = Xto Vwhere X = {XI, X 2) and V = (v , v l , v z)

~ (v) = A (F) , ~ (x) = A(II) , for all v in V, x in X

~ = R

246 I. Guessarian

Then, }-- coincides with ~ . The sentential forms of M thus coincide with the
sentential forms of the rewriting system.

Remark 2. Note that, in read rules, in the special case that r = 0, the rule is

q(a, E (x 1 x ,)) ~ a. The current stack is thus deleted; this means intuitively

that "q is a final state with respect to a and E "; namely final states are implicitly

present: the automaton knows it has successfully completed a computation when

it reads a symbol of rank 0. This naturally leads to acceptance by "final states"

rather than by "empty store".

Definition 3. The tree language accepted (by final state) by M is defined by:

T (M) = { t ~ A (F) / q o (t , Zo)l*-- t} .

M is said to accept by empty store (and final state) iff all read rules (i) which

read an input symbol of rank 0 are of the form: q(a, B) ~ a, i.e. b o t h f = a and

E = B are of rank 0.

Thus, intuitively acceptance occurs whenever M processes the whole of t; if

moreover read moves on leaves always result in popping a leaf of the push down

M accepts by empty store.

Example 2. Let M be defined by

Q = { q }, F = (a, g, h, f } as in example 1,

I I = { Zo, B , H , K } , r(Zo)= r (B) = O and r (n) = r (K) = l, qo = q,
Z 0 = Z 0, and R is the following set of rules (all of type (i)):

q(g(u) , Zo) -~ g(q(u, B))

q (f (u , v), Zo) --" f (q (u , B), q(v, K (H (B))))

q (f (u , v), K (x)) ~ f (q (u , x), q(v, K (H (x))))
q(a, B) ~ a

q(h(u) , H (x)) ~ h(q(u, x))

q(g(u) , K (x)) ~ g(q(u, x)).

This automaton recognizes the language L(f¢) of example 1. Moreover, this is

an example of a real-time (without e-rules), deterministic, and restricted automa-

ton (i.e. its pushdown alphabet consists only of words, see definition 4 of section

5) which accepts by empty store.

Proposition 1. I f a tree language is accepted by some ~PDTA M, it can be accepted
by empty store by some PDTA M'.

Proof. M" will simulate M, but will delay reading the leaves by making a

"guess" stored in the state and checking the guess while emptying the stack.

Formally, M" has the same alphabets as M; its set of states Q" contains Q

together with new states qa for each q in Q such that M has a "leaf-reading" rule

q(a, E (x 1 xs)) ~ a. The rules of M" are then obtained by adding to the rules
of M the following set of rules:

for each rule q(a, E(x 1 x ,)) ~ a of M, add

Pushdown Tree Automata 247

the set of e-rules (popping the stack)

q (v , E (x x x ,)) ~ qa(V,Xx)

q ~ (v , G (x : , . . . , x ,)) --* qa(v ,X l) VG ~ I I s , s > 1

the set of read-rules

qa(a, B) ~ a VB ~ II 0 []

Several variants of PDTA's which do not extend the class of defined

languages may be introduced: e.g. several initial states, a starting tree or a set of

starting trees (of depth possibly greater than two) instead of a start symbol of

rank 0, the ability to read in a single move input trees of depth greater than two,

etc These variants do not give additional power to the corresponding au-

tomata. Let us check, for instance, the following two propositions, which will be

useful in proving the equivalence of PDTA's and indexed grammars (section 5).

Proposition 2. Any language accepted by a PDTA with additional generalized

rules of the form:

(iii) q (f (v 1 ,Vr), x) ~ f (q l (h , ¢rl),'" ",q~(Vr, ~#))
(iv) q(v, x) ~ q'(v, ~r')

with rr',~rl,...,~ # in A(II ,{x}) , and x ranging over A(II) , can be accepted by a

normal PDTA.

Proof. Note first that the move relation corresponding to, e.g. a type (iv) e-rule,

is the following: id = q(t, ¢r) ~-- q'(t, ~r'(rr)), with t ~ A(F), ¢r ~ A(II) . It is then

clear that any type (iv) e-rule can be simulated by the following set of type (ii)
e-rules:

q (v , E (x x x s)) ~ q ' (v , ~ r ' (E (X l , . . . , x s))) , fo rany E i n I I .

Similarly, any type (iii) rule can be simulated by the set of type (i) read rules:

q (f (v : vr) ,E(.~)) ~ f (q : (vx ,Tq(E(.~))) ,q , (v , ,~#(E(.~))))

for any E in II. []

Proposition 3. Let language L be accepted by a PDTA M with extended read rules

of the form:

(v) q(t (v : ,Vr) , E(X: xs)) ~ t(ql(Vl,~r:) qr(Vr,Crr))

with E, ~ as in definition 2, and t is in A(F,{ vl , . . . ,vr}), each variable v i occurs at

most once in t, t has depth > 2.

Then L can be accepted by a normal PDTA M'.

248 I. Guessarian

Proof Let m: q(t (v x v,), E(xD. . . , x~)) ~ t(ql(vl , ~rl) q,(v r, %)) be a type

(v) rule of M. We will simulate m by a sequence of read rules of M' . For each

such m let Om = {O/O is an occurrence in t (v l , . . . ,vr) such that t(v 1 vr)

(o) ~ F} ; O m is thus the set of occurrences not labeled by variables in t. Then, if

m = (Q, F, l-I, qo, Z0, R), m ' = (Q', F, l-I, q0, Z0, R') where:

Q ' = Q u {(m, o) / m is an extended read rule of M and o is in O,,}

R' is defined as follows:

(1) type (i) and (ii) rules of R are in R'

(2) each type (v) rule m of R is replaced by the following set of type (i)

rules:

for each o in O,,, let f o = t (v l , v ,) (o) ~ F n, n>O, be the label of

occurrence o in t(v 1 vr); then R' contains the rule:

p (f o (o l , . . . , v ,) , e (X l ,xs)) - , fo(ia l ia ,)

with

(~ if o =

P = rn,o) if o4=e

and for each j :

i d s = [(m ' ° j) (v j ' E (x l xs)) i f ° j ~ O m

~qk(vj,~rk) if ojq~O m and t (v 1 ,Vr) (Oj)=v ~

It should be clear that T (M) = T (M') . []

Remark 3 (191). On the other hand, allowing PDTA's to read in a single move

pushdown trees of depth > 2 (i.e. a "look-ahead" on the store which is operated

as a stack rather than a pushdown) indeed results in a much more powerful device

as soon as the pushdown alphabet X contains a symbol of rank > 1. Let e.g. G be

a binary symbol in X, then one can simulate a Turing machine with a look-ahead

of depth 1 on the store: the pushdown G(~q, ~r2) can be viewed as two push-

downs, connected by G representing the Turing machine head; ~r 1 (resp. ~r2)

stands for the part of the Turing machine tape lying to the left (resp. right) of the

head. Since, as we shall see in theorem 1 below, PDTA's accept only context-free

tree languages, such a look-ahead on the stack would vastly increase the class of

accepted languages.

Proposition 4. PDTA's accept the class of creative dendrolanguages [26].

Sketch of Proof When dropping all first arguments of states in rules (ii), (v) one

obtains rewriting rules exactly similar to those of the creative dendrogrammars. []

Note that it is proved in Rounds' paper (theorem 7 of [25], see also [1]) that

the number of states of a creative dendrogrammar can always be reduced to 1,

Pushdown Tree Automata 249

thereby proving that creative and context-free languages coincide. However, both

Rounds and Boudors papers [25, 7] stress the grammatical aspects of the

problem, whereas we want to consider its operational and automaton theoretical

aspects. This is the reason why:

1. We will give in Theorem 1 below a complete proof that PDTA's recog-

nize context-free tree languages. Proposition 4 will then follow from Theorem 1.

The spirit of our proof will be quite similar to the one in Rounds paper (Theorem

7).

2. We will later prove a more operational simplification theorem (Theorem

3 below), more remote from the considerations in [7, 25], by reducing the

pushdown to a linear one, i.e. simplifying the store instead of reducing the

number of states. This leads to a simple proof of the equivalence of yields of

context-free tree languages and indexed string languages.

Theorem 1. A tree language is context-free i f and only i f it can be accepted by a
PDTA.

Proof. "Only if" part: Let ~ = (F, ~, P, Go) be a context-free tree grammar. For

each production Gi(x 1 ,x~) ~ t/, decompose t~ in the form: t / = tij(O 1 ,On)

with t u ~ A (F , (v I v~)),n>_O, V i = I n, 9 i ~ A (F U ~ , X ~) and Oi(e)~

U Xs where Xs = (xl x ,) (i.e. tij is a prefix of t / a n d the root of each 0 i is a

function variable or an x~, namely we mark outermost occurrences of function

variables in t/).

Notice that, in case t / (e) ~ g9 U X~ the above decomposition reduces to

t l = v(t l) .
Now let M be the automaton having the single state q, input alphabet F,

pushdown alphabet H = F U ~, start symbol Z 0 = Go and rules R defined by:

for each production G~(x 1 x~) ~ t~ in P, R contains the rule:

(vi) q (t i j (v I vn) ,G i (x 1 , x ,)) "* t i j (q (v i ,O1) ,q (v~ ,8n))

for each terminal f in F~, R contains the rule:

(vii) q (f (v I ,vn), f (x 1 xn)) ~ f (q (v 1, x1) q(vn, x~))

Note that:

1. R possibly contains extended type (v) read rules

2. in the special case when the root of t / i s labeled by a (function) variable,

taking tij = v in the above rule (vi) leads to a type (ii) e-rule.

Now the following fact is clear and gives the desired result:

Fact 1. There exists an OI derivation sequence of ~: Gi(q ,ts) * t ' ~ A (F)

iff there exists a successful computation sequence of M: q(t ' , Gi(t I ts)) 1"--~- t"
(with t i in A (F U t~) for i = 1 ,s).

This fact shows that T (M) = L (~) since it is well known that any tree in

L (~) can be obtained by an OI derivation [12, 15]; this is also one of the reasons

250 L G u e s s a r i a n

in choosing a top-down behavior for our PDTA's in contrast to the TPDA's of

[29]: by sticking more closely to the grammatical standpoint we obtain simpler

automata.

" i f " part: Let M = (Q, F, I I , q0, Z0, R)

The construction of a grammar G generating T (M) is somewhat more

complicated. We first give the idea of it: essentially, the changes of the pushdown

store will be modeled by the productions of the grammar, but we will have also to

model the additional ability of changing the state; hence, the nonterminals of

will encode pairs (state, top pushdown symbol). Moreover, the arguments of each

nonterminal (q, K) should render all possible "next states" after K has been

popped. Formally, let k = card(Q), and ~ = {Gq /q ~ Q,G ~ H) where each G o

in • has rank k × r(G); similarly, if X is the set of pushdown variable symbols of

M, let X Q = { x q / x ~ X, q ~ Q} be a set of variables (x q is intuitively intended to

correspond to the selection of variable x and next state q). Define a by: a:

Q × A(II, X) ~ A(~, X o) satisfies o(q, s) = s q if s has rank 0 or is a variable,

and, using a vector notation if(t) instead of o(q 1, t), a(q2, t) O(qk, t), define

by induction: a(q, G(t l , . . . , t r (G)))= Gq(i (t l) , . . . , i (t r (a))) (in short o (q , G (t)) =

Gq(i(t))) .

The grammar ~ generating T (M) is now defined as follows: ~ has terminal

alphabet F and nonterminal alphabet ~, axiom G O = o(qo, Zo) and productions:

o(q, G(x I Xs)) ~ o(q', ~r') for each e-rule q(v, G(x 1 x ,)) ~ q'(v, rr')

of R

o(q, G (x 1 x~)) ~ f (o (q 1, ~ h) , ' . . , ° (qr , ~rr)) for each read rule

q(f (v I v~), G(x 1 x~)) ~ f (ql(va, ~h) q~(v~, ~r~)) of R.

Notice that, if M is real-time, it has no e-rule, hence ff is Greibach. (See

section 4 for the definition of Greibach grammar).

We now can state:

Fact 2. For every ~r in A(II), t in A (F) and q in Q : o (q , ~ r) ~ t by an OI

derivation sequence of ff of length n iff there exists a successful computation

sequence of length n q(t, ~r) t n t of M.

Proof By induction on n. We first prove the "only if" part
1

n =1 then, forcibly, ~r = G(q~ 1 q~s) and a(q, rr) ~ a ~ F 0 which can occur

iff q(a, ~r) ~ a is a rule of M, hence gives a successful computation sequence of

length 1
n + l

Inductive step: suppose o(q, ~') =, t, then ~r = G(~ 1 ~,) and:

either o(q, ~r) = o(q', ~r'(~pl ff~)) ~ t and hence, by the construction of fg,

there exists an e-rule q (v , G (X l , . . . , x s)) ~ q ' (v , ~ r ') of M, and by the

induction hypothesis, there exists a length n computation sequence

q'(t, ~r'(qq q%)) ~ - t of M; whence the successful computation sequence of
F n

length n + 1 : q(t, ~r) ~- q'(t, ~r (~1 qJ ,)) F- t .

Pushdown Tree Automata 251

or a(q, ,r) ~ f (a (q v t~'l) tJ(qr, tp'r)) and

a) t = f (t 1 t r)
? ni

b) for each i = l , . . . , r , o(qi, t~t) ~ t i by an OI derivation sequence and

r

E n i = r l
i = 1
then, there exists a read rule

q (f (v l , . . . , V r) , G (X l , . . . , x s)) ~ f (q l (v l ,~r l) ,qr(Vr,~rr)) of M,

and, by the inductive hypothesis, there exist r successful computation sequences:

q i (t i ,~) I n--~ ti, for i = l , . . . , r . Whence the successful computation sequence:

q (f (t 1 , t r) , G (~ l , . . . , ~ s)) ~- f (q l (t l , ~1) qr(t~, ~ r)) I n~
f (t l , q2(t2, ~2) ,qr(tr, ~'r))] n--2"'" I nr t = f (t 1 tr) of length n +1.

A very similar proof shows that, if there exists a successful computation

sequence q(t,~r) ~-L}-t, we can translate it into an OI derivation sequence

n + l
o(q, ~r) =* t. []

Fact 2 shows that f¢, with axiom O(qo, Z0) , generates T(M). []

Example 3 (of the previous construction). Let M be defined by: Q = (q0, ql, q2 },

F = {b, Cl, C2} , I I= (G,C, Zo} with r (b)= 2, r (G) = l , r (C) = r (c l) = r (c 2) = O .
The rules are the following:

(0) qo(v, Zo) ~ qo(v, G(C))
(1) qo(v, G(x)) ~ qo(v, G2(x))

(2) qo(b(u, v), G(x)) --* b(ql(u, x), q2(v, x))
(3) for i = 1,2, qi(b(u, v), G(x)) ~ b(qi(u, x), qi(v, x))

(4) qi(ci, C) --, c i for i =1 ,2
It is associated with ~ having nonterminals G°,G1, G 2, of rank 3,

Z °, C °, C 1, C 2, of rank 0, axiom Zo °, and productions:
(0) Z ° ~ G°(C °, C 1, C 2)
(1) G°(x °, x I , X 2) --'> G°(G°(x °, X 1 , X 2) , G l (x 0 , x 1 , x 2) , G2(x ° , x 1, x2))

(2) G°(x °, X 1, X 2) -"> b (x 1, x 2)

(3) for i =1,2, G i (x O, x 1, x 2) ~ b (x i, x i)

(4) for i =1,2, C i ~ c i

and L(f¢) = T (M) is the set of binary trees of the form:

t n
. }

•" depth n

• . . " " " b " . " ' ' b

. . . . c (',c, .. c I c I c

2n-1 2n-1
Cl cz vI

Let us give as an example of application of this automaton theoretic char-

acterization of context-free tree languages a very simple proof of the following:

252 I. Guessa r ian

Proposition. The intersection of a context-free and a regular tree language is

context-free.

Proof By a product construction used in many other proofs. E3

On the other hand, if we already presume the above closure result and closure

under linear (or alphabetic) erasing homomorphism, which are both special cases

of closure under linear top-down transductions shown in [25, 26], a very elegant

proof (due to J. Engelfriet) can be given to show that every T (M) can be

generated by a context-free tree grammar; let f g ' = (F ' , I I , R ' ,Zo) be the

context-free grammar defined by:

each type (i) ru le of M is t ranslated into the p roduc t ion

E (X 1 ,Xs) "-> f (q l , . . . ,qr) (~ ' l 7rr) of R'
each type (ii) rule of M is translated into the product ion

E (x 1 ,Xs) ~ dq , (~ ')

where f~ql qr) is a new rank r symbol in F ' , for every type (i) rule, and dq q, is a

new rank 1 symbol in F ' , for every type (ii) rule (d stands for "dummy"). Let L

be the context-free language generated by ~ ' . To obtain T (M) from L, it

suffices:

a) to intersect L with a recognizable tree language L' (checking that every-

where the subscript of the father is the sequence of superscripts of its sons)
q b) to then erase all symbols d q, and rename each f(ql,"',qr) t o f by a linear

homomorphism h e"

This can be formalized in the:

Lemma. For any t in A(F) and Ir in A(II), there exists a computation sequence

q(t, ~r)] n-- t i f f there exists an OI derivation ~r =* t" ~ A(F ") of f¢" such that t" ~ L'

and he(t") = t.

4. Classes of Languages Recognized by PDTA's.

We shall now characterize several known classes of tree languages by the

automata which accept them and see that these results nicely extend string PDA

theory in most cases and are more complicated in some cases.

Let us say that a tree language L is a real-time (resp. quasireal-time,

deterministic, etc. . .) iff it can be accepted by a real-time (resp. quasireal-time,

deterministic, etc. . .) PDTA M.
Note that it would be seemingly more restrictive to demand that L be

accepted by empty store by some (quasi)real-time M: this stems from the fact that

in proposition 1, we need extra e-moves in going from M to M ' and that it might

possibly take an unbounded number of e-moves to pop a leftover stack.

Let us recall first some terminology. A context-free tree grammar f¢ =

(F , ~ , P, Go) is said to be:
a) in Greibach normal form (in short Greibach) iff the root of the right hand

side of each production is a terminal symbol in F [4]. Greibach grammars are

called strict Greibach in [5] who allow for rules G(£) ~ x i in Greibach grammars.

Pushdown Tree Automata 253

b) Deterministic iff it is Greibach, and moreover, for each left-hand side there

exists at most one production whose fight-hand side has a given root f in F [8].

Such grammars are the natural extension to trees of simple deterministic gram-

mars [20]. We call them deterministic because the languages they generate are

accepted by deterministic PDTA's (Proposition 6 and Theorem 2 below).

Proposition 5. L is realtime (resp. realtime deterministic) i f f it can be generated by

a Greibach (resp. deterministic) grammar.

Proof "only if" part: the construction of the grammar ffgenerating T (M) given

in theorem 1 clearly shows that if M is real-time (deterministic) then ff is

Greibach (deterministic).

"if" part: to any Greibach (deterministic) grammar ffwe can easily associate

a "normal" Greibach (deterministic) grammar if ' which

generates the same language as ff

is Greibach (deterministic)

has all its productions in the form:

G (x l , . . . , x ~) ~ f (O x , . . . , O r) with f ~ F r and, for i = 1 r,

O i E A (F U d P , { x I x s }) and Oi(e) E ~ l , . J (X 1 Xs} (the root of 0 i is
labeled by a (function) variable).

For such a if ' the construction given in the first part of Theorem 1 clearly
defines a realtime (deterministic) automaton M. []

Proposition 6. A n y deterministic language is real-time.

Proof Let L be accepted by a deterministic M and ff be the grammar associated

with M in the construction of Theorem 1; the set • of function variables (or

nonterminals) of ff can be partitioned in two disjoint sets:

(i) nonterminals coming from read rules of M which lead to Greibach productions

(a) Gi(x 1 x s) --* t~ + . . . + t 7'

with, for j = 1 , . . . , n i, tJ(e) = f j ~ F and j 4: j" ~ fj :~ fj,.

(i.e. the type (a) nonterminals and associated productions define a determinis-
tic grammar)

(ii) nonterminals coming from e-rules which lead to productions:

(b) G i (x 1 ,Xs) --~ G.: (01 Os,)

with, fo r j =1 s ' , Oj ~ A (F U ¢b, (x 1 x s)).

Moreover, M being deterministic, if G i is the left-hand side of a type (b)

production, this will be the unique production in ~ having Gi as left-hand side;

this will help in getting rid of all type (b) productions, because in such a grammar,
we can easily:

1. Delete all circular nonterminals, namely nonterminals such that there

exists a derivation G (x 1 x s) * G(O 1 ,O~), while preserving the type (a)
and (b) partitioning of productions, see also [4, 21] where such nonterminals are

called left-recursive): any circular G is, in this special case, useless, i.e. cannot
generate any tree in A (F) .

254 i, Guessarian

2. then, because of the "deterministic" property of ~, for any type (b)

nonterminal Gs, there exists exactly one finite derivation sequence:

= O~ = - . . = G~k ox,..,o~k G i (x 1 Xs) Gi 1

such that: for j = l k, pj is a type (b) production and Gik is a type (a)

nonterminal. Then, the type (b) production associated with G~ can be replaced by

the type (a) productions

Gi(x 1 Xs) ~ t)k(O 1 Osk)+ . . . + tTk~k(O i Osk)

All type (b) productions can thus be deleted and we hereby obtain a

deterministic Greibach grammar generating L. []

Remark 4. Obviously, not every real-time language is deterministic, e.g. L =

{ f (a , a), f (b , b)} is realtime and not deterministic.

Corollary 1.

(i) Every DPDTA is equivalent to a realtime DPDTA.

(ii) Not every PDTA is equivalent to a real-time PDTA.

Proof.

(i) is a restatement of proposition 6.

(ii) results from proposition 5 and the fact that not every context-free tree

language admits a grammar in Greibach normal form [21, 23]. []

This shows that the situation is somewhat more complex than in the case of

context-free string languages and is further illustrated by the next proposition.

Proposition 7. Any language accepted by a quasi-real-time PDTA can be gener-

ated by a Greibach grammar.

Proof. Let M = (Q, F, II, q0, Zo, R) be a PDTA accepting L such that any

computation sequence of M has at most k consecutive e-moves.

Lemma 1. L can be accepted by a PDTA M" such that:

(i) each sequence of consecutive e-moves in any computation sequence of M" has

length exactly k

(ii) in any computation sequence of M' , between any two read rules there is a

sequence of k e-moves.

Proof. Intuitively, the idea is to count the number of e-moves in the state and

force it to be exactly k. Formally, M ' = (Q', F, II, qo, Z o, R'), where Q ' =

((q, i) / q ~ Q, i ~ {0 k}}

Pushdown Tree Automata 255

R' is defined by:

for each type (ii) e-rule of M, q(v, E(x I xs)) ~ q'(v, ~r'), R ' contains the

e-rules:

(q , i) (v , E (x I x ,)) ~ (q ' , i + l) (v , ~ r ') 0 < i < k

(q , i) (v , E (x 1 x ,)) ---> (q , i + l) (v , E (X l , . . . , x ,)) 0 < i < k - 1

for each type (i) read rule of M

q (f (v l , . . . , V r) , E (X l xs)) ~ f (q l (V l , ¢q) ,q~(vr, ~rr))

R' contains the read rule:

(q, k) (f (v t or), E (x 1 ,Xs)) ---> f ((q l , 0) (V l , ~rl) , (q,,O)(vr, ~r~))

and the set of e-rules:

(q , i) (v , E (x 1 x ,)) ~ (q , i + l) (v , E (x 1 ,x~)) 0 < i < k .[]

Lemma 2. Let M = (Q, F, H, qo, Zo, R) be a PDTA; then there exists a real time

PDTA M " = (a , F U (d} , II, qo, Zo, R") such that T(M) = ~p(T(M ")) where

is the linear homomorphism A(F U (d }) ---> A(F) defined by:

rp (f (t 1 tr)) = f (~P(t l) , . . . ,ep(tr)) f o r f i n F a n d w (d (t)) = W(t) .

Sketch of Proof The idea is to stuff the input with the dummy symbol d of rank

1, and to transform e-rules of M into rules of M " which read d; then ~o is the

identity on F and erases d. Formally, R"

contains all the read rules of M

contains, for each e-rule q(v, E (X l , . . . , x s)) ~ q'(v, ~ ') of M, the read rule:

q(d(v), E(x 1 ,x~)) ~ d(q'(v, ~r')).
The proof is left to the reader. []

Lemma 3. Let M " be associated as in lemma 2 to the automaton M ' constructed in

lemma 1. Then T(M ') = 6-1 (T(M")) where lp is the linear homomorphism A (F)

--> A (F U (d }) defined by: q~(f(q tr)) = d k (f (~ / (q) qJ(tr))) (d k denotes
the composition of d with itself k times).

Sketch of Proof. By the construction of M ' and M " one can easily see that any

tree accepted by M " is of the form ~(t) , for some t accepted by M' . C]

Now, T (M ") is Greibach by proposition 5; L = T (M ') = ~k- I (T(M")) is

thus also Greibach, since (by theorem 24 of [4], Greibach languages are closed
under inverse linear homomorphisms. []

Corollary 2. Every context-free tree language is the image of a Greibach language
by a linear alphabetic homomorphism whose only erasing rules are monadic (monadic
nonstrictness in Leguy ' s terminology [21]).

256 L Guessarian

This is simply a restatement of Lemma 2.

Let (Q) RT denote the class of (quasi)real-time languages, (D)RT denote the

class of (deterministic) real-time languages, G(resp. G__if_E) denote the class of

languages which can be generated by a Greibach (resp. extended Greibach)

grammar: an extended Greibach grammar is a grammar which would be

Greibach but for erasing rules E (x 1 xs) ~ x i which are allowed. Extended

Greibach grammars are called Greibach in [5]. Let DG denote the class of

languages generated by deterministic grammars. Let CFT denote the class of

context-free tree languages, PDTA denote the class of languages accepted by

PDTA's and PDTApo_ denote the class of languages accepted by PDTA's whose

only e-rules a-~ ~-p6p ¢' rules: q(v, E (x l , . . . ,xs)) ~ q(v', Xi). Then the following

theorem summarizes the main results of this section:

Theorem 2

(i) D = DRT-- DG

ii) RT = QRT = G

(iii) GE = PDTApo p

(iv) D ~ R T g PDTApo p ~ PDTA = CFT

Proof. (i) and (ii) follow from propositions 5, 6, 7; (iii) is an easy consequence of

the construction given in theorem 1; the strictness of the inclusions in (iv) is well-

known, e.g. L = (f (a , a), f (b , b)) ~ R T - D, L ' = (g(dna, d " a) / n ~ N } ~ C F -

GE [23], and G ~ GE follows from [21]. []

5. Restricted PDTA's and Indexed Grammars

We will now give a more operational characterization of context-free tree lan-

guages by simplifying our PDTA's: the pushdown is a usual string instead of a

tree (but it never gets emptied). Formally:

Definition 4. A restricted pushdown tree automaton (RPDTA) is a PDTA

(Q, F, H, q0, Z0, R) where H = (Z0)UII1 , i.e. but for the start symbol Z o of

rank 0, the pushdown alphabet contains only rank I symbols. The allowable rules

are indicated below.

Notation. The pushdown store will thus always be of the form

HI(HE(. . . (Hn(Zo)) . . .)) : omitting the parentheses we will denote it by w =
*

H 1//2... H~ Z 0 H 1 Z0: i.e. composition is denoted by concatenation and A(H) Is

identified with the subset H I Z 0 of the gree-monoid over II 1 U (Z 0). Note that,

because of the symbol Zo, the store never is empty.

We allow the following types of rules for a RPDTA:

(i) q (f (v 1 Or), Ex) "-', f (q l (v l , ~rlX) qr(v,, OrrX))
(ii) q(v, Ex) --> q'(v, ~r'x)

(iii) q (f (v 1 or), x) ~ f (q l (v l , ¢qx) qr(vr, OrrX))
(iv) q(v, x) ---, q'(v, ~ 'x)

Pushdown Tree Automata 257

with f ~ F~, E ~ I I t , ~r'~ I I t , for i = l , . . . , r , rri~l-I ~ and x a variable ranging

over I I~Z 0.

Note that (i) and (ii) are more restricted than those of arbitrary PDTA with

II = (Zo}U II 1.

In the notations of [11] an RPDTA can be viewed as a semi-thue system with

variables 6: = (~¢., 5Y, 2 , ~) with

~¢ = F U II U Q u {(,), c}, where c is the comma.

X = V U X, where V = (v, v', or, v 2) and X = (x}

variables in V ranging over A(F) , i.e. 2 (0) = A (F) for each v in V, and

variables in X ranging over II~Zo, i.e. ~ (x) = I I~Z o

~ = R

The computation relation ~ of the RPDTA then coincides with the deriva-

tion relation * of the semi-thue system ~ .

We can now state the main theorem of this section:

T h e o r e m 3. Any language accepted by a PDTA can be accepted by a restricted
PDTA.

To prove this theorem, one would expect to simply use the fact that, if L is

context-free, then the set of branches of L is a context-free language, hence is

recognized by a pushdown automaton. Then one could construct the correspond-

ing PDTA (by "glueing" together productions of the pushdown automaton).

Unfortunately, this PDTA will recognize a context-free tree language L ' which is

usually strictly greater than L (except when L is "branch closed" or "represent-

able" [8, 27]).

One might then hope to derive this theorem from Gallier's result [16] by some

trick: e.g. add a binary base symbol + (representing set-theoretic union) to

eventually substitute e-rules for all rules concerning the symbol + . The previous

remark also shows that all such hopes are futile. We thus have to find a direct

construction. It nevertheless will be strongly inspired by Gallier's construction.

We first give the idea of the construction. We have to show that every

context-free language is a T (M) for some restricted PDTA M. We can no more

have a single state PDTA where the whole tree which remains to be derived is

stored in the pushdown store. Hence we shall use both the state and the

pushdown store to code (or "remember") the derivations which remain to be

done: i.e., the state remembers at which occurrence we are currently located in the

right-hand side trees at the present moment of the derivation, and the pushdown

store remembers which occurrences of variable function symbols still have to be

derived. The state and the pushdown store are then used interactively to recon-
struct the derivation of a tree.

Proof of Theorem 3. Let f¢ = (F, @, P, Go) be a context-free tree grammar with
productions:

a i (x l , . . . ,Xr i) ~ { t / , j = l ni) i = 0 n.

Then let M = (Q, F, H, qo, Go, R) be defined by: Q = (q 0) u ((i , j , o) / i =
0 n , j = 1 n i and o is an occurrence in t{).

258 L Guessarian

The input alphabet F i s the terminal alphabet of f#, II = ((i, j , o) / i = 0 n,

j = l , . . . , n i and o is an occurrence of a Gk~aP in t / }U(Go) , and the rules are

defined by:

(1) initializations by e-rules of type (iv):

q o (v , x) ~ (O, j , e) (v , x) for j = l , . . . , n 0.

(2) to each occurrence o of a base function symbol f in a t~ (i.e. t J (o)= f)

corresponds a type (iii) read move:

(i , j , o) (f (v 1 o~) ,x) -+ f ((i , j , o l) (v l , x) (i , j , or)(vr, x))

Intuitively, reading f in a state corresponding to the position o in the tree t/, we

have to go down in the input tree without changing the store.

Notice that in the special case where f has rank 0, we get accepting rules

which erase the stack.

(3) to each occurrence o of a variable function symbol G k in a t/ (i.e.

t / (o) = Gk), correspond push moves where we store G k in the pushdown, thus

remembering the recursive call which shall be done later, and reposition

ourselves in a state which corresponds to beginning the derivation of Gg (i.e.

at the roots of the right-hand sides t[' corresponding to Gk); i.e. we get the

type (iv) e-rule:

(i , j , o) (v , x) - - -) (k , j ' , e) (v , (i , j , o) x) ,

for j ' = 1 nk, whenever tJ(o) = G k ~ d~.

(4) to each occurrence of a variable xm indicating that the current recursive

call has been completed, corresponds a pop move, i.e. going to the next

recursive call and repositioning (by means of the state) to the xm argument of

each occurrence of the popped symbol in the t / ' s ; i.e. we get the type (ii)

e-rule:

(i , j , o) (v , (i ' , j ' , o ') x) - - - > (i ' , ; ' , o ' m) (v , x)

for any (i, j , o) , (i ' , j ' , o ') such that tJ(o) = x m ~ Xr, and tJ,'(o ") = G i ~ rb and

Xr, = (X l

Then, L (~) = T (M) follows from the lemma:

Lemma.. Let Gi(x 1 ,xr,) ---> t j be a rule of f~. Let t~ j be the prefix o f t / such that:

t:: ~ A (F t3 dp, W,) with W n = (w 1 w,} disjoint from Xr,-- (Xl , . . . , x~ , }

no two leaves of t[J are labeled by the same variable w k

t j = t j (x i J w 1 x i / w ,) , x ik~ X~,for k = l , . . . , n .
Let t ' be a subtree of t[j at occurrence o. Then t" * t" ~ A(F, W.) by an OI

derivation iff: (i, j , o) (t ' , ~) ~--t"(((i, j , o l) (w 1, ~)) / w l , . . . ,((i, j , o ,)(w, , ~)) / w ,)

is a computation sequence of M, where ~/ is an arbitrary pushdown in A(II), and

t;J(Ok) = wk, for k =1 n.

Pushdown Tree Automata 259

The proof proceeds by induction on the length of the OI derivation and of

the computation sequence. []

Let now t be in L(ff) , then G O ~ t~ * t is a derivation sequence of t and

applying the lemma with t[= tg, q~ = Go and t ' = tJo (note that n = 0) shows that

t ~ T (M) . Conversely, any accepting computation sequence of t in T (M) has to

start with some move qo(t, Go)~---(0, j , e)(t, Go) and again we apply the lemma

with t /= []

Remark 5. Note that:

1. The above construction is a generalization of LL parsing to a "parallel

LL parsing" of trees: we read the tree in a topdown (or left to right) manner and

construct an OI (or leftmost) derivation, by the usual method of stacking return

addresses of recursive calls on the pushdown store. An alternate approach would

be the one corresponding to the bottom-up TPDA's of [29], leading to a "parallel

LR parsing": the storage of TPDA's consisting of set of trees whose roots are

simultaneously accessible, an analogue of theorem 3 would be very hard to find:

it thus seems impossible to linearize the storage of TPDA's.

2. This construction can lead to a very simple parsing method for indexed

languages (see proposition 9 and theorem 4 below). It does not use Fischer's

macrogrammars [15], as is done in [29].

Let us apply the above construction to the following simple example:

Example 4. Let ffbe the following grammar:

G G

Oo./\ ; / \ .
a x 1 x 2

j g

/ / /G ~N~N + x 2 + c

Xl h \ ~

I Xl X 2

X 2

Since n = n o = 1 and n 1 = 3, we shall omit the components i, j in the states

and pushdown symbols and simplify the notations as follows:

(0,1, e) is denoted by e °

(0,1,1) (resp. (0,1,2)) is denoted by 1 ° (resp. 2 °)

(1,1, e) (resp. (1, 2, e), (1, 3, e)) is denoted by e(resp, e', e").

(1,1, o) with o ~ e is denoted by o; thus, e.g. e" corresponds to the root of tl 3

which is labeled by c, 12 corresponds to occurrence 12 in t~ labeled by h (i.e.

t~ (12) = h). The pushdown alphabet is then II = {e°,l , G0}. The rules of M
are defined by:

initialization: qo(v, x) ~ e°(v, x)

occurrences of base function symbols:

l°(a , x) ~ a; 2°(b, x) ~ b and e"(c, x) ~ c

12(h(v), x) --, h(121(v, x))

e (g (v 1, o 2, v3), x) ~ g(l(vl , x), 2(v2, x), 3(o3, x))

260 I. Guessarian

occurrences of function variables:

~°(v, x) -~ ~(v, ~°x)+ ~'(v, ~°x)+ ~"(v, ~°x)
l(v, x) ~ e(v, l x) + e'(v, l x) + e"(v, l x)

occurrences of variables:

occurrences of X 1:

f o r q ~ {11,2} q(v, l x) - - * l l (v , x) and

q(v, e°x) ~ l°(v, x)

occurrences of X2:

for q ~ {121,3, e'} q(v, l x) --->12(v, x)

q(v, e°x) ~ 2°(v, x).

Remark 7. Alternatively, we might modify the definition of a RPDTA by letting

H -- 1-Ix: we would then have to allow for rules with a possibly empty store (e.g.

accepting rules on leaves, initializing rules). The bottom of pushdown G O

symbol's sole use is in fact to ensure that the pushdown shall never get empty.

It is well known that context-free tree languages are the sets of derivation

trees of indexed languages [12, 15]. Now, we shall see that PDTA's can easily be

viewed as indexed grammars and thus provide, to our belief, some more insight

into the parsing of indexed languages [2]. Essentially, a RPDTA can be viewed as

a slight generalization of an indexed grammar, as will be shown by the construc-

tion below, due to J. Engelfriet.

Recall first the definition of an indexed grammar from [1].

Definition 5. An indexed grammar is a 5-tuple ~ = (N, T, F, P, S) where:

a) T(resp. N) is a finite alphabet of terminal (resp. nonterminal) symbols

b) S, the axiom, is a distinguished symbol in N

c) F is a finite set of indexes;

each f in F is a finite set of index productions of the index f of the form

A ---> to, where A is in N and to in (N U T)*.

d) P is a finite set of ordinary productions of the form A ---> a, where A is in N

and a in (NF* U T)*.

The immediate rewriting relation =, according to fg is defined by: w ~ w'
p " ~ t

iff for w, w, w 1, w 2 m (N F * t2 T)*, x t m N U T and tp, q~i, Vi in F* for i = 1 k,

1. Either w = wxAvw 2, A ---> XlC&...xkcpk is an ordinary production in P and

w" = wxxxv]...xk~p'~w 2, where for i =1 k V~ = ¢PiV if x~ is in N and V~ = e if x i is

in T.

2. Or w = wxAfepw2, A ~ xx . . . x k is in index f and w' = wxXlcPX . . .XkCPkW2,
where for i = 1 k, ~0i = ~ if x~ is in N and % = e if x~ is in T.

As usual, * T * / S ~ w}. ~ is the reflexive and transitive closure of ~ , , and L(f~) -- (w

Note that we may suppose without loss of generality that the only production

rules in which terminals occur in right hand sides are of the form A ~ a, or A ~ a

in some index f. For each occurrence of a terminal a in a right-hand side w which

is not of the above form, introduce a new nonterminal A', substitute A' for a in w

and add the production rule A' ~ a in P.

From now on, we will suppose that indexed grammars are of ~his restricted

form, namely that in Definition 5 above, in case c) to is in N* U T and in case d)

a is in (N F *) * U T.

Pushdown Tree Automata 261

Definition 6. An indexed top-down tree automaton (ITA) is an RPDTA with

rules of the form:

(i') q (f (v 1 vr), E x) ~ f (q l (v l , x) qr(vr, X))

(ii') q(v , E x) ~ q ' (v , x)

(iii) q (f (v 1 ,Vr) , x) -* f (q l (v l , ~qx) ,qr(vr, It, x))

(iv) q(v, x) ~ q'(v, 7r'x)

where f is in F~, It' and Iri, for i = 1 r, are in II~, and x ranges over H~Z0;

namely, i t ' = ~r I 7r r = e in type (i) and (ii) rules.

Lemma 4. Any RPDTA is equivalent to an ITA.

Proof For each type (i) rule

m: q (f (v 1 or), E x) ~ f (ql(vl, ~qx) , . . . ,qr(Vr, 7rrX)), introduce r new states
~1 ~r qx ,-.-, qr and replace rule m by the following r + 1 rules:

q (f (v x , V r) , E x) ~ f (q ~ l (v l , x) ,q~r(Vr, X)) of type (i'), and, for i =

1 r, qT'(v, x) ~ qi(v, Irix), of type (iv). Similarly decompose each type (ii)

rule:

q(v , E x) ~ q ' (v , ~r'x) into the two rules

q(v, E x) ~ q ' , (o, x) of type (ii') and

q~,(v, x) ~ q ' (v , ~r'x) of type (iv). []

Proposition 8. To each ITA corresponds an indexed grammar generating its yield.

Proof Recall first (cf. proposition 4) that, by dropping all first arguments of

states, we can view a PDTA as a rewriting system generating the tree language

accepted by the PDTA.

Now, let M = (Q, F, H, q0, Z0, R) be an ITA. First dropping all first argu-

ments of states and then applying the yield homomorphism to the right hand

sides in A (F , Q × II*), but not to the pushdowns, we obtain a set of rules R" with

the following types of rules:

• (i") q (E x) ~ q l (x) . . . q r (x) r > 1

or q (E x) ~ a a ~ F o

(iii") q (x) ~ q l (Tqx) . . , qr(~rrX) r > 1

or q (x) ~ a a ~ F o

We may omit rules (ii") and (iv') corresponding to (ii') and (iv) because they

lead to special cases of (i ') and (iii") with r = 1.

Now x ' s in the above rules can be viewed as variables ranging over the set F *

of words on indexes of some indexed grammar ~where F = YI. Namely, rules (i ')

correspond to index productions, and mean that index E contains the production

q ~ ql " ' 'qr or q---> a, and (i i i ') correspond to ordinary productions, and mean

that q ---> ql~rl.., qr~rr or q ~ a are ordinary productions of ~ (in Aho's notations).

Let N = Q tJ (S }, T = Fo, F = II , P be the set of productions:

(_i) for each E in II, q in Q and type (i ') rules of R", index E contains the

index productions q ~ ql . . . qr and q ~ a, and nothing else.

(iii) for each q in Q and type (i i i ') rules of R", P contains ordinary

productions q ---> ql~rl.., qr~r r and q ---> a

262 I. Guessarian

(o) initialization: letting S be the axion, P contains rule S-o qoZo" Each

index E in II is identified with the corresponding set of productions (~).

Then, the above defined indexed grammar ~ is such that L (~) = yield

(T(M)). []

Theorem 4 115, 121. The class of indexed languages coincides with the class of
yields of context-free tree languages.

Proof. Proposition 8 shows that the yield of any context-free tree language is

indexed. Conversely, the construction in proposition 8 immediately shows how to

construct an ITA M accepting the language generated by an indexed grammar. If

f ~ = (N , T , F , P , S) then M = (N , T U U {cr), F U (Z o J , S, Zo, R), where for
r>_l

each r > 1, c~ is a rank r symbol intended to represent the r-ary concatenation,

and R is deduced from P by introducting explicitly the concatenation operators.

Formally, for each index production A ---, A1...A~ or A ~ a in index E in F, R

contains type (i') rules:

A(Cr(U 1 Vr),Ex) --. c,(Al(Vl, X) A . (v , , x)) o r A (a , Ex) ~ a.

For each ordinary production A -o Alcpl...At% , with (~i E F* for i =1 ,r,

(resp. A-o a production in P), R contains type (iii) rules: A(cr(vl,...,v~), x)-o

cr(Al(Ol, fpl x) Ar(or, %x)) (resp. A(a, x) -o a) where x ranges over F *Z o.
Then yield(T(M)) = L(G), except possibly for the empty string which may

belong to L(G) but not to yield(T(M)). []
The above construction, besides providing an alternate proof of theorem 4,

has the advantage of giving an explicit very simple transformation (basically a

homomorphism) for going from a restricted pushdown automaton to the corre-

sponding indexed grammar.

Acknowledgments

It is a pleasure to thank L Engelfriet whose insightful suggestions tremendously helped in improving

this paper, A. Arnold, W. Damm and J. Gallier for helpful comments and/or discussions, and Mme

A. Dupont for her patient typing. Thanks also to the referees for their careful reading and constructive

critics.

References

1. A.V. Aho, Indexed grammars: An extension of the context-free case, JA CM 15, 647-671 (1968).

2. A.V. Aho, Nested stack automata, JACM 16, 383-406 (1969).
3. A. Arnold, M. Dauchet, Transductions de for~ts reconnaissables monadiques. For~ts corbgulibres,

RAIRO Inf. Thbor. 10, 5-28 (1976).
4. A. Arnold, B. Leguy, Une propribtb des for~ts algbbriques de Greibach, Information & Control,

Vol. 46, 108-134 (1980).
5. A. Arnold, M. Nivat, Formal computations of nondeterministic program schemes, MST 13,

219-236 (1980).
6. J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart (1979).

Pushdown Tree Automata 263

7. G. Boudol, Langages algbbriques d'arbres, LITP report n ° 81-2.

8. B. Courcelle, On jump deterministic pushdown automata, MST 11, 87-109 (1977).

9. W. Datum, Personal communication.

10. P. Downey, Formal languages and recursion schemes, Ph.D. Harvard (1974).

11. J. Engelfriet, Bottom-up and top-down tree transformations. A comparison, MST 9, 198-231

(1975).

12. J. Engelfriet, Some open questions and recent results on tree transducers and tree languages, in

Formal Languages: Perspectives and Open Problems, Academic Press, London (1980), 241-286.

13. J. Engelfriet, E. M. Schmidt, IO and OI, JCSS 15, 328-353, (1977) and JCSS 16, 67-99 (1978).

14. J. Engelfriet, G. Slutzki, Extended macrogrammars and stack controlled machines~ Memo n °

379, T. H. Twente, (1982).

15. M.J. Fischer, Grammars with macro-like productions, 9th SWAT, 131-142 (1968).

16. J.H. Gallier, DPDA's in "Atomic normal form" and applications to equivalence problems, TCS

14, 155-186 (1981).

17. S. Gorn, Explicit definitions and linguistic dominoes, in J. Hart, S. Takasu, Eds, Systems and

Computer Science (1965).

18. I. Guessarian, Algebraic semantics, Lect. Notes in Comp. Sc. n ° 99, Springer-Verlag, Berlin

(1981).

19. M. Harrison, Introduction to Formal Languages Theory, Addison-Wesley, London, (1978).

20. J. E. Hopcroft, A. J. Korenjak, Simple deterministic languages, 7th Symp. Switching and

Automata Theory, Berkeley, 36-46 (1966).

21. B. Leguy, R+ductions, transformations et classification des grammalres algbbriques d'arbres,

Thbse 3bme Cycle, Univ. Lille 1 (1980).

22. M. Nivat, On the interpretation of recursive polyadic program schemes, Syrup. Mat. 15, Rome,

255-281 (1975).

23. N. Polian, Adhbrences et centres de langages d'arbres, Thbse de 3bme cycle, Poitiers (1981).

24. M. Rabin, Automata on infinite objects and Church's problem, CBSM regional Conf. series in

Math. n ° 13, AMS (1969).

25. W.C. Rounds, Mappings and grammars on trees, MST 4, 257-287 (1970).

26. W.C. Rounds, Tree oriented proofs of some theorems on context-free and indexed languages,

2nd Symposium on Theory of Computing, 109-116 (1970).

27. A. Saoudi, For~ts infinitaires reconnaissables, Thbse de 3~me cycle, Universitb Paris 7 (1982).

28. K. Schimpf, A parsing method for context-free tree languages, Ph.D. University of Pennsylvania

(1982).

29. K. Schimpf, J. Gallier, Parsing tree languages using bottom-up tree automata with tree pushdown

stores, Extended abstract, University of Pennsylvania (1981), to appear.

30. J .M. Steyaert, Lemmes d'it~ration pour les families d'arbres, Actes du S+minaire d~Inf. Th+or.

1977-1978, LITP Report, Paris (1979).

31. J .W. Thatcher, Tree automata: An informal survey, in Currents in Theory of Comp, Aho (ed.),

Prentice-Hall, London (1973).

32. J. W. Thatcher, J. B. Wright, Generalized finite automata theory with an application to a

decision problem of second order logic, MST 2, 57-81 (1968).

Received February 5, 1982, and in revised form May 28, 1982, January 12, 1983, and April 15, 1983.

