;“ Data Mining and Knowledge Discovery, 8, 227-252, 2004
‘~ (© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Pushing Convertible Constraints in Frequent
Itemset Mining*

JIAN PEI jianpei@cse.buffalo.edu
University at Buffalo, The State University of New York, 201 Bell Hall, Buffalo, NY 14260-2000, USA

JIAWEI HAN hanj@cs.uiuc.edu
University of Illinois at Urbana-Champaign, 2123 DCL, 1304 West Springfield Avenue, Urbana, IL 61801, USA

LAKS V.S. LAKSHMANAN laks@cs.ubc.ca
University of British Columbia, 201-2366 Main Mall, Vancouver, B.C. Canada V6T 174

Editors: Fayyad, Mannila, Ramakrishnan

Received July 12, 2001; Revised July 12, 2001

Abstract. Recent work has highlighted the importance of the constraint-based mining paradigm in the context
of frequent itemsets, associations, correlations, sequential patterns, and many other interesting patterns in large
databases. Constraint pushing techniques have been developed for mining frequent patterns and associations with
antimonotonic, monotonic, and succinct constraints. In this paper, we study constraints which cannot be handled
with existing theory and techniques in frequent pattern mining. For example, avg(S)0v, median(S)0v, sum(S)6v
(S can contain items of arbitrary values, 6 € {>, <, <, >} and v is a real number.) are customarily regarded as
“tough” constraints in that they cannot be pushed inside an algorithm such as Apriori. We develop a notion of
convertible constraints and systematically analyze, classify, and characterize this class. We also develop techniques
which enable them to be readily pushed deep inside the recently developed FP-growth algorithm for frequent
itemset mining. Results from our detailed experiments show the effectiveness of the techniques developed.

Keywords: frequent itemset mining, constraint, convertible constraint, algorithm, pruning

1. Introduction

Ithas been well recognized that frequent pattern mining plays an essential role in discovering
associations (Agrawal and Srikant, 1994; Mannila et al., 1994), correlations (Brin et al.,
1997), causality (Silverstein et al., 1998), sequential patterns (Agrawal and Srikant, 1995),
episodes (Mannila et al., 1997), multi-dimensional patterns (Lent et al., 1997), max-patterns
(Bayardo, 1998), partial periodicity (Han et al., 1999), emerging patterns (Dong and Li,

*The work was supported in part by grants from the Natural Sciences and Engineering Research Council of
Canada, and the Networks of Centres of Excellence of Canada (NCE/IRIS-3). A preliminary version of the paper
has been published by the authors as Pei et al., “Mining Frequent Itemsets with Convertible Constraints,” in the
Proceedings of 2001 IEEE International Conference on Data Engineering (ICDE’01), Heidelberg, Germany, April
2001, pp. 433-332.

228 PEIL, HAN AND LAKSHMANAN

1999), and many other important data mining tasks. However, frequent pattern mining often
generates a very large number of frequent itemsets and rules, which reduces not only the
efficiency but also the effectiveness of mining since users have to sift through a large number
of mined rules to find useful ones.

Recent work has highlighted the importance of the paradigm of constraint-based mining:
the user is allowed to express his focus in mining, by means of a rich class of constraints that
capture application semantics. Besides allowing user exploration and control, the paradigm
allows many of these constraints to be pushed deep inside mining, confining the search
for patterns only to those of interest to the user, and therefore, improving performance.
Metarules or various kinds of templates have been proposed as filters to define the forms
of rules to be mined (Klemettinen et al., 1994; Srikant et al., 1997). Itemset constraints
have been incorporated into association mining (Srikant et al., 1997). A systematic method
for the incorporation of two large classes of constraints, anti-monotone and succinct, in
frequent itemset mining is presented in Ng et al. (1998) and Lakshmanan et al. (1999).
A method for mining association rules in large, dense databases by incorporation of user-
specified constraints that ensure every mined rule offers a predictive advantage over any of
its simplifications, is developed in Bayardo et al. (1999). Constraints specified using regular
expressions are investigated for sequential pattern mining in Garofalakis et al. (1999). A
systematic study on constraint-based sequential pattern mining is presented in Pei et al.
(2002). Constraint-based mining of correlations, by exploration of anti-monotonicity and
succinctness, as well as monotonicity, is studied in Grahne et al. (2000).

While previous studies cover a large class of useful constraints, many other useful and
natural constraints remain. For example, consider the constraints avg(S)0v, median(S)0v,
and sum(S)0v (0 € {<, >, <, >}). The first two are neither anti-monotone, nor monotone,
nor succinct. The last one is anti-monotone when 6 is < and all items have non-negative
values. If S can contain items of arbitrary values, sum(S) < v is rather like the first two
constraints. Intuitively, this implies that such constraints are hard to optimize. In this paper,
we investigate a whole class of constraints that subsumes these examples. The main idea
is that certain constraints that exhibit no nice properties in general cases may do so in the
presence of certain item ordering. We make the following contributions.

e We introduce the concept of convertible constraints and classify them into three classes:
convertible anti-monotone, convertible monotone, and strongly convertible. This covers
a good number of useful constraints which were previously regarded tough, including all
the examples above.

e We characterize the class of convertible constraints using the notion of prefix monotone
functions, and study the arithmetical closure properties of such functions. As a byproduct,
we can show a good class of constraints involving arithmetic are convertible. E.g., we
show that max(S)/avg(S) < v is convertible anti-monotone and median(S) — min(S) > v
is convertible monotone.

e We show that convertible constraints cannot be pushed deep into the basic Apriori frame-
work. However, they can be pushed deep into the frequent pattern growth mining. We thus
develop algorithms for fast mining of frequent itemsets satisfying the various constraints.
We also discuss how multiple convertible constraints can be incorporated in fast frequent
pattern mining.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 229

e We report our results from a detailed set of experiments, which show the effectiveness of
the algorithms developed.

This study distinguishes itself from the previous works on constraint-based frequent-
pattern mining in the following aspects.

e As argued before, the previous works on constraint-based frequent-pattern mining that
relied on properties like anti-monotonicity, succinctness, or monotonicity (e.g., Ng et al.,
1998; Lakshmanan et al., 1999; Grahne et al., 2000) cannot handle the constraints studied
in this paper.

e There have been many studies on constraint-based search algorithms in artificial intelli-
gence, such as Webb (1995) and Rymon (1992). Our study is distinguished from theirs
in two aspects: (i) we find the complete set of frequent itemsets satisfying the constraints,
while their algorithms find some feasible solutions satisfying the constraints; and (ii) our
goal is to find methods scalable in large databases, while their algorithms are mostly main
memory-based.

The remainder of the paper is arranged as follows. Section 2 motivates the problem of
frequent itemset mining with constraints. Convertible constraints are proposed and studied
in Section 3. The algorithms of mining frequent patterns with convertible constraints are
developed in Section 4. The experimental results are reported in Section 5. In Section 6,
we discuss how to mine frequent patterns with multiple convertible constraints. Section 7
concludes the paper.

2. Problem definition: Frequent itemset mining with constraints

Let! = {iy, i, ..., iy} beasetofall items, where an item is an object with some predefined
attributes (e.g., price, weight, etc.). A transaction T = (tid, I,) is a tuple, where tid is the
identifier of the transaction and I, € I. A transaction database 7 consists of a set of
transactions. An itemset S C [is a subset of the set of items. A k-itemset S is an itemset
of size k, i.e., |S| = k. As a notational abbreviation, we write itemset as S = i;i;,...i;,
omitting set brackets.

An itemset S is contained in a transaction T = (tid, I;) if and only if S C I,. The
support sup(S) of an itemset S in a transaction database 7 is the number of transactions
in 7 containing S. Given a support threshold & (1 < & < |T]), an itemset S is frequent
provided sup(S) > &.

A constraint C is a predicate on the powerset of the set of items 7, i.e., C : 2/ — {true,
false}. An itemset S satisfies a constraint C if and only if C(S) is true. The set of itemsets
satisfying a constraint C is SATc(I) = {S | S € I A C(S) = true}. We call an itemset in
SATc (1) valid.

Problem definition. Given a transaction database 7, a support threshold &, and a set of
constraints C, the problem of mining frequent itemsets with constraints is to find the

230 PEIL, HAN AND LAKSHMANAN

complete set of frequent itemsets satistying C, i.e., find Fo = {S | S € SATc(I) A
sup(S) = §}.

Many kinds of constraints can be associated with frequent itemset mining. Two categories
of constraints, succinctness and anti-monotonicity, were proposed in Ng et al. (1998) and
Lakshmanan et al. (1999); whereas the third category, monotonicity, was studied in Brin
etal. (1997), Grahne et al. (2000) and Pei and Han (2000) in the contexts of mining correlated
sets and frequent itemsets. We briefly recall these notions below.

Definition 2.1 (Anti-monotone, Monotone, and Succinct Constraints). A constraint C, is
anti-monotone if and only if whenever an itemset S violates C,, so does any superset of S.
A constraint C,, is monotone if and only if whenever an itemset S satisfies C,,, so does any
superset of S. Succinctness is defined in steps, as follows.

e Anitemset Iy C I is a succinct set, if it can be expressed as o, (/) for some selection
predicate p, where o is the selection operator.

e SP < 2/isasuccinct powerset, if there is a fixed number of succinct sets Iy, I, ..., I; <
I, such that S P can be expressed in terms of the strict powersets of /1, . .., I; using union
and minus.

e Finally, a constraint C; is succinct provided SAT¢,(I) is a succinct powerset.
We can show the following result.

Theorem 2.1. Every succinct constraint involving only aggregate functions can be ex-
pressed using conjunction and/or disjunction of monotone and anti-monotone constraints.

Proof Sketch: The proof of the theorem is constructed by induction on the structure of
SAT ¢(I) of the succinct constraint, according to the definition of succinctness. Here, we
consider four essential cases as examples.

o If SAT-(I) = 2%, where I. is a set, then C is an anti-monotone constraint since any
pattern satisfying the constraint must be a subset of 1.

o If SAT-(I) = 2% U2/, then C can be expressed in terms of C = C| V C,, where C
and C, are corresponding anti-monotone constraints.

o If SAT-(I) = 2/* — 2", then the constraint can be expressed as the conjunction of two
constraints, C = C, A C,,, where C, is the anti-monotone constraint corresponding to
2" and C,, is a monotone constraint S N (I} — I,) # @.

e Especially, if SAT-(I) = 2! — 2/t —... —2/» then C is a monotone constraint S N (I —
Il_"'_Im)#Vl U

These three categories of constraints cover a large class of popularly encountered con-
straints. A representative subset of commonly used, SQL-based constraints is listed in
Table 1. However, there are still many useful constraints, such as avg(S)0v and sum(S)0v
where 6 € {<, >} (shown in the table) that belong to none of the three classes.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 231

Table 1. Characterization of commonly used, SQL-based constraints.

Constraint Anti-monotone Monotone Succinct
min(S) <v No Yes Yes
min(S) > v Yes No Yes
max(S) < v Yes No Yes
max(S) > v No Yes Yes
count(S) < v Yes No Weakly
count(S) > v No Yes Weakly
sum(S) <v (Va € S,a > 0) Yes No No
sum(S) > v (Va € S,a > 0) No Yes No
sum(S)0v,0 € {<,>}(Va € S,a60) No No No
range(S) <v Yes No No
range(S) > v No Yes No
avg(S)0v, 0 € {<, >} No No No
sup(S) > & Yes No No
sup(S) < & No Yes No

Example 1. Let Table 2 be our running transaction database 7, with a set of items I =
{a,b,c,d,e, f, g, h}.

Let the support threshold be & = 2. Itemset S = acd is frequent since it is in transactions
10 and 30, respectively. The complete set of frequent itemsets are listed in Table 3.

Let each item have an attribute value (such as profit), with the concrete value shown in
Table 4. In all constraints such as sum(S)6v, we implicitly refer to this value.

The constraint range(S) < 15 requires that for an itemset S, the value range of the
items in S must be no greater than 15. It is an anti-monotone constraint, in the sense that
if an itemset, say ab, violates the constraint, any of its supersets will violate it; and thus
ab can be removed safely from the candidate set during an Apriori-like frequent itemset
mining process (Ng et al., 1998). However, the constraint Cy,e = avg(S) > 25 is not anti-
monotone (nor monotone, nor succinct, which can be verified by readers). For example,
avg(df) = (10+30)/2 < 25, violates the constraint. However, upon adding one more item
a, avg(adf) = (40 4+ 10 + 30)/3 > 25, adf satisfies Cgy,.

Table 2. The transaction database 7 in Example 1.

Transaction ID Items in transaction

10 a,b,c.d, f
20 b,c,d, f,g. h
30 a,c.d,e, f

40 ce f, g

232 PEIL, HAN AND LAKSHMANAN

Table 3. Frequent itemsets with support threshold & = 2 in transaction database 7 in Table 2.

Length / Frequent /-itemsets

1 a,b,c,d,e, f, g

2 ac,ad, af, bc, bd, bf, cd, ce, cf, cg,df, ef, fg
3 acd, acf, adf, bcd, bef, bdf, cdf, cef, cfg

4 acdf, bedf

Table 4. The values (such as profit) of items in Example 1.

Item Value
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h —10

This example scratches the surface of a large class of useful constraints involving avg,
median, etc. as well as arithmetic. Exploiting them in mining calls for new techniques,
which is the subject of this paper.

3. Convertible constraints and their classification

Before introducing the concept of convertible constraint, we motivate it with an example.

Example 2. Suppose we wish to mine frequent itemsets over transaction database 7 in
Table 2, with the support threshold £ = 2 and with constraint C = avg(S) > 25,

The complete set of frequent itemsets satisfying C can be obtained by first mining
the frequent itemsets without using the constraint (i.e., Table 3) and then filtering out
those not satisfying the constraint. Since the constraint is neither anti-monotone, nor
monotone, nor succinct, it cannot be directly incorporated into an Apriori-style algo-
rithm. E.g., itemset fg satisfies the constraint, while its subset g and its superset dfg do
not.

If we arrange the items in value-descending order, {(a, f, g, d, b, h, c, e), we can observe
an interesting property, as follows. Writing itemsets w.r.t. this order leads to a notion of a
prefix. E.g., afd has af and a as its prefixes. Interestingly, the average of an itemset is no
more than that of its prefix, according to this order.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 233

3.1. Convertible constraints

The observation made in Example 2 motivates the following definition. We will frequently
make use of an order? over the set of all the items and assume itemsets are written according
to this order.

Definition 3.1 (Prefix itemset). Given an order R over the set of items /, an itemset
S’ = ijiy...1 is called a prefix of itemset S = iyi...i, w.rt. R, where items in both
itemsets are listed according to order R and (I < m). S’ is called a proper prefix of S if
(I < m).

We next formalize convertible constraints as follows.

Definition 3.2 (Convertible constraints). A constraint C is convertible anti-monotone pro-
vided there is an order R on items such that whenever an itemset S satisfies C, so does
any prefix of S. It is convertible monotone provided there is an order R on items such
that whenever an itemset S violates C, so does any prefix of S. A constraint is convertible
whenever it is convertible anti-monotone or monotone.

Note that any anti-monotone (resp., monotone) constraint is trivially convertible anti-
monotone (resp., convertible monotone): just pick any order on items.

Example 3. 'We show avg(S)0v where 6 € {<, >} is a convertible constraint.

Let R be the value-descending order. Given an itemset S = aja;...q; satisfying the
constraint avg(S) > v, where items in S are listed in the order R. For each prefix §' =
ay...arof S(1 <k <l),since ap > axy1 > --- > a;—1 > a;, we have avg(S’) > avg(S’' U
{ars1}) = -+ = avg(S) > v. This implies S’ also satisfies the constraint. So, constraint
avg(S) > visconvertible anti-monotone. Similarly, it can be shown that constraint avg(S) <
v is convertible monotone.

Interestingly, if the order R~' (i.e., the reversed order of R) is used, the constraint
avg(S) > v can be shown convertible monotone. We leave this as an exercise to the reader.

In summary, constraint avg(S)6v is convertible constraint. Furthermore, there exists an
order R such that the constraint is convertible anti-monotone w.r.t. R and convertible
monotone w.r.t. R~

As another example, let us examine the constraints with function sum(S).

Example 4. As shown in Table 1, constraint sum(S) < v is anti-monotone if items are all
with non-negative values. However, if items are with negative, zero or positive values, the
constraint becomes neither anti-monotone, nor monotone, nor succinct.

Interestingly, this constraint exhibits a “piecewise” convertible monotone or anti-
monotone behavior. If v > 0 in the constraint, the constraint is convertible anti-monotone
w.r.t. item value ascending order. Given an itemset S = ajay . ..q; such that sum(S) < v,
where items are listed in value ascending order. For a prefix ' = aja,...a; (1 < j <),
if a; < 0, that means a; < a, < --- < aj—; < a; < 0. So, sum(§’) < 0 < v. On

234 PEIL, HAN AND LAKSHMANAN

the other hand, if ¢; > 0, we have 0 < a; < aj41 < --- < a;. Thus, sum(S’) =
sum(S) — sum(a;j4i ...a;) < v. Therefore, sum(S’) < v in both cases, which means S’
satisfies the constraint.

If v < 0 in the constraint, it becomes convertible monotone w.r.t. item value descending
order. We leave it to the reader to verify this.

Similarly, we can also show that, if items are with negative, zero or positive values,
constraint sum(S) > v is convertible monotone w.r.t. value ascending order when v > 0,
and convertible anti-monotone w.r.t. value descending order when v < 0. O

The following lemma can be proved with a straightforward induction.

Lemma 3.1. Let C be a constraint over a set of items I.

1. C is convertible anti-monotone if and only if there exists an order R over I such that
for every itemset S and item a € I such thatVx € S,x Ra, C(S U {a}) implies C(S).

2. C is convertible monotone if and only if there exists an order R over I such that for
every itemset S and item a € I such thatVx € S, x Ra, C(S) implies C(S U {a}).

Proof: We show the first part of the lemma. The second part can be shown similarly.

= (if part) Suppose constraint C has the property that for every itemset S and itema € 1
such that item Vx € S, x Ra, C(S U{a}) implies C(S). For an itemset S = aja; ... a,,
anditsprefix S’ =aja; . .. a; (I <m),let Sy beitemsetaa; . . . a;. C(S) = C(S,,—1U{an})
= true implies C(S,,—_1) = true. By induction, we can show that C(S") = C(S;) = true.

Thus, C is convertible anti-monotone.

< (only-if part) Given a convertible anti-monotone constraint C, following the definition
of convertible anti-monotonicity, the property holds that for every itemset S and item
a € I such thatitem Vx € S, x Ra, C(S U {a}) implies C(S). O

The notion of prefix monotone functions, introduced below, is helpful in determining the
class of a constraint. We denote the set of real numbers as R.

Definition 3.3 (Prefix monotone functions). Given an order R over a set of items 7, a
function f : 2! — R is a prefix (monotonically) increasing function w.r.t. R if and only
if for every itemset S and its prefix ' w.r.t. R, £(5") < £(S). A function g : 2/ — Ris
called a prefix (monotonically) decreasing function w.r.t. R if and only if for every itemset
S and its prefix S’ w.r.t. R, g(8') > g(9).

We have the following lemma on the determination of prefix monotone functions. The
proof is similar to that of Lemma 3.1.

Lemma 3.2. Given an order R over a set of items 1,

1. afunction f : 2! — R is a prefix decreasing function w.r.t. R if and only if for every
itemset S and item a such thatVx € S,x Ra, f(S) = f(SU{a}).

2. A function g : 2! — R is a prefix increasing function w.r.t. R if and only if for every
itemset S and item a such thatVx € S,x Ra, g(S) < g(S U {a}).

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 235

Proof: We show the first part of the lemma. The second part can be proved similarly.
& Let f: 2! — Rbe aprefix decreasing function. Itemset S is a prefix of S U {a} if
Vx € S, x Ra. According to the definition of prefix decreasing function, we have f(S) >
F(SU {a)).
= Suppose function f : 2 — R has the property that for every itemset S and item
asuchthatVx € S, x Ra, f(S) > f(SU{a}). Foranitemset S = a,a; ... a, and its prefix
S =ajay...q; (I < m), we have f(S') = flaay...aq) < flaay...qaj1) < -+ <

flaiaz . ..a,) = f(S). So, f is a prefix decreasing function. O

It turns out that prefix monotone functions satisfy interesting closure properties with
arithmetic. An understanding of this would shed light on characterizing a whole class of
convertible functions involving arithmetic. The following theorem establishes the arith-
metical closure properties of prefix monotone functions. We say a function f : 2/ — R
is positive, provided VS € I : f(S) > 0.

Theorem 3.1. Let f and f' be prefix decreasing functions, and g and g’ be prefix increas-

ing functions w.r.t. an order R, respectively. Let ¢ be a positive real number.

1. Functions —f(S), ﬁ, c - g(S) and g(S) + g'(S) are prefix increasing functions. Func-
tions —g(8), ﬁ, c- f(S)and f(S)+ f/(S) are prefix decreasing functions.

2. If f and g are positive functions, then f(S) x f'(S) is prefix decreasing, and g(S) x g'(S)
is prefix increasing.

3. A constraint h(S) > v (resp., h(S) < v) is convertible anti-monotone (resp., monotone)
if and only if h is prefix decreasing. Similarly, h(S) > v (resp., h(S) < v) is convertible
monotone (resp., anti-monotone) if and only if h is prefix increasing.

Proof: The theorem follows related definitions immediately. O

Example 5. Asanillustration, notice that avg(S) is a prefix decreasing function w.r.t. value-
descending order, and avg(S) > 20 is convertible anti-monotone w.r.t. the same order. Also,
max(S) is a prefix increasing® function w.r.t. this order. From Theorem 3.1, it follows that
1/avg(S) is prefix increasing and hence max(S)/avg(S) is prefix increasing.* Consequently,
we immediately deduce that max(S)/avg(S) < v is convertible anti-monotone w.r.t. this
order.

We know from Theorem 2.1 that a succinct constraint can be expressed in terms of
conjunction and/or disjunction of anti-monotone and monotone constraints. By definition,
every monotone/anti-monotone is convertibly so. A natural question is, what is the rela-
tionship between succinct constraints and convertible constraints? The following theorem
settles this question.

Theorem 3.2. Every succinct constraint is either anti-monotone, or monotone, or con-
vertible.

Proof Sketch: The proof of the theorem is constructed by induction on the structure of
SAT¢([]) of a succinct constraint C, according to the definition of succinctness.

236 PEIL, HAN AND LAKSHMANAN

Suppose C is a succinct constraint over /, the set of items.

o Fc(I) = 2¢, where I C I. As shown in Theorem 2.1, constraint C is anti-monotone.
Interestingly, C is also convertible monotone w.r.t. order R, where Va € Ic,b € I — I¢,
bRc.

o Fc(I) = 21 U 2%, where I, I, € I. Constraint C is anti-monotone (Theorem 2.1).
However, C is not convertible monotone in this case.

o Fc(I) =2 — 2% where I, I, C I. Constraint C is convertible anti-monotone w.r.t.
order R,whereVa € I —I,,b € I — (I, —), aRb. Please note that C is also convertible
monotone w.r.t. R,

e Especially, Fe(I) =2/ =2/ —... -2l ‘where I}, ..., I, < I.Constraint C is monotone
(Theorem 2.1). O

As an example, consider a succinct constraint C whose solution space SAT¢ (/) is de-
scribed as 21 — 2% where I,, I, € I, and I, = o,,(I), p; being a selection predicate,
i = 1,2. Consider an order R such that all the items in I; — I, come before any item in
I — (I} — I), but otherwise the items are ordered arbitrarily. Then, it is easy to see that
w.r.t. R, C is convertible anti-monotone and w.r.t. R 1, it is convertible monotone.

3.2. Strongly convertible constraint

Some convertible constraints have the additional desirable property that w.r.t. an order
R they are convertible anti-monotone, while w.r.t. its inverse R~! they are convertible
monotone. E.g., avg(§) < v is convertible monotone w.r.t. value ascending order and
convertible anti-monotone w.r.t. value descending order (see also Example 3). This property
provides great flexibility in data mining query optimization.

Definition 3.4 (Strongly convertible constraint). A constraint Cy, is called a strongly con-
vertible constraint, provided there exists an order R over the set of items such that Cy, is
convertible anti-monotone w.r.t. R and convertible monotone w.r.t. R '

Notice that median(S)0v (0 € {<, >}) is also strongly convertible. Clearly, not every
convertible constraint is strongly convertible. E.g., max(S)/avg(S) < v’ is convertible
anti-monotone w.r.t. value descending order, when all the items have a non-negative value.
However, it is not convertible monotone w.r.t. value ascending order.

The following lemma links strongly convertible constraints to prefix monotone functions.

Lemma 3.3. Constraint f(S)0v is strongly convertible, if and only if there exists an
order R over the set of items such that f is a prefix decreasing function w.r.t. R and a prefix
increasing function w.r.t. R,

Proof: The lemma follows Theorem 3.1 immediately. O

For example, avg(S) and median(S) are both prefix decreasing w.r.t. value descending
order and prefix increasing w.r.t. value ascending order.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 237

convertible anti-monotone

convertible monotone

inconvertible

Figure 1. A classification of constraints and their relationships.

There still exist some constraints that cannot be pushed by item ordering. For example,
the constraint avg(S) — median(S) = 0, which requires that the median item in the itemset
is equal to the average value, does not admit any natural ordering on items w.r.t. which it is
convertible. We call such constraints inconvertible.

3.3. Summary: A classification on constraints

As a general picture, constraints (only involving aggregate functions) can be classified into
the following categories according to their interactions with the frequent itemset mining
process: anti-monotone, monotone, succinct and convertible, which in turn can be subdi-
vided into convertible anti-monotone and convertible monotone. The intersection of the
last two categories is precisely the class of strongly convertible constraints (which can be
treated either as convertible anti-monotone or monotone by ordering the items properly).
Figure 1 shows the relationship among the various classes of constraints.
Some commonly used convertible constraints are listed in Table 5.

4. Mining algorithms

In this section, we explore how to mine frequent itemsets with convertible constraints
efficiently. The general idea is to push the constraint into the mining process as deep as
possible, thereby pruning the search space.

In Section 4.1, we first argue that the Apriori algorithm cannot be extended to mining
with convertible constraints efficiently. Then, a new method is proposed by examining
an example. Section 4.2 presents the algorithm FZC4 for mining frequent itemsets with
convertible anti-monotone constraints. Algorithm FZC*, which computes the complete set
of frequent itemsets with convertible monotone constraint, is given in Section 4.3. Section
4.4 discusses mining frequent itemsets with strongly convertible constraints.

238 PEIL, HAN AND LAKSHMANAN

Table 5. Characterization of some commonly used, SQL-based convertible constraints. (+ means it depends on
the specific constraint).

Convertible Convertible Strongly

Constraint anti-monotone monotone convertible
avg(S)ov (6 € {<, =}) Yes Yes Yes
median(S)0v (6 € {<,>}) Yes Yes Yes
sum(S) <v(v>0,Va € S,ad0,0,9 € {<,>}) Yes No No
sum(S) <v (v <0,Va € S,av0,0,9 € {<,>}) No Yes No
sum(S) > v (v >0,Va € S,av0,0,9 € {<,>}) No Yes No
sum(S) > v (v <0,Va € §,av0,0,9 € {<,>}) Yes No No
f(8) = v (f is a prefix decreasing function) Yes * *
f(S) > v (f is a prefix increasing function) * Yes *
f(S) < v (f is a prefix decreasing function) * Yes *
f(S) < v (f is a prefix increasing function) Yes * *

4.1. Mining frequent itemsets with convertible constraints: An example

We first show that convertible constraints cannot be pushed deep into the Apriori-like
mining.

Remark 4.1. A convertible constraint that is neither monotone, nor anti-monotone, nor
succinct, cannot be pushed deep into the Apriori mining algorithm.

Rationale. As observed earlier for such a constraint (e.g., avg(S) < v), subsets (supersets) of
a valid itemset could well be invalid and vice versa. Thus, within the levelwise framework,
no direct pruning based on such a constraint can be made. In particular, whenever an invalid
subset is eliminated without support counting, its supersets that are not suffixes cannot be
pruned using frequency.

For example, itemset df in our running example violates the constraint avg(S) > 25.
However, an Apriori-like algorithm cannot prune such itemsets. Otherwise, its superset
adf, which satisfies the constraint, cannot be generated.

Before giving our algorithms for mining with convertible constraints, we give an overview
in the following example.

Example 6. Let us mine frequent itemsets with constraint C = avg(§) > 25 over transac-
tion database 7 in Table 2, with the support threshold & = 2. Items in every itemset are listed
in value descending order R: (a(40), f(30), g(20), d(10), b(0), h(—10), c(—20), e(—30)).
It is shown that constraint C is convertible anti-monotone w.r.t. R. The mining process is
shown in figure 2.

By scanning 7 once, we find the support counts for every item. Since & appears in only
one transaction, it is an infrequent items and is thus dropped without further consideration.
The set of frequent 1-itemsets are a, f, g, d, b, ¢ and e, listed in order R. Among them, only

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING

Tran. DB

afdbc
fgdbe
afdce
fghce

C(a)=true
C(f)=true
C(g)=true

freq. items: a, f, g, d, b,c, e

/\

R: a-f-g-d-b-c-e

C(ac)=false

a-proj. DB f-proj. DB

fdbc dbc

fdce gdbc

freq. items: f, d, d dce

C(af)=true gce i

C(ad)=true freq. items: g, d, b, c, e

C(fg)=true
C{d)=false

af-proj. DB

dc
dc

ad-proj. DB

C
C

freq. items: d, ¢
C(afd)=true
C(afc)=false

freq. items: ¢
C(adc)=false

fg-proj. DB

dbc
ce

freq. items: ¢
C(fgc)=false

Figure 2. Mining frequent itemsets satisfying constraint avg(S) > 25.

239

a and f satisfy the constraint.® Since C is a convertible anti-monotone constraint, itemsets
having g, d, b, c or e as prefix cannot satisfy the constraint. Therefore, the set of frequent

itemsets satisfying the constraint can be partitioned into two subsets:

1. The ones having itemset a as a prefix w.r.t. R, i.e., those containing item a; and

2. The ones having itemset f as a prefix w.r.t. R, i.e., those containing item f but no a.

The two subsets form two projected databases (Han et al., 2000) which are mined

respectively.

1. Find frequent itemsets satisfying the constraint and having a as a prefix. First, a
is a frequent itemset satisfying the constraint. Then, the frequent itemsets having a as
a proper prefix can be found in the subset of transactions containing a, which is called
a-projected database. Since a appears in every transaction in the a-projected database,
it is omitted. The a-projected database contains two transactions: bedf and cdef . Since
items b and e are infrequent within this projected database, neither ab nor ae can be
frequent. So, they are pruned. The frequent items in the a-projected database is f, d, c,
listed in the order R. Since ac does not satisfy the constraint, there is no need to create
an ac-projected database.

240 PEIL, HAN AND LAKSHMANAN

To check what can be mined in the a-projected database with af and ad, as prefix,
respectively, we need to construct the two projected databases and mine them. This
process is similar to the mining of a-projected databases. The af -projected database
contains two frequent items d and c, and only afd satisfies the constraint. Moreover,
since afdc does not satisfy the constraint, the process in this branch is complete. Since
af c violates the constraint, there is no need to construct a f c-projected database. The ad-
projected database contains one frequent item c, but adc does not satisfy the constraint.
Therefore, the set of frequent itemsets satisfying the constraint and having a as prefix
contains a, af, afd, and ad.

2. Find frequentitemsets satisfying the constraint and having f as a prefix. Similarly,
the f-projected database is the subset of transactions containing f, with both a and f
removed. It has four transactions: bcd, bedg, cde and ceg. The frequent items in the
projected database are g, d, b, c, e, listed in the order of R. Since only itemsets fg and
fd satisfy the constraint, we only need to explore if there is any frequent itemset with fg
or fd as aproper prefix that satisfies the constraint. The projected f g-database contains
no frequent itemset with fg as a proper prefix that satisfies the constraint. Since b is the
item immediately after d in order R, and fdb violates the constraint, any itemset with
fd as a proper prefix cannot satisfy the constraint. Thus, f and fg are the only two
frequent itemsets having f as a prefix and satisfying the constraint.

In summary, the complete set of frequent itemsets satisfying the constraint contains 6
itemsets: a, f, af, ad, afd, fg. Our new method generates and tests only a small set of
itemsets.

4.2. FIC*: Mining frequent itemsets with convertible anti-monotone constraint

Now, let us justify the correctness and completeness of the mining process in Example 6.

First, we show that the complete set of frequent itemsets satisfying a given convertible
anti-monotone constraint can be partitioned into several non-overlapping subsets. It leads
to the soundness of our algorithmic framework.

Lemmad4.1. Consider a transaction database T , a support threshold & and a convertible
anti-monotone constraint C w.r.t. an order R over a set of items I. Let ay, ay, . .., a, be
the items satisfying C. The complete set of frequent itemsets satisfying C can be partitioned
into m disjoint subsets: the jth subset (1 < j < m) contains frequent itemsets satisfying C
and having a; as a prefix.

Proof Sketch: The lemma follows on showing: (i) every frequent itemset S satisfying C
must be in the jth subset, for some j, 1 < j < m, and (ii) no two subsets overlap. O

We mine the subsets of frequent itemsets satisfying the constraint by constructing the
corresponding projected database.

Definition 4.1 (Projected database). Given a transaction database 7, an itemset « and an
order R.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 241

1. Itemset B is called the max-prefix projection of transaction (tid, I,) € 7 w.r.t. R, if and
only if (1) « € I; and B C I;; (2) « is a prefix of 8 w.r.t. R; and (3) there exists no
proper superset y of B such that y C I, and y also has « as a prefix w.r.t. R.

2. The «-projected database is the collection of max-prefix projections of transactions
containing o, w.r.t. R.

Remark 4.2. Given a transaction database 7, a support threshold & and a convertible
anti-monotone constraint C. Let o be a frequent itemset satisfying C. The complete set of
frequent itemsets satisfying C and having « as a prefix can be mined from the a-projected
database.

Rationale. To mine frequent itemsets having « as a prefix, only the transactions containing
« is needed. Furthermore, according to the definition of convertible anti-monotonicity, the
information about itemsets having o as a prefix is sufficient to serve the mining with the
constraint. That information is completely retained in the max-prefix projections. So we
have the lemma.

The mining process can be further improved by the following lemma.

Definition 4.2 (Ascending and descending orders). An order R over a set of items [is
called an ascending order for function & : 2/ — R if and only if (1) for items a and b,
h(a) < h(b) implies aRb, and (2) for itemsets o U {a} and o U {b} such that both of them
have « as a prefix and aRb, f(a U{a}) < f(a U {b}). R~ is called a descending order for
function A.

For example, it can be verified that the value ascending order is an ascending order for
function avg(S) and a descending order for function max(S)/avg(S).

Lemma 4.2. Given a convertible anti-monotone constraint C = f(S)0v (0 € {<, >})

w.r.t. ascending/descending order R over a set of items I, where f is a prefix function. Let

o be a frequent itemset satisfying C and ay, ay, . .., a, be the set of frequent items in the

a-projected database, listed in the order of R.

1. Ifitemset a U {a;} (1 <i < m)violates C, for j suchthati < j < m, itemset o U {a;}
also violates C.

2. Ifitemset a U {a;} (1 < j < m) satisfies C, but a U {a;, aj,} violates C, no frequent
itemset having a U {a;} as a proper prefix satisfies C.

Proof: The constraint C must be in one of the two forms: (1) f is a prefix ascending
function w.r.t. descending order R and C = f(S) > v or (2) f is a prefix descending
function w.r.t. ascending order R and C = f(S) < v. Here, we show the lemma holds for
the first case. The second case can be shown similarly.

Suppose f(a U {a;}) < vS. Since R is a descending order, a; Ra; implies f(aU{a;}) <
f(a U {q;}). That means itemset o U {a;} also violates C.

Alternatively, suppose f(a U {a;}) > v but f(a U{a;, a;41}) < v. For any item a4
after a; in the order of R, f(aU{aj, a;j}) < f(aU{a;, a;j41}). So,itemseta U{a;, a; i}
must also violate the constraint. O

242 PEIL, HAN AND LAKSHMANAN

Based on the above reasoning, we have the algorithm FZC* as follows for mining
Frequent Itemsets with Convertible Anti-monotone constraints.

Algorithm 1. (FZCH)

Input: a transaction database 7, a support threshold & and a convertible anti-monotone
constraint C w.r.t. an order R over a set of items /

Output: the complete set of frequent itemsets satisfying the constraint C

Method: Call fic (9, T);

Function fica(a, 7|y)

Parameters: « is the itemset as prefix and 7|, is the a-projected database.
Method:

1. Scan 7|, once, find frequent items in 7 |,,. Let I, be the set of frequent items within 7|,
such that Va € I,, C(a U {a}) = true.

2. If I, = O return, else Ya € I, output o U {a} as a frequent itemset satisfying the
constraint.

3. If Cisinform of f(S)0v where f is a prefix function and 6 € {<, >}, using Lemma 4.2
to optimize the mining by removing items b from I, such that there exists no frequent
itemset satisfying C and having « U {b} as a proper prefix.

4. Scan T, once more, Ya € I|,, generate o U {a}-projected database 7 |4u(q)-

5. For eachitem a in [|y, call fica(a U {a}, T |auta))-

Rationale. The correctness and completeness of the algorithm has been reasoned step-by-
step in this section. The efficiency of the algorithm is at that it pushes the constraint deep
into the mining process, so that we do not need to generate the complete set of frequent
itemsets in most cases. Only related frequent itemsets are identified and tested. As shown
in Example 6 and in the experimental results, the search space is decreased dramatically
when the constraint is sharp.

Based on the above reasoning, we have the following theorem.

Theorem 4.1. Given a transaction database, a support threshold and a convertible con-
straint, FICA (Algorithm 1) computes the complete set of frequent itemsets satisfying the
constraint without duplication.

4.3. FICM: Mining frequent itemsets with monotone constraints

In the last two subsections, an efficient algorithm for mining frequent itemsets with convert-
ible anti-monotone constraints is developed. Under similar spirit, an algorithm for mining
frequent itemsets with convertible monotone constraints can also be developed. Instead of
giving details of formal reasoning, we illustrate the ideas using an example and then present
the algorithm.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 243

Example 7. Let us mine frequent itemsets in transaction database 7 in Table 2 with
constraint C = avg(S) < 20. Suppose the support threshold & = 2. In this example, we use
the value descending order R exactly as is used in Example 6. Constraint C is convertible
monotone w.r.t. order R.

After one scan of transaction database 7, the set of frequent 1-itemsets is found. Among
the 7 frequent 1-itemsets, g, d, b, ¢ and e satisfy the constraint C. According to the definition
of convertible monotone constraints, frequent itemset having one of these 5 itemsets as a
prefix must also satisfy the constraint. That is, the g-, d-, b-, c- and e-projected databases can
be mined without testing constraint C, because adding smaller items will only decrease the
value of avg. But a- and f-projected databases should be mined with constraint C testing.
However, as soon as its frequent k-itemsets for any k satisfy the constraint, constraint
checking will not be needed for further mining of their projected databases.

We present the algorithm FZC™ for mining frequent itemsets with convertible monotone
constraint as follows.

Algorithm 2. (FZCM)

Input: A transaction database 7, a support threshold & and a convertible monotone con-
straint C w.r.t. an order R over a set of items /.

Output: The complete set of frequent itemsets satisfying the constraint C.

Method: Call ficy (9,7, 1);

Function ficy (o, T, check flag)

Parameters: « is the itemset as prefix, 7|, is the a-projected database, and check _flag is
the flag for constraint checking.

Method:

1. Scan 7|, once, find frequent items in 7 |,. If check_flag is 1, let I} be the set of
frequent items within 7|, such that Va € I}, C(a U {a}) = true, and I, be the set
of frequent items within 7|, such that Vb € I, C(a U {b}) = false. If check_flag is
0, let I} be the set of frequent items within 7|, and I, be ¢.

2. Va € I}, output o U {a} as a frequent itemset satisfying the constraint.

3. Scan T |, once more, Ya € I|} U I|;, generate o U {a}-projected database 7 |yujq)-

4. For each item a in I}, call ficy(e U {a},7 |auiay, 0); For each item a in 71, call
fiCM(O[U {a}, T|au{a}’ 1)’

Rationale. The correctness and completeness of the algorithm can be shown based on the
similar reasoning in Section 4.2. Here, we analyze the difference between FICM with an
Apriori-like algorithm using constraint-checking as post-processing.

Both FZCM and Apriori-like algorithms have to generate the complete set of frequent
itemsets, no matter whether the frequent itemsets satisfy the convertible monotone con-
straint. The frequent itemsets not satisfying the constraint cannot be pruned. This is the
inherent difficulty of convertible monotone constraint.

The advantage of FZCM against Apriorix-like algorithms lies in the fact that FZCM
only tests some of frequent itemsets against the constraint. Once a frequent itemset satisfies

244 PEIL, HAN AND LAKSHMANAN

the constraint, it guarantees all of frequent itemsets having it as a prefix also satisfy the
constraint. Therefore, all that testing can be saved. An Apriori-like algorithm has to check
every frequent itemset against the constraint. In the situation such that constraint testing is
costly, such as spatial constraints, the saving over constraint testing could be non-trivial.
Exploration of spatial constraints is beyond the scope of this paper.

4.4. Mining frequent itemsets with strongly convertible constraints

The main value of strong convertibility is that the constraint can be treated either as con-
vertible anti-monotone or monotone by choosing an appropriate order. The main point to
note in practice is when the constraint has a high selectivity (fewer itemsets satisfy it),
converting it into an anti-monotone constraint will yield maximum benefits by search space
pruning. When the constraint selectivity is low (and checking it is reasonably expensive),
then converting it into a monotone constraint will save considerable effort in constraint
checking. The constraint avg(S) < v is a classic example.

5. Experimental results

To evaluate the effectiveness and efficiency of the algorithms, we performed an extensive
experimental evaluation.

In this section, we report the results on a synthetic transaction database with 100 K
transactions and 10 K items. The dataset is generated by the standard procedure described
in Agrawal and Srikant (1994). In this dataset, the average transaction size and average
maximal potentially frequent itemset size are set to 25 and 20, respectively. The dataset
contains a lot of frequent itemsets with various lengths. This dataset is chosen since it is
typical in data mining performance study.

The algorithms are implemented in C. All the experiments are performed on a 233 MHz
Pentium PC with 128 MB main memory, running Microsoft Windows/NT.

To evaluate the effect of a constraint on mining frequent itemsets, we make use of
constraint selectivity, where the selectivity § of a constraint C on mining frequent itemsets
over transaction database 7 with support threshold £ is defined as

5 — # of frequent itemsets NOT satisfying C 0

of frequent itemsets

Therefore, a constraint with 0% selectivity means every frequent itemset satisfies the con-
straint, while a constraint with 100% selectivity means that the constraint cannot be satisfied
by any frequent itemset. The selectivity measure defined here is consistent with those used
in Ng et al. (1998) and Lakshmanan et al. (1999).

To facilitate the mining using projected databases, we employ a data structure called
FP-tree in the implementations of FZC* and FZCM. FP-tree is first proposed in Han et
al. (2000), and also be adopted by Pei and Han (2000) and Pei et al. (2000). It is a prefix
tree structure to record complete and compact information for frequent itemset mining. A
transaction database/projected database can be compressed into an FP-tree, while all the

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 245

consequent projected databases can be derived from it efficiently. We refer readers to Han
et al. (2000) for details about FP-tree and methods for FP-tree-based frequent itemset
mining.

Since FP-growth (Han et al., 2000) is the FP-tree-based algorithm mining frequent
itemsets and much faster than Apriori, we include it in our experiment. It is thus more
interesting to compare the performance among FZCA, FZCM, and FP-growth than taking
Apriori as the only reference method.

5.1. Evaluation of FIC*

To test the efficiency of FZC* w.r.t. constraint selectivity in mining frequent itemsets with
convertible anti-monotone constraints, a test is performed over the dataset with support
threshold £ = 0.1%. The result is shown in figure 3. Various settings are used in the
constraint for various selectivities.

As shown in figure 3, FZCA achieves an almost linear scalability with the constraint
selectivity. As the selectivity goes up, i.e., when fewer itemsets satisfying the constraint,
FIC* cuts more search space, since if there is a frequent itemset s which does not satisfy
the constraint, it means all the frequent itemsets with s as a prefix can be pruned.

We also compare the runtime of Apriori and FP-growth in the same figure. Both methods
first compute the complete set of frequent itemsets and then use the constraint as a filter.
So, their runtime is constant w.r.t. constraint selectivity. However, only when the constraint
selectivity is 0%, i.e., when every frequent itemset satisfies the constraint, does FICcA
need as same runtime as FP-growth. In all other situations, FZC* always requires less
time.

We also tested the scalability of ZZC+ with support threshold and number of transactions,
respectively. The corresponding results are shown in figures 4 and 5. From the figures, we can

180 T T T T
160
. 140 .
n
e 120 .
3
8 100 | -
_Gé 80 E
é 60 b
40 . 4
Apriori —>—
20 + FP-growth —o—
oL FICA) —- . >
0 20 40 60 80 100
Selectivity (%)

Figure 3. Scalability with constraint selectivity.

246 PEIL, HAN AND LAKSHMANAN

' FP-érowtﬁ ——
FIC§A§ 20% —A— A
FIC(A) 80% —eo—

Runtime (seconds)
n
o

30

= ‘M
10 1 1 1 1 L

01 02 03 04 05 06 0.7 08 O. 1
Support threshold (%)

Figure 4. Scalability with support threshold.

900
800
700
600
500
400
300

200
100 ¢ a
04 I 1 1 1 1 1 1 1

100 200 300 400 500 600 700 800 900 1000
Number of transations (thousands)

F'P-grc')wth o
FIC(A) 20% —a—
FIC(A) 80% —e—

Runtime (seconds)

Figure 5. Scalability with number of transactions.

see that FZC* is scalable in both cases. Furthermore, the higher the constraint selectivity,
the more scalable FZC is. This can be explained by the fact that FZC* always cuts more
search spaces using constraints with higher selectivity.

5.2. Evaluation of FICM

As analyzed before, convertible monotone constraint can be used to save the cost of con-
straint checking, but it cannot cut the search space of frequent itemsets. In our experiments,
since we use relatively simple constraints, such as those involving avg and sum, the cost
of constraint checking is CPU-bounded. However, the cost of the whole frequent itemset

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 247

160000 T T T T
@ 140000 R
1]
£ 120000 |- 1
£
S 100000 - _
2
G 80000 - .
o
S 60000 -
2
€ 40000 - .
=}
< 20000 - AprlorllFP-growth ——
0 . IC(M) ——
0 20 40 60 80 100

Selectivity (%)

Figure 6. Scalability with constraint selectivity.

mining process is I/O-bounded. This makes the effect of pushing convertible monotone
constraint into the mining process hard to be observed from runtime reduction. In our
experiments, FZC™ achieves less than 3% runtime benefit in most cases.

However, if we look at the number of constraint tests performed, the advantage of FZC M
can be evaluated objectively. FZC™ can save a lot of effort on constraint testing. Therefore,
in the experiments about F' 7CM, the number of constraint tests is used as the performance
measure.

We test the scalability of FZCM with constraint selectivity in mining frequent itemsets
with convertible monotone constraint. The result is shown in figure 6, which indicates that
FICM has a linear scalability. When the constraint selectivity is low, i.e., most frequent
itemsets can pass the constraint checking, most of constraint tests can be saved. This is be-
cause once a frequent itemset satisfies a convertible monotone constraint, every subsequent
frequent itemset derived from corresponding projected database has that frequent itemset
as a prefix and thus satisfies the constraint, too.

We also tested the scalability of FZC™ with support threshold. The result is shown in
figure 7. The figure shows that ZZCM is scalable. Furthermore, the lower the constraint
selectivity, the better the scalability FZCM is.

In summary, our experimental results show that the method proposed in this paper is scal-
able for mining frequent itemsets with convertible constraints in large transaction databases.
The experimental results strongly support our theoretical analysis.

6. Discussions: Mining frequent itemsets with multiple convertible constraints

We have studied the push of single convertible constraints into frequent itemset mining.

“Can we push multiple constraints deep into the frequent pattern mining process?”
Multiple constraints in a mining query may belong to the same category (e.g. all are anti-

monotone) or to different categories. Moreover, different constraints may be on different

248 PEIL, HAN AND LAKSHMANAN

160000 T T T T T T T T
FP-growth —o—
140000 FIC(M) 20% —a— -
4 FIC(M) 80% —e&—
120000
100000
80000
60000
40000 |

20000

Number of constraint tests

0 L :
0.1 0.2 0.3 04 05 06 0.7 08 O. 1
Support threshold (%)

Figure 7. Scalability with support threshold.

properties of items (e.g. some could be on item price, others on sales profits, the number of
items, etc.).

As shown in our previous analysis, unlike anti-monotone, monotone and succinct con-
straints, convertible constraints can be mined only by ordering items properly. However,
different constraints may require different or even conflicting item ordering. The question
is how to deal with this nicely. In the following, we refer to a constraint with a high (low)
selectivity as a sharp (blunt) constraint.

In the sequel, we consider mining frequent itemsets with a constraint C; o C,, where both
C; and C; are convertible constraints, and o € {A, V}.

Case 1. There exists an order R such that both C, and C;, are convertible w.r.t. R.In
such a case, there is no conflict between the two convertible constraints. So, we can push
both constraints into the mining process using the order R. We suggest some heuristics
as shown in Table 6.

Case 2. There exists a conflict on the order of items. Suppose C; requires R and C;
requires R, and R and R, is incompatible. In such situations, we should try to satisfy
one constraint at first, and then using the order for the other constraint to mine frequent
itemsets in the corresponding projected database. The strategies are shown in Table 7.

Interested readers may verify the strategies in Tables 6 and 7 with the similar reasoning
as provided in Section 4. We need ways to estimate the selectivities of constraints. In
practice, methods such as sampling and business background knowledge often provide
useful estimation. Notice that queries may contain an anti-monotone or monotone constraint
together with a convertible constraint. Since an anti-monotone or monotone constraint does
not impose requirements on item ordering, such a constraint can be treated similarly as
Case 1 (Table 6). Also, this discussion can be extended to the cases when there are more
than two constraints.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 249

Table 6. Strategies for mining with multiple convertible constraints without conflict on item ordering.

Categories of constraints

CivVv(Cy

CiANCy

Both are convertible
anti-monotone

Both are convertible
monotone

One is convertible
monotone, while the
other is convertible
anti-monotone

Test the blunt constraint first. Only
for itemsets violating both C and
C3, the corresponding projected
database can be pruned.

Test the blunt constraint first. Once
an itemset satisfies either
constraint, all the follow-up
testing can be waived.

Test the convertible monotone one
first. If it is satisfied, the
following-up testing can be
waived.

Test the sharp constraint first. For
itemsets violating either
constraint, their projected
database can be pruned.

Test the sharp constraint first. Only
when an itemset satisfies both
constraints, can all the
following-up testing be waived.

Test the convertible anti-monotone
constraint first. If it is violated,
the corresponding projected
database can be pruned. The
convertible anti-monotone
constraint-checking has to be
done all the time, even when the
convertible monotone one is
satisfied/waived.

Table 7. Strategies for mining with multiple convertible constraints with conflict on item ordering.

Categories of constraints

CiVv(Cy

CiANCy

Both are convertible
anti-monotone

Both are convertible
monotone

One is convertible
monotone, while the
other is convertible
anti-monotone

Test the blunt constraint, say C, first,

using order R1. When a frequent
itemset « violates C, mine
frequent itemsets B in a-projected
database, using R, such that @ U B
satisfies C».

Test the blunt constraint, say C, first,

using order 7%1. When a frequent
itemset « violates C, mine
frequent itemsets S in a-projected
database, using R, such that @ U 8
satisfies C.

Test the convertible monotone one,

say Cq, first, using R . If satisfied,
the follow-up testing can be waived.
In the a-projected database such
that « violates C, mine frequent
itemsets B using R such thate U 8
satisfies C».

Test the sharp constraint, say Cj,
using order R, all the time.
Use C; as a post-filter.

Test the sharp constraint, say Cj,
using order R first. When a
frequent itemset « satisfies C,
mine frequent itemsets B in
a-projected database, using Ro,
such that o U 8 satisfies C».

Test the convertible
anti-monotone constraint first.
If it is violated, corresponding
projected database can be
pruned. Use C; as a post-filter.

250 PEIL, HAN AND LAKSHMANAN

7. Conclusions

Although there have been interesting studies, such as (Ng et al., 1998; Lakshmanan et al.,
1999; Grahne et al., 2000), on mining frequent patterns with constraints, constraints in-
volving holistic functions such as median, algebraic functions such as avg, or even those
involving distributive functions like sum over sets with positive and negative item values are
difficult to incorporate in an optimization process in frequent itemset mining. The reason is
such constraints do not exhibit nice properties like monotonicity, etc. A main contribution of
this paper is showing that by imposing an appropriate order on items, such tough constraints
can be converted into ones that possess monotone behavior. To this end, we made a de-
tailed analysis and classification of the so-called convertible constraints. We characterized
them using prefix monotone functions and established their arithmetical closure proper-
ties. As a byproduct, we shed light on the overall picture of various classes of constraints
that can be optimized in frequent set mining. While convertible constraints cannot be liter-
ally incorporated into an Apriori-style algorithm, they can be readily incorporated into the
FP-growth algorithm. Our experiments show the effectiveness of the algorithms developed.

We have been working on a systematic implementation of constraint-based frequent
pattern mining in a data mining system. More experiments are needed to understand how
best to handle multiple constraints. An open issue is given an arbitrary constraint, how can
we quickly check if it is (strongly) convertible. We are also exploring the use of constraints
in clustering.

Notes

1. For brevity, we show a small subset of representative constraints, involving aggregates. See Ng et al. (1998)
and Lakshmanan et al. (1999) for more details.

. Unless otherwise stated, every order used in this paper is assumed to be total over the set of items.

. Itis also prefix decreasing w.r.t. this order.

. Assuming all the items have non-negative values.

. It says the proportion of the max price of any item in the itemset over the average price of the items in the set
cannot go over certain limit.

6. The fact that itemset g does not satisfy the constraint implies none of any I-itemsets after g in order R can

satisfy the constraint avg.

Do WwW N

References

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proc. 1994 Int. Conf. Very
Large Data Bases (VLDB’94), Santiago, Chile, pp. 487—499.

Agrawal, R. and Srikant, R. 1995. Mining sequential patterns. In Proc. 1995 Int. Conf. Data Engineering (ICDE’95),
Taipei, Taiwan, pp. 3—14.

Bayardo, R.J. 1998. Efficiently mining long patterns from databases. In Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’98), Seattle, WA, pp. 85-93.

Bayardo, R.J., Agrawal, R., and Gunopulos, D. 1999. Constraint-based rule mining on large, dense data sets. In
Proc. 1999 Int. Conf. Data Engineering (ICDE’99), Sydney, Australia, pp. 188-197.

Brin, S., Motwani, R., and Silverstein, C. 1997. Beyond market basket: Generalizing association rules to cor-
relations. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’97), Tucson, Arizona,
pp. 265-276.

PUSHING CONVERTIBLE CONSTRAINTS IN FREQUENT ITEMSET MINING 251

Dong, G. and Li, J. 1999. Efficient mining of emerging patterns: Discovering trends and differences. In Proc.
1999 Int. Conf. Knowledge Discovery and Data Mining (KDD’99), San Diego, CA, pp. 43-52.

Garofalakis, M., Rastogi, R., and Shim, K. 1999. SPIRIT: Sequential pattern mining with regular expres-
sion constraints. In Proc. 1999 Int. Conf. Very Large Data Bases (VLDB’99), Edinburgh, UK, pp. 223-
234.

Grahne, G., Lakshmanan, L., and Wang, X. 2000. Efficient mining of constrained correlated sets. In Proc. 2000
Int. Conf. Data Engineering (ICDE’00), San Diego, CA, pp. 512-521.

Han, J., Dong, G., and Yin, Y. 1999. Efficient mining of partial periodic patterns in time series database. In Proc.
1999 Int. Conf. Data Engineering (ICDE’99), Sydney, Australia, pp. 106—115.

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In Proc. 2000 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD’00), Dallas, TX, pp. 1-12.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A.l. 1994. Finding interesting rules
from large sets of discovered association rules. In Proc. 3rd Int. Conf. Information and Knowledge Management,
Gaithersburg, Maryland, pp. 401-408.

Lakshmanan, L.V.S., Ng, R., Han, J., and Pang, A. 1999. Optimization of constrained frequent set queries with 2-
variable constraints. In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), Philadelphia,
PA, pp. 157-168.

Lent, B., Swami, A., and Widom, J. 1997. Clustering association rules. In Proc. 1997 Int. Conf. Data Engineering
(ICDE’97), Birmingham, England, pp. 220-231.

Mannila, H., Toivonen, H., and Verkamo, A.I. 1994. Efficient algorithms for discovering association rules. In Proc.
AAAT’94 Workshop Knowledge Discovery in Databases (KDD’94), Seattle, WA, pp. 181-192.

Mannila, H., Toivonen, H., and Verkamo, A.I. 1997. Discovery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1:259-289.

Ng, R., Lakshmanan, L.V.S., Han, J., and Pang, A. 1998. Exploratory mining and pruning optimizations of
constrained associations rules. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98),
Seattle, WA, pp. 13-24.

Pei, J. and Han, J. 2000. Can we push more constraints into frequent pattern mining? In Proc. 2000 ACM SIGKDD
Int. Conf. Knowledge Discovery in Databases (KDD’00), Boston, MA, pp. 350-354.

Pei, J., Han, J., and Lakshmanan, L.V.S. 2001. Mining frequent itemsets with convertible constraints. In Proc.
2001 Int. Conf. Data Engineering (ICDE’01), Heidelberg, Germany, pp. 433-332.

Pei, J., Han, J., and Mao, R. 2000. CLOSET: An efficient algorithm for mining frequent closed itemsets. In
Proc. 2000 ACM-SIGMOD Int. Workshop Data Mining and Knowledge Discovery (DMKD’00), Dallas, TX,
pp- 11-20.

Pei, J., Han, J., and Wang, W. 2002. Constraint-based sequential pattern mining in large databases. In Proc. 2002
Int. Conf. on Information and Knowledge Management (CIKM’02), McLean, VA.

Rymon, R. 1992. Search through systematic set enumeration. In Proc. 1992 Int. Conf. Principle of Knowledge
Representation and Reasoning (KR’92), Cambridge, MA, pp. 539-550.

Silverstein, C., Brin, S., Motwani, R., and Ullman, J. 1998. Scalable techniques for mining causal structures. In
Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), New York, NY, pp. 594-605.

Srikant, R., Vu, Q., and Agrawal, R. 1997. Mining association rules with item constraints. In Proc. 1997 Int. Conf.
Knowledge Discovery and Data Mining (KDD’97), Newport Beach, CA, pp. 67-73.

Webb, G.I. 1995. Opus: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence
Research, 3:431-465.

Jian Pei received the Bachelor of Engineering and the Master of Engineering degrees, both in Computer Science,
from Shanghai Jiao Tong University, China, in 1991 and 1993, respectively, and the Ph.D. degree in Computing
Science from Simon Fraser University, Canada, in 2002. He is currently an Assistant Professor of Computer Science
and Engineering, and also a participating faculty in the Center of Unified Biometrics and Sensors (CUBS), the State
University of New York at Buffalo, USA. His research interests include data mining, data warehousing, online
analytical processing, database systems, and bio-informatics. His current research is supported in part by the
National Science Foundation (NSF). He has published over 40 research papers in refereed journals, conferences,
and workshops. He has served in the program committees and organization committees of over 30 international

252 PEIL, HAN AND LAKSHMANAN

conferences and workshops. He is an associate editor of the ACM SIGMOD Digital Symposium Collection, and
has been a reviewer for some leading academic journals including ACM and IEEE Transactions. He is a member
of the ACM, the ACM SIGMOD, the ACM SIGKDD and the IEEE Computer Society.

Jiawei Han, Professor, Department of Computer Science, University of Illinois at Urbana-Champaign. Previously,
he was an Endowed University Professor at Simon Fraser University, Canada. He has been working on research
into data mining, data warehousing, database systems, spatial databases, deductive and object-oriented databases,
Web databases, bio-medical databases, etc. with over 150 journal and conference publications. He has chaired
or served in many program committees of international conferences and workshops, including 2001 and 2002
SIAM-Data Mining Conference (PC co-chair), 2002 International Conference on Data Engineering (PC vice-
chair), ACM SIGKDD conferences (2001 best paper award chair, 2002 student award chair), 2002 and 2003 ACM
SIGMOD conference (year 2000 demo/exhibit program chair), etc. He also served or is serving on the editorial
boards for Data Mining and Knowledge Discovery: An International Journal, IEEE Transactions on Knowledge
and Data Engineering, and Journal of Intelligent Information Systems. He has also been serving on the Board
of Directors for the Executive Committee of ACM Special Interest Group on Knowledge Discovery and Data
Mining (SIGKDD). His textbook “Data Mining: Concepts and Techniques” (Morgan Kaufmann, 2001) has been
popularly used for data mining courses in many universities.

Laks V.S. Lakshmanan is a Professor of Computer Science at the University of British Columbia, Vancouver,
Canada. He obtained his Bachelor’s from the A.C. College of Engineering and Technology, Karaikudi, and his
Master’s and Ph.D. from the Indian Institute of Science, Bangalore, India. He was a postdoc at the University
of Toronto for two years. His research interests span a wide spectrum of topics in Database Systems and related
areas, including: relational and object-oriented databases, advanced data models for novel applications, OLAP and
data warehousing, database mining, information integration, semi-structured data and XML, directory-enabled
networks, and querying the WWW. A common theme underlying his research is to model problems not traditionally
viewed as standard database problems and bring database technology to bear on them, thus pushing the frontiers of
database technology. He has been a consultant to H.P. Labs, Palo Alto, CA, and AT&T Labs Research, Florham Park,
NJ, and a visiting professor at the Limburg Universitair Centrum, Limburg, Belgium, IASI, CNR, Rome, Italy, and
the Indian Institute of Science, Bangalore, India. His research is funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Network of Centres of Excellence/Institute of Robotics and Intelligent
Systems (NCE/IRIS), and Mathematics of Information Technology and Complex Systems (MITACS). Laks has
served in the program committees of many top database conferences, including SIGMOD, PODS, SIGKDD,
EDBT, and ICDE, and has edited/co-edited several journal special issues. He has published extensively in the
standard top database conferences and journals. His honors include a Best Student Paper Award in ICDT, Rome,
Ttaly (1986) and a Best Ph.D. Thesis Gold Medal, IISc, Bangalore (1990). He is currently a Research Fellow of
the BC Advanced Systems Institute. Laks serves on the editorial boards of IEEE Transactions on Knowledge and
Data Engineering and ACM SIGMOD Digital Symposium Collection (DiSC). Prior to joining UBC, he was a
visiting professor at IIT-Bombay and an associate professor at Concordia University, Montreal.

