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S U M M A R Y

Template matching has been widely applied in the detection of earthquakes and other seismic

events due to its power in detecting weak signals. Recent studies using synthetics have shown

that application of template matching to large-N arrays can potentially detect earthquakes

substantially below the noise level. Here we apply template matching to the distributed acoustic

sensing (DAS) data recorded in the Brady Hot Springs geothermal field, Nevada. Using 5

catalogued events, we detect 116 events and find 68 of them well below the noise level.

We confirm 112 events are true earthquakes by examining the patterns of their sensor-to-

sensor cross-correlation sections. This demonstrates that the combination of DAS and template

matching has capability to detect microseismicity below the noise level, which is unusual for

conventional seismic arrays and methods. With the updated catalogue, we observe a surge

of earthquakes during the shutdown of a geothermal power plant nearby. In addition, the

rapid increases in the downhole pressure record coincide with intense swarms of earthquakes.

These observations show a strong correlation between the seismicity frequencies and the

downhole pressure changes. Finally, we investigate several factors that may affect the detection

performance and compare different strategies for spatial down-sampling, in order to provide

helpful insights for future large-N design and data processing.

Key words: Earthquake source observations; Induced seismicity; Seismic instruments.

1 I N T RO D U C T I O N

Template matching is a widely used technique to detect tectonic

tremor and small earthquakes (e.g. Shelly et al. 2007; Peng & Zhao

2009). It correlates pre-determined events with continuous record-

ings to detect events that are similar to the templates (Gibbons &

Ringdal 2006). It has been mostly applied to seismic arrays with

tens of seismometers at interstation spacing from kilometres to tens

of kilometres, commonly achieving a factor of 5–10 increase in

the amount of earthquake detections (Shelly et al. 2007; Peng &

Zhao 2009; Meng et al. 2013). In recent years, nodal arrays and

distributed acoustic sensing (DAS) significantly increase the num-

ber and density of seismic arrays at local scale (i.e. array aperture

at 1–10 km). These so-called large-N arrays typically consist of

hundreds to thousands of sensors with metre to hundred-metre in-

terstation spacing. Compared to traditional arrays, large-N arrays

provide unprecedented capability for detection of small earthquakes

and other sources (Inbal et al. 2015, 2016; Riahi & Gerstoft 2015;

Li et al. 2018).

Recently, Li et al. (2015, 2018) performed a series of synthetic

tests of template matching on the 5200-sensor Long Beach nodal

array geometry. Specifically, they evaluated detection performance

as a function of signal-to-noise ratio (SNR) using local M 1–2

earthquakes within 50 km from the array, and used synthetics to

demonstrate that earthquakes remain detectable at SNR down to

10−5. This detectability for earthquakes far below noise level is

rarely seen with regular seismic arrays and conventional detection

methods (Li et al. 2018). Based on these findings, we ask the fol-

lowing questions: (1) with extremely dense arrays, can we push the

limit of detection to earthquakes well below noise level in real data?

(2) If such events are detected, how can we verify them? (3) Is there

an optimal choice of array density, in consideration of the trade-off

between detection performance and project budget? Especially, we

would like to avoid excessively dense sensors while maintain desired

detection performance. To answer these questions, we investigate

the performance of template matching on a DAS array deployed

recently in the Brady Hot Springs geothermal field in Nevada (Feigl

& PoroTomo Team 2017).

DAS is an emerging technology that draws increasing attention

in exploration and earthquake seismology, due to its capability to

deploy a massive number of sensors, convenient data acquisition

and spatially scalable distributed measurement (Daley et al. 2013;

Mateeva et al. 2013; Feigl & PoroTomo Team 2017; Hornman 2017;

Lindsey et al. 2017; Zeng et al. 2017). DAS transforms every metre
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of a telecommunication optical fibre into a linear strainmeter us-

ing an optoelectronic interrogator unit. The interrogator sends laser

pulses into the fibre-optic cable and measures strain (or strain rate)

along the fibre based on the distortion in backscattered light. DAS

measures strain over a gauge length, whereas seismometers measure

velocity/acceleration at a point. In addition, DAS data have some

characteristics that are distinct from typical seismic waveforms that

seismologists are familiar with (Dou et al. 2017). For example, DAS

measures the linear strain or strain rate with only horizontal com-

ponent along the fibre. Therefore, they have a direction-dependent

sensitivity to different seismic waves, for example, P, S and surface

waves (Benioff 1935; Hornman 2017; Linsey et al. 2017; Wang

et al. 2018). Besides, the ground coupling may not be as strong as

for traditional seismometers and its effects on the fidelity of wave-

forms and amplitudes are still unclear (Hornman 2017; Martin et al.

2017).

Successful template matching application requires high wave-

form repeatability on DAS. Perfect repeatability means that events

at different times but with identical source mechanisms and prop-

agation paths should have the same instrument recordings. Biondi

et al. (2017) and Martin et al. (2017) examined the recordings of two

quarry blasts and an earthquake doublet on the Stanford DAS array

and found their DAS waveforms have comparable repeatability to

that of broad-band seismometers. On this basis, we apply template

matching to two weeks of DAS data collected by the PoroTomo

project in the Brady geothermal field in Nevada (Feigl & PoroTomo

Team 2017). Note that here the DAS data are strain rate with only

horizontal components (along the fibre strikes). Using five cata-

logued earthquakes as templates, we detect many more events and

find that more than half of them are hardly discerned on the DAS

waveforms. We demonstrate that they are real earthquakes below

noise level instead of false detections. Finally, we explore the de-

tection performance as a function of available sensors and different

spatial down-sampling strategies, in order to provide a reference for

future design of DAS arrays.

2 DATA

The Brady Hot Springs geothermal field in northwestern Nevada

(Fig. 1) is a transtensional tectonic regime with SW–NE striking

normal fault systems. Recent studies show that the fault systems

not only create damage zones that form the geothermal resources,

but also act as conduits that link the shallow aquifers to the geother-

mal reservoir (Davatzes et al. 2013; Ali et al. 2016; Laboso &

Davatzes 2016; Siler et al. 2016). A geothermal power plant has

been operating in this area since 1992 (Ettinger & Brugman 1992).

When the plant operates, underground superheated brine is carried

up to release geothermal energy and drive the plant turbines, and

then the cooled water is injected back to the subsurface.

In March 2016, the PoroTomo project (Feigl & PoroTomo Team

2017) was carried out in this area, with the goal to characterize

the reservoir porosity properties in the geothermal system. The

project deployed multiple technologies and collected a variety of

data sets including active seismic sources, surface seismometers,

DAS, and distributed temperature sensing (DTS), pressure sensors

in observation wells, GPS, and images for interferometric synthetic

aperture radar (Feigl & PoroTomo Team 2017).

The experiment included four different intentionally manipulated

stages of the power plant operation. The four stages were described

by Cardiff et al. (2018) and briefly summarized here: (1) March

11–13, normal operation, during which the production and injec-

tion wells were all working as normal. (2) March 14–17, shutdown,

during which the power plant was halted and both production and

injection stopped. (3) March 18–21, increased infield injection, dur-

ing which the production and infield injection wells worked whereas

far-field injection closed, which results in an increased amount of

cooled water injected near the site. (4) March 22–25, resume normal

operation. Readers are referred to fig. 1 in Cardiff et al. (2018) for

locations of injection and production wells.

In this study, we primarily focus on the DAS array. It was de-

ployed during 2016 March 3–26, as a ‘fishbone’ shape with a

maximal aperture of ∼1.5 km in the NE–SW direction, buried

at 0.5 m in depth. It uses an ‘intelligent’ DAS (iDASTM) system

by Silixa Ltd, and consists of 8720 sensors with spatial sampling

interval at 1 m. The raw DAS data were recorded at 1000 Hz

(https://gdr.openei.org/submissions/980) and resampled to 100 Hz

(https://gdr.openei.org/submissions/993). The gauge length is 10 m.

During the PoroTomo campaign, there are five earthquakes deter-

mined by a permanent seismic network installed in 2010 in the

region (Nathwani et al. 2011). These earthquakes have magnitude

around 0 and are 750–1250 m below the ground surface. Fig. 1(b)

shows the DAS waveforms of one of the five template earthquakes

(Supporting Information Figs S1–S4 show waveforms of the other

four events). We use them as templates to search for similar events

in the continuous DAS data. One of the core questions we ask in

this study is, with an improved catalogue, whether correlation exists

between the microseismicity and the plant operation stages.

3 M E T H O D

Template matching first performs cross correlation on a sensor-to-

sensor basis and then stacks all individual cross correlations into a

network mean (Gibbons & Ringdal 2006). In this study, cross corre-

lation is implemented in time domain. Prior to template matching,

we perform simple preprocessing to the DAS data: remove the mean

and filter the DAS waveforms at 1–15 Hz in order to retain the dom-

inant frequency content of local earthquakes. Due to the coupling

with the ground and the fibre orientation, the SNR varies signifi-

cantly for different sensors (e.g. Fig. 1b). Therefore, we only use

the recordings with SNR > 10, which is defined as signal to noise

power ratio on the bandpass filtered waveforms. The noise and sig-

nal windows are 3 s before and after the first arrival, respectively.

We cut 6-s waveforms starting from the event origin time to include

the P, S and coda waves. Note that the P and S waves are hardly

separable due to short source–receiver distance (Fig. 1b).

After obtaining the stacked network mean cross correlation, we

perform peak detection using a threshold of nine times Median

Absolute Deviation (MAD) above noise level, where MAD = me-

dian (|CC—median(CC)|) and CC is the mean cross correlation.

MAD measures the statistical fluctuation of the background noise.

It is more resilient to outliers than standard deviation and has been

widely used for outlier detection (e.g. Shelly et al. 2007). The de-

tection significance of a peak can be quantified as eq. (1):

Detection Significance =
Peak − Median

MAD
. (1)

By this definition, a peak with significance ≥9 is considered as a

positive detection. We choose 9 as a threshold because the probabil-

ity of exceeding 9 MAD for a normally distributed random variable

is 5.9e−10, corresponding to less than one expected false detection

during the two-week study period. We then remove the duplicated

detections by different templates and merge the detections that are
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Earthquake detection with DAS & template matching 1585

Figure 1. (a) Map of template earthquakes (red stars), distributed acoustic sensing (DAS) array (blue line) and the observation well 56A-1 (red cross) in the

Brady Hot Springs geothermal field. The red dot in the inset marks the location of the Brady Hot Springs geothermal field. (b) Bandpass filtered 1–15 Hz DAS

waveforms with mean removed for an M -0.483 catalogue earthquake, which occurred at 39.79442◦ N, 119.02162◦ W with depth at 426 m above sea level, on

UTC 08:36:26.61, 2016 March 14. The red dots on the left indicate the sensors that are included in template matching (signal-to-noise ratio > 10). Each trace

on individual sensors is normalized by the maximum of that trace. The colour shows the amplitude after normalization and is clipped at [−0.5, 0.5].
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1586 Z. Li and Z. Zhan

Figure 2. DAS waveforms of representative examples at different levels of visibility. From top to bottom are: (a) visible on most of the sensors; (b) visible on

part of the sensors; (c) invisible on almost all the sensors. The black curves in the upper panels are the mean stack of sensor-to-sensor cross correlations after

time-shifting to the origin time. The black vertical dashed lines mark the event origin times. Note that each waveform on individual sensors is normalized by

its maximum.
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Earthquake detection with DAS & template matching 1587

Figure 3. Cross-correlation section of a high-significance low-SNR detection (Fig. 2c) before time shifting. Sensors excluded in template matching are left

blank. The dashed gray line marks the predicted arrivals of the template event, assuming a homogenous velocity of 4 km s−1. The red circles mark the sensors

which have the highest cross-correlation values. Each cross correlation on individual sensors is normalized by its maximum.

Figure 4. Histograms of detection significance at three levels of visibility on (a) DAS waveforms and (b) cross correlations. The bar in each bin is stacked

from bottom to top with the numbers of events in ‘visible’ (blue), ‘visible on part’ (yellow) and ‘invisible’ (red) levels. The number annotated above a bin is

the count of all the detections in that bin. Note that most the detections invisible on DAS waveforms become visible or partly visible on cross correlations.

less than 3 s apart. Due to the poor azimuth coverage (Fig. 1a), we

do not relocate the newly detected events in this study.

4 R E S U LT S

4.1 Detection results and validation

Template matching produces 116 detections with the threshold at 9

MAD (Supporting Information Table S1). To check the detection

quality, we plot out the waveform sections for each detection. Then

we visually inspect all the waveform sections, and categorize the

detections into three levels of visibility: SNR > 1 on most of the

sensors (‘visible’), SNR > 1 on part of the sensors (‘visible on part’,

usually on those close to the source), SNR < 1 on almost all the

sensors (‘invisible’). Fig. 2 shows representative examples for each

level. After the classification, there are 21, 27 and 68 detections

belonging to the ‘visible’, ‘visible on part’ and ‘invisible’ class,

respectively (see Supporting Information Table S1 for the waveform

visibility class for each event).

It is somewhat surprising that more than a half of the detections

are totally invisible on the DAS waveforms. As noted above, we

expect less than one false detection with the threshold at 9 MAD,

which suggests most of the detections should be real earthquakes. To

validate the detections, we check the pattern of cross correlations on
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1588 Z. Li and Z. Zhan

Figure 5. Earthquake sequence detected by template matching and comparison with downhole pressure measurement. (a) Downhole pressure measurement at

the observation well 56A-1. The dashed grey vertical lines divide different operation stages. (b) Earthquake sequence during the two-week DAS deployment

period. Stars, diamonds, and circles are template events, newly detected events visible and partly visible on cross correlations, respectively. The red curve

represents the cumulative number of events over time. (c) Zoom-in plot of the earthquake swarm in (b).

individual sensors. We plot out the sensor–sensor cross-correlation

sections similar to those of waveforms, and check the amplitude and

moveouts of the high cross-correlation values (Fig. 3). As Fig. 3

shows, although invisible on DAS waveforms, the events can be

revealed from their cross-correlation sections. The sensors with

the shortest distance to template events (i.e. sensors around 3000

or 8720 as marked in Fig. 1) have the highest cross-correlation

values, compared to the sensors that are farther away. In addition, the

timings of the peaks are consistent with predicted travel times from

template event locations (Fig. 3). These suggest that the detected

events originated from locations near or identical to the template

events.

With these features in mind, we visually examine the images

of cross correlations for each detected event. We categorize the

visibility level on cross correlations, following the same classifica-

tion criteria for waveform images. We find 61, 51 and 4 events on

cross correlations belong to ‘visible’, ‘visible on part’ and ‘invis-

ible’ levels, respectively (see Supporting Information Fig. S5 for

representative examples; see Supporting Information Table S1 for

the cross-correlation visibility class for each event). This suggests
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Earthquake detection with DAS & template matching 1589

Figure 6. Normalized detection significance, defined as (Peak-Median)/MAD and normalized by the event maximum and minimum, as a function of sensor

number. Each coloured curve represents the normalized detection significance of an event using different numbers of sensors. At a given number of sensors,

we bootstrap 100 times and measure their average peak significance. The thick black curve represents the mean of the 112 events. The cyan dash bar marks the

range of the number of sensors needed to achieve significance level at 90 per cent of that using the entire array.

96.6 per cent of the events are visible at least on part of their cross

correlations, in comparison to only 41.4 per cent on the DAS wave-

forms. Only four of the newly detected events are invisible on cross

correlations and thus cannot be verified in this way. These events

are excluded in the later discussions. Fig. 4 shows that overall the

visibility on cross correlations is significantly enhanced compared

to DAS waveforms. In particular, there are 64 events that have DAS

waveforms below noise level but become visible on their cross cor-

relations.

4.2 Earthquake sequence

By plotting the verified events with time, we observe a striking cor-

relation between the seismicity and the power plant operation stages

(Fig. 5). All the earthquakes occurred within the shutdown period

of the geothermal power plant, in stark contrast with the quiescence

before and after. The concentration of seismicity during the shut-

down period also serves as strong evidence that these detections are

real earthquakes controlled by the undergoing shutdown process,

given that the background noise level and instrument sensitivity

remained stable throughout the operation stages. If these detections

were caused by random noise fluctuations, they would have been

distributed over the study period (336 hr), rather than concentrated

in the relatively short shutdown period (5 hr). By comparing the

event timings with the vibroseis experiments during the PoroTomo

Project, we also rule out the possibility that the vibroseis signals

are falsely detected as ‘earthquakes’ (Supporting Information Fig.

S6). Therefore, they are more likely controlled by a physical mech-

anism: during the shutdown, the extraction cessation leads to the

decrease in effective stress on faults, which favours the occurrence

of seismicity (Cardiff et al. 2018).

The shutdown began at 2016 March 13 19:15 UTC, and the earli-

est event identified from this study occurred 2 hr later at 21:03 UTC

(Fig. 5c), which was 9.5 hr earlier than the first catalogued event.

This suggests faster propagation speed of pressure/stress change

than what was expected from the original catalogue. At the be-

ginning of the shutdown, the downhole pressure at Well 56A-1

increased rapidly and an intense earthquake swarm with 85 events

occurred (Figs 5a and b). The swarm lasted for about 18 hr. As the

increase of downhole pressure slowed down, the seismicity became

less and less active. In the increased injection stage, although the

pressure maintains at a relatively high level, there is no seismicity

observed.

5 D I S C U S S I O N

5.1 Temporal evolution of seismicity and control

mechanism

We applied template matching to detect small earthquakes in the

Brady geothermal field, using two-week data recorded by the 8720-

sensor DAS array. Based on the five catalogued events, we detected

116 events, 112 of which can be verified as real earthquakes from

their cross-correlation sections. It is noteworthy that more than a

half of them are below noise level. Cardiff et al. (2018) compared

the long-term and short-term earthquake catalogues with pumping

record and found that most of the earthquakes in the Brady geother-

mal field occurred during the shutdowns in pumping. With more

small earthquakes detected in this study, we confirm this correla-

tion much more confidently (Fig. 5). The quiescence in the normal

operation and the sudden surge of seismicity during the plant shut-

down supports the hypothesis that during pumping cessation the

effective stress on faults decreases and microseismicity tends to

occur (Cardiff et al. 2018).

With a more complete catalogue, we observe more details in

the temporal evolution of the seismicity, which is out of the res-

olution of the original catalogue. The shutdown first triggered an

intense swarm that contains 85 events, which coincided with rapid
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Figure 7. Detection significance ((Peak-median)/MAD) versus the number of sensors using three different sensor selections. (a) Detection significance for

an example event (UTC 03/13/2016, 22:09:08.25) using three different sensor selections. (b) Left: reduced detection significance (with detection significance

from random selection subtracted) versus the number of sensors for all the 112 events. Right: histograms of reduced detection significance for even selection

(blue) and close-to-source selection (red).

increase of the downhole pressure at the beginning (Fig. 5). After

the swarm, the pressure increased gently and the seismicity be-

came less frequent. However, the sudden changes in the pressure

(‘kicks’ near the hour of 17 in Fig. 5a) also coincided with abrupt

occurrence of earthquakes. Therefore, there exists a strong corre-

lation between the cumulative number of events with the downhole

pressure (Fig. 5). Brodsky & Lajoie (2013) identified a similar cor-

relation between the seismicity rate and the net production rate,

using long-term (years) records in the Salton Sea geothermal field.

Here we provide a strong case in short-term correlation (hours to
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Earthquake detection with DAS & template matching 1591

Figure 8. Cross-correlation sections for 1090 sensors (a) evenly selected and (b) close to the source using the example event in Fig. 7(a). The black line

represents the stacked mean cross correlation of the 1090 individual traces. The mean trace is placed at Y = 500 and the amplitude is exaggerated by 1000

times in order to visualize the noise fluctuation. Note the coherent stripes in (b) and the resulting fluctuation is greater than that in (a).

days). These observations suggest that the seismicity is likely con-

trolled by the pressure change rate, rather than the absolute pres-

sure. This agrees with the critical pressure theory in which a fault

ruptures immediately when the normal stress change associated

with fluid movement exceeds the criticality (Shapiro et al. 2005;

Shapiro 2015).

5.2 Detection capability of DAS arrays and control factors

As a relatively new technology for seismic data acquisition, a DAS

array can provide thousands of sensors with spacing at metres. One

of the interesting questions here is the detection capability of DAS

in comparison to conventional arrays. In this study, we obtained

112 verified events in the two-week DAS deployment, which is

22 times of the catalogued earthquakes. This is an unusually high

factor of increase compared to 5–10 for typical template matching

applications in conventional arrays (Shelly et al. 2007; Peng et al.

2009; Meng et al. 2013), which benefits from the large number of

available sensors and ultra-dense spacing. Other factors, such as

that the DAS array is closer to the sources than the regional array,

can also contribute to the detection improvement.

Accumulating evidence has shown that large-N arrays enable us

to robustly push the detection limit to events below noise level. Li

et al. (2015, 2018) demonstrated this capability with synthetics,

and this study provides a real-world example with a DAS array.

Although 58.2 per cent of the events are invisible on their waveform

sections, we show that almost all of them can be manifested from

the cross-correlation sections (e.g. Figs 3 and 4). This is because

that template matching acts as an optimal filter to maximize SNR if

the target matches the template well (Turin, 1960). The stacking of

the cross correlations from a large number of sensors further boosts

up the peak significance on the final network trace, enabling the

detection of weak signals with high confidence.

Since the five catalogued earthquakes are from −0.48 to 0.07 Mw,

the sizes of the newly detected events are expected to be comparable

or smaller, given the fact that they are missing from the original

catalogue. Li et al. (2018) has shown that the detection limit using

template matching on the 5200-sensor Long Beach array can reach

SNR as low as 10−5. If we assume the same order of detectability

for the PoroTomo 8720-senosr DAS array and a reference event

with Mw = 0 and SNR = 10, by simple amplitude scaling (Li et al.

2018), the smallest detectable earthquake is estimated to be Mw ∼

−3. However, for these extremely small events, determination of the

size or amplitude is difficult, due to the difficulty in separating actual

event waveforms from noise. The investigation of this problem will

be a subject of future work.

Such powerful detectability could be compromised by imperfect

similarity between the templates and the target events. Fig. 4(a)

shows some events can have relatively low detection significance

but good SNR if the waveform similarity is low (e.g. Fig. 2b) and

vice versa (e.g. Fig. 2c). This is because detection significance

depends not only on SNR but also on waveform similarity. In our

detection, the visible events can have significance as low as 13 MAD

while the totally invisible events can have significance as high as 35

MAD (Fig. 4a). Template matching is advantageous in detection of

events with high similarity, for which the detectable events can be

far below noise.

The detectability also depends on the number of available sensors.

To quantify their relationship, we measure the peak significance of

the 112 detected events using various numbers of sensors (8720,

4360, 2180, . . . , decreasing by a factor of 2 in each step). For a

given number of sensors, we bootstrapped 100 samples of sensor

selection and average the peak significance (Fig. 6). It is expected

that, in general, the peak significances increase with the number of

sensors. However, we find that the improvement becomes marginal

when the number of sensors exceeds a certain threshold (Fig. 6).

We consider the number of sensors needed to achieve significance

level at 90 per cent of that using the entire array (Y = 0.9 on Fig. 6).

The mean curve shows that only ∼1500 sensors (i.e. one-sixth of

the array) on average are needed. For individual events, the number

of sensors needed ranges from 500 to 2500 (Fig. 6), which are also

fractions of all the sensors.

Such a ‘Ŵ’ curve of performance for the Brady DAS array is

fundamentally different from that for the Long Beach array, which

is approximately sqrt(N), where N is the number of sensors (fig. 5a

in Li et al. 2018). These two distinct patterns could be a result of

different noise coherency on two arrays. The Long Beach array has

spacing at 100 m, which is large enough to make the noise relatively
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independent on neighbouring stations. In this case, the stacking gain

generally follows sqrt(N). However, the Brady DAS array has only

1-m spacing so that the noise on neighbouring sensors are depen-

dent. Reducing these dependent recordings would not change the

diversity of the recordings, which leads to similar detection per-

formance (N∼1500–8720 in Fig. 6). As the decimation continues,

when the remaining sensors have mostly independent noise (i.e.

spacing is large enough), the detection performance starts to de-

crease significantly (N∼0–1500 in Fig. 6). This pattern should be

taken into account in large-N design. Especially, considering the

trade-off between detection performance and the economy (array

deployment, data storage and computation cost), it would be ideal

to set the array at the turning point of the ‘Ŵ’ curve.

5.3 Optimal strategies for spatial down-sampling

In the previous section, we discussed the dependence of detection

performance on array density, which is for array design considera-

tion. In this section, we consider a different scenario: if an array is

given, what is the best way to spatially down-sample the sensors?

Since large-N arrays can contain thousands of sensors which makes

computation costly, one may prefer to spatially down-sample an ar-

ray while maintain comparable performance to that using the entire

array.

In Section 3, we selected the sensors with SNR > 10, which

is a common practice inherited from previous template matching

applications to conventional seismic arrays (Shelly et al. 2007; Peng

et al. 2009; Meng et al. 2013). This seems a natural choice because

the higher quality recordings can better match targeted signals (i.e.

obtain higher cross-correlation values). However, this may not be

necessarily the optimal approach for dense DAS arrays. Because

coherent noise on neighbouring DAS sensors can increase the MAD

value, thus reducing the detection significance. In the following, we

illustrate this point in details by testing three spatial sensor down-

sampling strategies: (1) random selection with 100 repetitions, after

which the average is taken. This is to approximate the expectance

of detection performance by random selection, which serves as the

baseline for the other two approaches; (2) evenly down-sampling the

array; (3) choosing sensors close to the sources. Note that choosing

sensors close to the sources is comparable to choosing with best

SNRs.

With three different selections, we run similar detection perfor-

mance tests as in Fig. 6, with an example event at UTC 03/13/2016,

22:09:08.25. It turns out the even sensor selection approach results

in higher detection significance than the other two in a wide range of

sensor numbers (Fig. 7a). For instance, given 1090 sensors (decima-

tion factor 8), the even selection has detection significance of 180,

whereas the close-to-source selection has detection significance of

86. Although the close-to-source selection has a higher peak cross-

correlation value (0.054 < 0.047), its MAD value is much greater

(0.0062 > 0.026). This results in a lower detection significance, as

defined in eq. (1). We observe this pattern (even selection > random

selection > close-to-source selection) are common for most of the

events, with only a few exceptions (Fig. 7b).

We interpret the high MAD value for the close-to-source selection

as a result of highly coherent noise. Close-to-source selection tends

to use spatially clustered sensors which share similar background

noise. This leads to similar noise background cross correlations

(Fig. 8), because the template waveforms on these sensors are also

similar. Hence, when the individual cross correlations are stacked,

the noise background cannot be effectively damped, leading to a

high MAD (Fig. 8). If the number of sensors is fixed, even selection

maximizes the spacing among the sensors and thus reduces the noise

coherence. In other words, it preserves the diversity of the original

recordings. Random selection avoids spatial sensor concentration

but does not maximize the interstation spacing, which on average

performs slightly worse than even selection. A few exceptions in

Fig. 7(b) (close-to-source selection > random selection or even

selection) are likely because the gain in the peak cross-correlation

value caused by good SNRs is greater than the loss in MAD caused

by sensor clustering.

Considering that the presented detection results are based on

the selection of best-SNR sensors, we re-run the detection with

1500 spatially evenly selected sensors. This new selection detects

six more events that are previously below the 9-MAD threshold,

which however do not change the observed patterns. Nevertheless,

our test suggests that even sensor selection is likely the optimal

choice for earthquake detection, when arrays are dense enough to

have coherent noise. This finding also underscores the significance

of noise coherence for large-N arrays (spacing at metres to tens of

metres), which is widely considered as negligible for conventional

seismic arrays (spacing at kilometres or longer).

6 C O N C LU S I O N S

We apply the template matching technique to detect earthquakes

on DAS data in the Brady geothermal field and identify 112 earth-

quakes with 5 catalogued earthquakes. Although more than a half

of the events have no waveforms standing out of the background

noise, the visibility can be greatly enhanced on cross correlations.

The amplitude and timing characteristics of the cross-correlation

sections suggest that they have similar locations to those of the

templates. Our study demonstrates that the combination of DAS

and template matching can be used to detect microseismicity well

below the noise level, which is unusual compared to conventional

arrays and detection methods. In addition, we show that there exists

a threshold for the number of sensors beyond which detectability

enhancement becomes marginal because the noise becomes coher-

ent and the independence of recordings decreases. On this basis,

we find that for arrays with very close spacing, evenly selecting the

sensors could be the optimal strategy for spatial down-sampling,

because it maximizes the interstation spacing and preserves more

independent recordings. These findings provide helpful instructions

for future large-N design and data processing.
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