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Received 24 January 2017; Revised 30 March 2017; Accepted 9 April 2017; Published 11 May 2017

Academic Editor: Jia Hao

Copyright © 2017 Broderick Crawford et al. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In the real world, there are a number of optimization problems whose search space is restricted to take binary values; however,
there aremany continuousmetaheuristics with good results in continuous search spaces.	ese algorithmsmust be adapted to solve
binary problems. 	is paper surveys articles focused on the binarization of metaheuristics designed for continuous optimization.

1. Introduction

In practically any activity that is performed, the resources
are scarce; thus, we must properly utilize such resources. To
this end, we can use technical optimization. Such problems
are common in engineering, economics, machine learning,
agriculture and, others areas. We found applications in
learning automata in dynamic environments [1], optimum
design of structures [2], load dispatch problems [3], opti-
mization of directional overcurrent relay times [4], two-
dimensional intermittent search processes [5], and control
and risk monitoring [6], among other various real problems
in industry.

Some models are logical only if the variables take on
values from a discrete set, o�en a subset of integers, whereas
other models contain variables that can take on any real
value. Models with discrete variables are discrete optimiza-
tion problems, and models with continuous variables are
continuous optimization problems. In general, continuous
optimization problems tend to be easier to solve than discrete
optimization problems; the smoothness of the functions
means that the objective function and constraint function

values at a point � can be used to deduce information about
points in a neighborhood of �. However, improvements in
algorithms and in computing technology have dramatically
increased the size and complexity of discrete optimization
problems that can be solved e
ciently.

Discrete optimization, that is, the identi�cation of the
best arrangement or selection of a �nite number of discrete
possibilities [7], has its origin in the economic challenge of
e
ciently utilizing scarce resources and e�ectively planning
and managing operations. 	e decision problems in the
�eld of operations management were among the �rst to be
modeled as discrete optimization problems, for example, the
sequencing of machines, the scheduling of production, or
the design and layout of production facilities [8]. Today,
discrete optimization problems are recognized in all areas
of management when referring to the minimization of
cost, time, or risk or the maximization of pro�t, quality,
or e
ciency [9]. Typical examples of such problems are
variants of assignment and scheduling problems, location
problems, facility layout problems, set partitioning and set
covering problems, inventory control, and traveling salesman
or vehicle routing problems [10], among others.
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	e di
culty level of such optimization problems is
conceptualized by the theory of computational complexity
[11, 12]. In this context, two complexity classes are of par-
ticular interest: � and NP (whereby the inclusion � ⊆ NP
holds). 	e problem class � contains all decision problems
that can be solved in polynomial time in the size of the
input on a deterministic sequential machine.	ese problems
are considered to be easy and e
ciently solvable [13]. 	e
class NP contains all decision problems that can be solved in
polynomial time on a nondeterministic machine.

A nondeterministic machine has two stages: the �rst one
is the guessing stage and the second one is the checking stage.
In the case of class NP, this checking stage is computable
in polynomial time. A subclass of problems in NP is called
NP-complete. A problem � is said to be NP-complete if it
is a problem belonging to class NP and additionally has the
feature that, given any other problem � ∈NP, � is polynomial
time reducible to �. Finally a problem ℎ of NP-hard type
corresponds to a problem which is not necessarily NP but,
given any problem � ∈ NP, � is polynomial time reducible to
ℎ.

Many important discrete optimization problems are
known to be NP-hard; that is, in the worst case, the time
required to solve a problem instance to optimality increases
exponentially with its size; hence, these problems are easy
to describe and understand but are di
cult to solve. Even
for problems of moderate size, it is practically impossible to
determine all possibilities to identify the optimum. Conse-
quently, heuristic approaches, that is, approximate solution
algorithms, are considered to be the only reasonable way to
solve di
cult discrete optimization problems. Accordingly,
there is a vast and still growing body of research on meta-
heuristics for discrete optimization that aim at balancing the
trade-o� between computation time and solution quality [14].

Metaheuristics provide general frameworks for the cre-
ation of heuristic algorithms based on principles borrowed
from classical heuristics, arti�cial intelligence, biological evo-
lution, nervous systems, mathematical and physical sciences,
and statistical mechanics. Although metaheuristics have
proven their potential to identify high-quality solutions for
many complex real-life discrete optimization problems from
di�erent domains, the e�ectiveness of any heuristic strongly
depends on its speci�c design [15]. Hence, the abilities of
researchers and practitioners to construct and parameterize
heuristic algorithms strongly impact algorithmic perfor-
mance in terms of solution quality and computation times.
Consequently, there is a need for a deeper understanding of
how heuristics need to be designed such that they achieve
high e�ectiveness when searching the solution spaces of
discrete optimization problems.

However, many of the well-known metaheuristics orig-
inally worked on continuous spaces because these can be
formulated naturally in a real domain; examples of these
metaheuristics are particle swarm optimization (PSO) [16],
magnetic optimization algorithm (MOA) [17], cuckoo search
(CS) [18], �re�y algorithm (FA) [19], galaxy-based search
(GS) [20], earthworm optimization (EW) [21], lightning
search (LS) [22], moth-�ame optimization (MF) [23], sine
cosine (SC) [24], and black hole (BH) [25]. However,

researchers have been developing binary versions that make
these metaheuristics capable of performing in binary spaces.
	ere are di�erentmethods for developing the binary version
of a continuous heuristic algorithm while preserving the
principles inspiring the search process. Examples of such
binarizations are harmony search (HS) [26], the di�erential
evolution algorithm (DE) [27–30], particle swarm optimiza-
tion (PSO) [31], themagnetic optimization algorithm (MOA)
[32], the gravitational search algorithm (GSA) [33], the �re�y
algorithm (FA) [34], the shu�ed frog leaping algorithm
(FLA) [35], the fruit �y optimization algorithm (FFA) [36],
the cuckoo search algorithm (CSA) [37], the cat swarm
optimization algorithm (CSOA) [38], the bat algorithm [39],
the BlackHole Algorithm [40], the algae algorithm (AA) [41],
and �reworks [42].

In contrast to the continuous binary approaches, we also
found in the literature the inverse transformation, that is,
from discrete techniques to continuous [43, 44]. 	is inverse
approach uses the concepts of probability density function
and its associated cumulative distribution function. When
we use the inverse of cumulative distribution functions,
we can produce uniformly distributed real numbers. 	is
process is a general way to transform discrete metaheuristics
to continuous metaheuristics. Typical probability density
distributions were proposed in [45, 46].

	is article is a review of the main binarization methods
used when we are putting continuous metaheuristics to
work in binary search spaces. 	e remainder of this paper
is organized as follows. In Section 2, we present the main
optimization problem de�nitions, the principal optimization
techniques, and the di�erent types of variables. Section 3
provides a de�nition of metaheuristics. In Section 4, we
describe themain criteria for transforming continuousmeta-
heuristics to discrete metaheuristics. Section 5 presents the
most frequently used techniques allowing the binarization of
the continuous metaheuristic. In the discussion in Section 6,
we summarize and analyze the techniques and problems in
terms of the number of articles published.	e conclusions are
outlined in Section 7, which presents a summary table that
compares metaheuristics and discretization or binarization
techniques.

2. Concepts and Notations

	is section establishes the de�nitions andnotations required
for understanding the discretization and binarization tech-
niques. For this purpose, we need to de�ne some basic
concepts.

2.1. Optimization Problem. 	e main goal of optimization
metaheuristics is to resolve an optimization problem. An
optimization problem corresponds to the pair of search space
(	) and objective function (
). 	is pair is denoted as � =
(	, 
), where 	 is generally a vector space, 	 ̸= 0, and 
 :
	 → R. Let � = (�1, . . . , ��) ∈ 	 be a feasible solution of
the optimization problem. 	e solution of the optimization
problem (	, 
) when we are minimizing corresponds to
�nding a solution�� ∈ 	 such that 
(��) ≤ 
(��), ∀�� ∈ 	.
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Figure 1: Optimization techniques.

In the case of a maximization problem, it can be transformed
into a minimization problem by multiplying the objective
function by −1.
2.1.1. Search Space. A search space, 	, is a set of all possible
points or solutions of the optimization problem that satisfy
the problem’s constraints. When we classify the parameters
that make up each point of the solution, there are two
groups. 	e �rst group corresponds to parameters with
an unordered domain. 	ese parameters do not have an
exploitable structure; that is, they do not naturally have a
metric, an order, or a partial order and therefore it is not
feasible to use optimization methods to �nd optimal values.
	e only option for these cases is to use sampling [47].
A second group of parameters corresponds to those that
naturally have a structure such as metric, order, or partial
order. In this case we can take advantage of this structure
to use optimization methods to �nd optimal values. Within
this second group we o�en �nd parameters of real, discrete,
or binary type. In terms of these real, discrete, or binary
parameters the optimization problems can be classi�ed as
real optimization problems (	 ⊂ R

�), discrete optimization
problems (	 ⊂ Z

�), binary problems (	 ⊂ B
�), and mixed

problems. Since our review is directly linked to continuous,
discrete, and binary optimization methods, from now on we
will focus on these types of parameters.

2.1.2. Neighborhood. Let (	, 
) be an optimization problem.
A neighborhood structure is a function:

� : 	 �→ � (	) , (1)

where �(	) is a power set of 	. � function assigns a set
�(��) ∈ �(	) for each �� ∈ 	 element, where �(��) is the
neighborhood of��.

2.1.3. Local Optimum. Let (	, 
) be an optimization problem
and 	� ⊂ 	 be the neighborhood of �� ∈ 	, 	� = �(��).�� is a local optimum (minimum) if it satis�es the following
inequality:


 (��) ≤ 
 (��) , ∀�� ∈ 	�. (2)

2.2. Optimization Techniques. 	ere are several optimization
techniques, as shown in the overview in Figure 1. We can
group them into complete techniques and approximate or
incomplete techniques. Without pretending to be exhaustive
in the classi�cation, we mentioned to our understanding the
main techniques, giving more detail to the case of complete
techniques in integer programming due to the proximity
with the combinatorial problems. 	e exact or complete
techniques are those where we �nd an optimum result
regardless of the process time. For integer programming,
the typical techniques are branch-and-cut and branch-and-
bound. Many combinatorial optimization problems can be
formulated as mixed integer linear programming problems.
	ey can then be solved using branch-and-cut or branch-
and-bound methods, which are exact algorithms that consist
of a combination of a cutting plane method with a branch-
and-bound algorithm. 	ese methods work by solving a
sequence of linear programming relaxations of the integer
programming problem. Cutting plane methods improve
the relaxation of the problem to more closely approxi-
mate the integer programming problem, and branch-and-
bound algorithms proceed by a sophisticated divide-and-
conquer approach to solve problems. Unfortunately when
the problems are NP-hard and the size of instance grows,
these algorithms do not provide good results. On the other
hand, the incomplete techniques are those where a good
solution is found that is not necessarily the best but found
in a short processing time. 	is technique better �ts the
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actual conditions of the problems since, in daily life, the
solutions of the problems are required in a given time.
Within the approximate or incomplete techniques, we �nd
metaheuristics.

In general terms, a metaheuristic attempts to �nd values
for the variables that will provide an optimum value of the
objective function.

2.3. Search Space. As our focus is on the continuous, discrete,
and binary searches spaces (see Section 2.1, search space), a
solution in that context can be classi�ed into three categories,
as follows [48]:

(i) Continuous Variable. Continuous variables are when
the variable can have any value in the given interval.

(ii) Discrete Variable. Discrete variables correspond to
variables that may have integer or binary values.

(iii) Mixed Variables. In this case, the variables can have
many real, integer, or binary values; thus, it is called a
mixed problem.

Discrete variables arise in many optimization problems,
for example, in manufacturing [49], cutting and packing
problems [50], integer programming [51], and quadratic
assignment [52]. A common reason for discrete variables
occurring is when the resources of interest are quanti�ed
in terms of integers or Boolean values, for example, in pro-
duction lines, scheduling processes, or resource assignments.
	ere is a set of classic problems that can be treated in binary
form, such as the well-known knapsack problem [53], the set
covering problem [54], and the traveling salesman problem
[55].

For example, in the knapsack problem, the �th item has
weight �� and value ��. 	e objective is to maximize the
total value of the items placed in the knapsack subject to the
constraint that the weight of the items does not exceed a limit
�. To formulate this problem, one can let �� be the binary
variable such that

�� = {{{
1 if item � is placed in the knapsack,
0 otherwise.

(3)

	en,wewant tomaximize ��� subject to��� ≤ �, where
� ∈ {0, 1}.

Another situation where the use of discrete variables is
appropriate is when we need to manage constraints that
involve logical conditions. For example, suppose that wewant
�1 ≥ 0 ⇔ �2 ≤ 0 and �2 ≥ 0 ⇔ �1 ≤ 0 and that we also want
to preserve the linearity of the problem.	is can be achieved
by including the linear constraints

−!(1 − ") ≤ �1 ≤ !"
−!" ≤ �2 ≤ !(1 − ") ,

(4)

where " is a binary variable and ! is a su
ciently large
positive number that does not a�ect the feasibility of the
problem. By this de�nition of!, if " = 1, then we will have

�1 ≥ 0 and �2 ≤ 0, whereas if " = 0, we will have �2 ≥ 0 and�1 ≤ 0.
Another common situation that requires integer variables

is when the problem involves set-up costs. As an example,
consider a generator that supplies electricity to a local region
with # nodes for $ periods. Suppose that at period % the
generator incurs a cost of &� when it is turned on, a cost of
'� for producing electricity a�er it is turned on, a cost of &�
for supplying electricity to node * a�er it is turned on, and a
cost of +� for shutting it down. For % ∈ {1, 2, . . . , $}, ��, "�, and-� denote the binary variables such that

�� = {{{
1 
 generator is turned on in period %,
0 otherwise

"� = {{{
1 
 generator is operating in period %,
0 otherwise

-� = {{{
1 
 generator is shut down in period %,
0 otherwise.

(5)

If we let ��� be variables that represent the percentage of
the generator’s capacity �� for node * = {1, 2, . . . , #} that is used
in period %, then the total costs incurred would be∑��=1(&���+'�"�++�-�+∑��=1 ��&����).	e objective is tominimize the total
costs.

3. Metaheuristics

Ametaheuristic is formally de�ned as an iterative generation
process that guides a subordinate heuristic by combining
intelligently di�erent concepts for exploring and exploiting
the search space, and learning strategies are used to structure
information to e
ciently �nd near-optimal solutions [14,
56]. 	e fundamental properties that characterize the set of
metaheuristic algorithms are as follows:

(i) Metaheuristics are higher level strategies that guide
the search process.

(ii) 	e goal is to e
ciently explore the search space to
�nd (quasi)optimal solutions.

(iii) Metaheuristic algorithms are approximate and gener-
ally nondeterministic.

(iv) 	e basic concepts of metaheuristics permit an
abstract level of description.

(v) Metaheuristics are not problem speci�c.

(vi) Metaheuristics may utilize domain-speci�c knowl-
edge in the form of heuristics that are controlled by
the upper level strategy.

(vii) Today, more advanced metaheuristics use search
experience (embodied in some form of memory) to
guide the search.
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Table 1: Example of random-key encoding scheme. # represents the random-key, and 4 is the decodi�cation solution.

# 0.15 0.56 0.99 0.12 0.45 0.76 0.73 0.87 0.95

4 2 4 9 1 3 6 5 7 8

3.1. Metaheuristic Classi�cation

(i) Nature Inspired versus Non-Nature Inspired Algo-
rithms. Generally, it is the most natural way to classify
metaheuristics since it is based on the origins of
the algorithm. It takes into account whether their
models have been inspired by nature. 	ere are
bioinspired algorithms, such as genetic algorithms
(GAs) and ant colony optimization (ACOs), and non-
nature inspired ones, such as tabu search (TS) and
iterated local search (ILS). 	is classi�cation is not
very meaningful following the emergence of hybrid
algorithms.

(ii) Population-Based versus Single-Point Search (Trajec-
tory). In this case, the characteristic used for the clas-
si�cation is the number of solutions used at the same
time.On the one hand, single-point search algorithms
work on a single solution describing a trajectory in
the search space during the search process. 	ey
encompass local search-based metaheuristics, such
as variable neighborhood search (VNS), tabu search
(TS), and iterated local search (ILS). On the other
hand, population-based methods work on a set of
solutions (points) called a population.

(iii) Static versus Dynamic Objective Function. 	e algo-
rithms that keep the objective function given in the
problem during the entire process are called meta-
heuristics with static objective functions. However,
there are other algorithms with dynamic objective
functions, such as guided local search (GLS), which
modify the �tness function during the search, incor-
porating information collected during the search
process to escape from local optima.

Many of the metaheuristic techniques are motivated
in an R

� vectorial space [16, 57–61]; naturally, they can-
not solve discrete or binary optimization problems. Many
methods have been proposed that allow the use of a real
optimization metaheuristic in discrete or binary problems.
	ese methods are called discretization if the method allows
adapting the real technique to solve integer problems and
called binarization if the method solves binary optimization
problems. In the next sections, we propose and explain
a grouping of the main discretization and binarization
techniques.

4. Discretization of Continuous Metaheuristics

	ere are many problems that require discrete search spaces
[62–64]. While investigating these techniques, we found
many names. However, these techniques can be classi�ed into
three main groups:

(i) Rounding o� generic technique.

(ii) Priority position techniques associated with schedul-
ing problems.

(iii) Speci�c techniques associatedwithmetaheuristic dis-
cretizations.

4.1. Rounding o
 Generic Techniques. 	is approach is one of
the most commonly used approaches for managing discrete
variables due to its simplicity and low computational cost. It
is based on the strategy of rounding to the nearest integer. It
was �rst used in [65] in the optimization of reactive power
and voltage control as a discretization method.

	e rounding o� operator transformsR� feasible solution
into Z

� feasible solution. 	e metaheuristic operators are
used withoutmodi�cations, and two strategies exist to imple-
ment the discretization. 	e �rst strategy applies a rounding
o� near integer operation to the feasible solution in every
iteration. In the second approach, it is applied at the end of
the optimization process.

	ere are multiple problems that use this method, for
example, optimization of transport aircra� wing [64], task
assignment problem [62], and distribution systems recon�g-
uration [63]. 	e main metaheuristics that use the round-
o� method are ant colony [63], PSO [62, 64, 65], �re�y
[66], and arti�cial bee colony [66, 67]. 	e disadvantages of
this method include the possibility that the solution is in a
nonfeasible region. Moreover, the value of the �tness in the
rounded point can be very di�erent from that in the original
point.

4.2. Priority Position Techniques: Random-Key or Small Value
Position. 	e random-key encoding scheme is used to trans-
form a position in a continuous space into a position in a
discrete space.	e random-key was �rst used in a scheduling
problem in [68], where the solutions are elements of a Z

�

space.
Let us start with a solution� ∈ 	 of � dimensions. In each

position, a random number in [0, 1] is assigned, obtaining an
# real random-key solution. To decode the position from #
real random-key solution in a discrete space, the positions
are visited in ascending order, generating a 4 ∈ Z

� discrete
solution. An example is shown in Table 1.

	is method has been used with the gravitational search
algorithm [68, 69], resolving the traveling salesman problem
and scheduling problem. In both cases, the result of the
gravitational algorithm is mapped as a random-key, where
small values map to the top position.

	e same method, but called small value position (SVP),
was used for the �rst time in [70] to solve the single-machine
total weighted tardiness problem using a PSO algorithm.
Later, [71] utilized SVP with the �re�y algorithm to schedule
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jobs on grid computing, and [72] used SVP in the cuckoo
search algorithm to resolve the design optimization of reliable
embedded systems.Additionally, we found thismethod in the
�rst steps of great value priority. 	is binarization technique
is explained in Section 5.

4.3. Metaheuristic Discretization. 	ismethod has been used
in [73] to solve distribution system recon�guration in the
presence of distributed generation using a teaching-learning
metaheuristic.

Let us startwith a continuousmetaheuristic that produces
values in [0, 1] or we can adapt a metaheuristic using
functions that mapR to [0, 1], for example, transfer function
(see Section 5).

Let � be the number of elements of our problem and �
correspond to the dimension of the search space. 5 is a result
of the metaheuristic; then 5 ∈ [0, 1], and multiply 5 by �,
obtaining 6 = 1+�×5 and 6 ∈ [1,�+1]. 	is real number
is discretized by applying the following equation:

7 = min (⌊6⌋ ,�) . (6)

	is procedure allows us to map to discrete values
between 1 and�. 	is has been applied to smart grids using
teaching-learning-based optimization [73].

5. Binarization of Continuous Metaheuristics

In our study and the conceptualization of binarization tech-
niques, we found twomain groups of binarization techniques.
	e �rst group of techniques we call two-step binarization;
these techniques allow working with the continuous meta-
heuristics without operator modi�cations and include two
steps a�er the original continuous iteration; these two steps
make the binarization of the continuous solution.	e second
group of techniques is called continuous-binary operator
transformation; it rede�nes the algebra of the search space,
thereby reformulating the operators.

5.1. Two-Step Binarization Technique. 	is technique works
with the continuous operators without modi�cations. To
perform the binarization, two additional steps are applied.
	e �rst step corresponds to introducing operators that
transform the solution fromR

� to {#�%;<	'>�;}. For example,
in great value priority, our interspace is Z�; in the case of a
transfer function (TF), we have [0, 1]� and {Space functions}
in angle modulation. 	e second step transforms from the
interspace (Z�, [0, 1]�, {Space functions}) into a binary space.
A general scheme is presented in Figure 2.

5.1.1. Transfer Function and Binarization

Transfer Function. In this technique, the �rst step corresponds
to the transfer function, which is themost used normalization
method and was introduced in [31]. 	e transfer function
is a very cheap operator, and its range provides probability
values and attempts to model the transition of particle
positions. 	is function is responsible for the �rst step of

Continuous metaheuristic

Continuous solution

First step
Transformer operator solutions

Second step

Binary operator solutions

{0, 1}n solution

Zn solution
or

[0, 1]n solution

(Zn or [1, 0]n)

Figure 2: A general scheme for two-step binarization methods.

the binarization method and mappingR� solutions in [0, 1]�
solutions.

In our revision, we found that two types of functions have
been used in research: the S-shape [74–77] shown in (7) to
(10), and their shapes are shown in Figure 3(a), and V-shape
[54, 78, 79] shown in (11) to (14), and their shapes are shown
in Figure 3(b).

$ (+��) = 1
1 + ;−2	�� (7)

$ (+��) = 1
1 + ;−	�� (8)

$ (+��) = 1
1 + ;−	��/2 (9)

$ (+��) = 1
1 + ;−	��/3 (10)

$ (+��) =
????????erf (

√B
2 +
�
�)
???????? =
??????????
√2
B ∫
(√�/2)	��

0
;−�2+%

??????????
(11)

$ (+��) = ?????tanh (+��)????? (12)

$ (+��) =
?????????????
+��

√1 + +��2
?????????????

(13)

$ (+��) =
???????
2
B arctan(B2 +

�
�)
??????? . (14)

Let� = (�1, . . . , ��) be a feasible solution to the problem;
for each dimension, it is applied to the transfer function
(TF), *� = TF(��), obtaining an intermediate solution # =
(*1, *2, . . . , *�), where # ∈ [0, 1]�.	is transfer function de�nes
the probability of changing a position (an assignment of
a value to a variable or enumeration). According to [80],
some concepts should be taken into account when selecting
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Figure 3: (a) S-shape and (b) V-shape and transfer functions.

a transfer function to map velocity values to probability.
Intuitively, an S-shaped transfer function should provide a
high probability of changing the position for a large absolute
value of the velocity. Particles that have large absolute values
for their velocities are probably far from the best solution;
thus, they should switch their positions in the next iteration.
It should also present a small probability of changing the
position for a small absolute value of the velocity.

Binarization. 	e second step is the binarization technique,
in which the particle # is transformed into a binary solution
H = (�1, . . . , ��) by applying a binarization rule. In the
literature, we found the binarization equations (15) to (18). In
the following, rand is a random number in [0, 1].

Standard. If the condition is satis�ed, the second
step operator returns the value 1, independent of the
previous value. Otherwise, it returns 0.

��new = {{{
1 if rand ≤ $ (+��)
0 else.

(15)

Complement. If the condition is satis�ed, the second
step operator returns the complement of the actual
value.

��new = {{{
complemento (���) if rand ≤ $ (+��)
0 else. (16)

Static Probability. A static 6 probability transition
value is generated, and it is evaluated with a transfer
function.

��new =
{{{{{
{{{{{{

0 if $ (+��) ≤ 6
��� if 6 < $ (+��) ≤ 12 (1 + 6)
1 if $ (+��) ≥ 12 (1 + 6) .

(17)

Elitist. 	is discretization method selects the value of
the best individual of the population.

��new = {{{
��� if rand < $ (+��)
0 else.

(18)

Elitist Roulette. 	is discretization method, also
known as Monte Carlo, selects the new value ran-
domly among the best individuals of the population,
as shown in Figure 4, with a probability proportional
to its �tness.

In particle swarm optimization, this approach was �rst
used in [31]; in [81], it was used to optimize the sizing of
capacitor banks in radial distribution feeders; in [82], it was
used for the analysis of bulk power system; and, in [83], it
was used for network recon�guration. 	is approach was
also used by Crawford et al. to resolve the set covering
problem using the binary �re�y algorithm [54] and arti�cial
bee colony algorithm [84] and in [84] to resolve the set
covering problem with the arti�cial bee colony algorithm,
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Table 2: 	e vector � corresponds to a continuous solution, the vector # is the great value position, and H is the result of the binarization
rule.

� 6.2 7.3 2.4 7.8 9.1 2.5 6.9 5

# 5 3 8 2 1 7 4 6

H 1 0 1 1 0 1 0 1

X1

X2

X3

X4

Figure 4: Elitist roulette.

and it was also used in [37] using the cuckoo search
algorithm applied to the set covering problem. To resolve
the unit commitment problem, [77] used �re�y and PSO.
	e knapsack cryptosystem was approached in [74], the
network and reliability constrained problem was solved in
[78], and knapsack problems were solved in [41], all using the
�re�y algorithm. In [85], a teaching-learning optimization
algorithmwas used for designing plasmonic nanobipyramids
based on the absorption coe
cient.

5.1.2. Great Value Priority and Mapping

Great Value Priority. Great value priority (GVP) was intro-
duced in [86] to solve a quadratic assignment problem by
applying a particle swarm optimization (PSO) algorithm.
	is method encodes a continuous space R� into the binary
space {0, 1}� having two principal properties: it is an injective
mapping, and it re�ects a priority order relation, which is
suitable for assignment problems.

Let us start with the solution � = (�1, �2, . . . , ��); then,
as a �rst step, we obtain a permutation # that lies in Z

�. 	e
GVP rule chooses the heaviest element and places its position
in the �rst element of #. For the remaining elements, choose
the heaviest and place it in the second position and so on until
the elements of the original vector are browsed.

Binarization. In this technique, the second step maps # to
H. To obtain H, we apply the mapping rule shown in (19).
	e result is a binary solution H of � dimensions. A concrete
example is presented in Table 2.

�� = {{{
1 if '� > '�+1
0, otherwise. (19)

	is technique has been used in other types of binary
problems; for example, in [87], it was used to solve the

antenna positioning (AP) problem using a binary bat algo-
rithm. In this solution, the algorithm preserves the original
operators and Euclidean geometry of the space and adds
a new module that maps real-valued solutions into the
binary ones. Unlike the quadratic binary algorithm, where
the priority is intrinsic to the problems, in the AP problem,
the use of priority is clearly not suitable. 	e result was not
conclusive; there were good and bad solutions for di�erent
instances.

5.1.3. Angle Modulation and Rule

Angle Modulation (AM). 	is approach was used in the
telecommunications industry for phase and frequency mod-
ulation of the signal [88]. 	is method uses a trigonometric
function that has four parameters, and these parameters
control the frequency and shi� of the trigonometric function.

L� (��) = sin (2B (�� − >�) �� cos (2B (�� − >�) ��))
+ +�.

(20)

In binary heuristic optimization, this method was �rst
applied in PSO using a set of benchmark functions [89].

Consider an �-dimensional binary problem, and let
� = (�1, �2, . . . , ��) be a solution. We start with a four-
dimensional search space, where each dimension represents
a coe
cient of (20).

In the �rst step from the four-dimensional space, we
obtain a function in a function space. Speci�cally, from
every solution (>�, ��, ��, +�) in this space, we obtain a L�
trigonometric function that lies in a function space.

Binarization. In the second step, for each single element ��,
apply rule 24 and obtain an �-dimensional binary solution.

��� = {{{
1 if L� (��) ≥ 0
0 otherwise. (21)

	en, for each initial 4-dimensional solution (>�, ��, ��, +�),
we obtain a binary �-dimensional solution (��1, ��2, . . . , ���)
that is a feasible solution of our n-binary problem.

	e angle modulation technique was applied to network
recon�guration problems in [90] using a binary PSOmethod.
	is technique was also applied in [91] to a multiuser detec-
tion technique using a binary adaptive evolution algorithm.
	e antenna position problem was solved in [87] using an
angle modulation binary bat algorithm. Using PSO in [92],
they solved the �-queens problems, and, in [90], Liu et
al. solved large-scale power systems. In [93], a di�erential
evolution algorithm was applied to knapsack problems, and,
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1 0 0 1· · ·1

1 1 0 1· · ·0

0 1 0 0· · ·1 1 1 1 0· · ·0

0 1 1 1· · ·1

0 1 1 0· · ·1

0 0 0 0· · ·1

1 0 1 1· · ·1

0 1 0 0· · ·1

Position of selected particle 

0 1 1 1· · ·1

0 1 1 0· · ·1

0 1 0 0· · ·1 0 1 1 0· · ·0

0 1 1 0· · ·1

Position of best

global solution

Best position of

selected particle

Previous velocity particle

New velocity 

particle

or

Random vector w

Random vector c2

d2

Random vector c1

d1

Figure 5: Example of Boolean approach.

in [94], it was applied to binary problems. Arti�cial bee
colony was applied to a feature selection in [95] and to binary
problems in [96].

5.2. Continuous-Binary Operator Transformation. 	ese
methods are characterized to rede�ne the operators of the
metaheuristic, and there are two main groups. We call the
�rst group modi�ed algebraic operations. In this group, the
algebraic operations of the search space are modi�ed, and
examples include the Boolean approach and set approach.
	e second group is called promising regions, and the
operators are restructured in terms of selected promising
regions in the search spaces. 	is selection is performed
using a probability vector. Examples of this group include the
quantum-based binary approach and binary method based
on the estimation of distribution.

5.2.1. Modi�ed Algebraic Operations

Boolean Approach (BA). 	is method belongs to modi�ed
algebraic operations. Let us transform the real operators
into binary operators. 	is transformation is performed
using Boolean operations. 	e operators act over the binary
solutions.	is approach emerged as a binarization technique
of particle swarmoptimization [97]; subsequently, [98] incor-
porated the inertia weight.

In Figure 5, we show a concrete example of applying the
velocity Boolean equation (22) to the position of selected
particle ��. 	e Boolean notation is as follows: “XOR” =
⊗, “AND” = ⊕, and “OR” = ⊙. 	e velocity and position
Boolean Equations with inertia weight are presented in (22)
and (23), respectively. �best,� and �global belong to the best
position of the selected particle and the position of the global
best solution, respectively, and �1 and �2 are random vectors.
P�(%) corresponds to the velocity at time %.

P� (% + 1) = � ⊕ P� (%) ⊙ �1 ⊗ (�best,� ⊕ ��) ⊙ �2
⊗ (�global ⊕ ��)

(22)

�� (% + 1) = �� (%) ⊕ P� (% + 1) . (23)

	is method has been applied to di�erent binary opti-
mization problems using the particle swarm method [97–
99]. In [100], it was used with bitwise operations applied to
optimization problems.	e Boolean approach introduced an
e
cient velocity bounding strategy based on negative thymic
selection of T-cells.

Set-Based Approach (SBA). 	e set-based approach is a
technique that belongs to modi�ed algebraic operations. It
is a good framework for discrete problems. In this approach,
we eliminate all structures of the space (vectorial or metrics),
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and we work with a pure set. In a set, we have the standard
set operations, union, intersection, complement, and so
forth. 	en, we need to rede�ne the operations of sums,
multiplications, and others of the vector spaces and use
set operations. Consequently, we have to reformulate the
operators as discrete operators.

In the literature, there are numerous set frameworks
applied to PSO algorithms. Reference [101] proposed a
generic set-based algorithm, which had the same problems
with the size of the positions and velocities. In [102], a generic
set PSO algorithm was proposed, but its performance is less
than that of other algorithms. In [103], an algorithm called
S-PSO was proposed that can be used to adjust a continuous
PSO to a discrete one. In [104], an SBPSO was proposed.

In a general framework, it is necessary to de�ne some
operations; let P(Q) be a power set of Q, and (+, −) indicates
whether the elements are added or removed in any operation.
	e de�nition of velocity is a transformation that maps a
position to new positions.

(1) 	e addition of two velocities: ⊕ : P((+, −) × Q)2 →
P((+, −) × Q), where P1 ⊕ P2 = P1 ∪ P2.

(2) 	e di�erence between two positions: �1 ⊖ �2 is a
mapping ⊖ : P(Q)2 → P((+, −) × Q), where

�1 ⊖ �2 = ((+) × (�1 \ �2)) ∪ ((−) × (�2 \ �1)) . (24)

(3) Multiplication of a velocity by a scalar: ⊗ : [0, 1] ×
P((+, −) × Q) → P((+, −) × Q), where the mapping
is de�ned by picking a subset of ⌊T × |P|⌋ elements at
random from velocity P.

(4) Addition of velocity and position: ⊙ : P × P((+, −) ×
Q) → P(Q), where� ⊖ P = P(�).

Using these operations, our equations must be modi�ed:

P� (% + 1) = � ⊗ P� (%) ⊕ �1 ⊗ (�best,� ⊖ ��) ⊕ �2
⊗ (�global ⊖ �i)

�� (% + 1) = �� (%) ⊙ P� (% + 1) .
(25)

	ismethodmodi�es the operators velocity and position,
and the construction is not simple.	ere are many variations
of (25) [101, 103, 105], and in most cases they apply to PSO.
In PSO, this technique has been used to solve the traveling
salesman problem [106], the multidimensional knapsack
problem, and vehicle routing problems [101]. 	e Boolean
approach is a particular case of the set approach.

5.2.2. Promising Regions

Quantum Binary Approach. 	is approach, which belongs to
promising regions, has been developed in PSO [107, 108].
It has been inspired in the uncertainly principle, where
we cannot simultaneously determine position and velocity.
	erefore, for individual particles, the PSO algorithm works
in a di�erent fashion, and we need to rewrite the operators.

In the quantum approach, each feasible solution has a
position � = (�1, �2, . . . , ��) and a quantum vector U =

[U1, U2, . . . , U�]. U� represents the probability of �� taking
the value 1. For each dimension �, a randomnumber between
[0, 1] is generated and compared with U�; if rand < U�, then�� = 1; otherwise, �� = 0.

	en, the new �best and �global are calculated using the
objective function. Finally, we update the transition proba-
bility using

Uself (%) = 6�best (%) + 7 (1 − �best)
Usocial (%) = 6�global (%) + 7 (1 − �global)
U (% + 1) = 51U (%) + 52Uself (%) + 53Uglobal (%) .

(26)

	e quantum method has been applied to a swarm
optimization algorithm in combinatorial optimization [109],
cooperative approach [110], knapsack problems [108], and
power quality monitor [111]. In di�erential evolution, it
has been applied to knapsack problems [112], combinatorial
problems [113], and image threshold methods [114]. 	e
cuckoo search metaheuristic has been used for 0-1 knapsack
problems [115] and the bin packing problem [116]. In ant
colony optimization, it has been applied to image threshold
[114]. 	e harmony search [117] and the Monkey algorithms
[118] were applied to Knapsack problems.

Binary Method Based on Estimation of Distribution. Estima-
tion of distribution algorithms (EDA) belong to promising
regions. 	ey are probabilistic models used in optimization
methods. 	ese methods guide the search for the optimum
by sampling the promising candidates and building a distri-
bution [119].

	e new solutions are obtained by sampling the search
space using EDA. A�er each iteration, the distribution is
reestimated using the new candidates.

In the case of binary optimization, [120] used a univariate
marginal distribution (UMD) to obtain a binary method.

Let � be the space dimension, � be the number of
candidates, �� be the best position for the particle, and �
 be
the global best position. �� and �
 are binary variables.

Wewant to obtain a particle$ = ($1, $2, . . . , $�), where$�
is the probability that the *th dimension of a solution takes the
value 1. Let + be a speci�c dimension; to initialize the particle
$, we apply the rule

$	 = ∑
�
�=1 �	�
� (27)

With the particle $, for an element ��, where * ∈
(1, . . . , �), we apply the next decision:

If random() < 7, then

�	� (% + 1) = {{{
1 if random () < $	
0, otherwise. (28)

Else

�	� (% + 1) = �	
 (%) . (29)



Complexity 11

Technique importance

0

5

10

15

20

N
u

m
b

er
 o

f 
p

ap
er

s

SBABAEDQBAGVPTF AM

Technique

Figure 6: Number of papers by technique.

With this rule, we obtain �	� (% + 1), ∀+ ∈ (1, . . . , �). 	e
next step is to update $ particle. We use the rule

$	 = (1 − V) $	 + V∑
�
�=1 �	�
� . (30)

	is method was constructed for a particle swarm
optimization technique. However, it is easy to adapt for
other metaheuristics. 	e advantage of this procedure is its
adaptation on each iteration; however, it needs to adjust the
parameters V and 7 and to compute the distribution in each
iteration. In PSO, it was applied to solve knapsack problems
[120]. In di�erential evolution, it was applied to optimization
problems [121, 122]. For genetic algorithms, it was used to
work on economic dispatch problems [106]. Finally, local
search [123] and memetic [123] metaheuristics were used to
solve the traveling salesman problem.

6. Discussion

	is section aims to summarize the techniques and prob-
lems recently addressed. Additionally with the information
obtained from the articles along with our experience in the
area, we want to capture our vision of what are the trends in
binarization. 	is last point is very di
cult to answer and is
not intended to be a quantitative analysis but rather our vision
regarding the area.

From 65 papers, we have summarized, reviewed, and
classi�ed techniques that allow transforming continuous
metaheuristics into discrete or binary metaheuristics. Fig-
ure 6 shows how the articles are distributed on the di�erent
binarization techniques. 	e most reviewed technique was
the transfer function. From the 19 read articles about this
technique, it is observed that there is a general and sim-
ple mechanism for performing binarizations. However, the
results are not always suitable and are related to the choice
of the transfer function. In this sense the greatest challenge,
in our view, corresponds to developing a methodology for
choosing the transfer function (not simply trial and error)
where this selection could be dynamic as the system evolves.

Another technique that appeared quite o�en was the
quantum binary approach (QBA). From the articles read it
is observed that the implementations are particular for each
metaheuristic, with quite good results. From our point of
view, there is a line of research associated with designing
a general quantum mechanism that allows binarizing any
continuous metaheuristic. Another important point to work
on is the development of a methodology for the selection of
parameters associated with binarization.

For the case of angle modulation, there is space to
perform binarizations on new metaheuristics, where di�er-
ent variations of angle modulation can be explored. 	is
exploration of new binarizations is very powerful if it is
accompanied by analysis of positions and velocities of par-
ticles of the system to understand the conditions in which
anglemodulationworks properly. As a suggestionwe propose
reading the work done in [124] in PSO.

From the point of view of problems, the greater number
of problems addressed corresponds to classic problems such
as the knapsack (KS), set covering problem (SCP), and
traveling salesman problem (TSP).	e summary is shown in
Figure 7.With the generation of large amounts of data and the
incorporation of the Internet of things, there is a large space to
usemetaheuristics associatedwith combinatorial problems in
the area of image processing and feature selection [125], deep
learning tuning parameters [126], data intensive applications
[127–130], and network and complex systems [131]. In this
context, feature selection (FS) has been resolved using angle
modulation and the set-based approach. Image threshold-
ing (IT) has been addressed using the quantum binary
approach.

7. Conclusion

	iswork surveyed important discretization and binarization
methods of continuous metaheuristics. Inside the binariza-
tion conglomerate, we propose two main group classi�ca-
tions. 	e �rst group we call two-step binarization methods,
which use an intermediate space fromwhere the binarization
is mapped. 	e second group we call continuous-binary
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Table 3: Classi�cation summary of binary approach.

Discretization

(i) Rounding o�

(ii) Random-key or small value position

(iii) Metaheuristic discretization

Binarization

(i) Two-step binarization

(i) Transfer function and binarization

(ii) Great value priority (GVP) and
mapping

(iii) Angle modulation and rule

(ii) Continuous-binary operator
transformation

(i) Modi�ed algebraic operations:
set-based approach

(ii) Promising regions: quantum binary
approach

(iii) Promising regions: binary method
based on estimation of distribution

Table 4: Summary of discretization methods.

Binarization techniques Metaheuristic Problem References

Rounding o�

Particle swarm

Voltage control [65]

Transport aircra� wing [64]

Task assignment [62]

Ant colony Distribution system Recon�guration [63]

Fire�y Integer programming [66]

Random-key or small value
position

Memetic Shop scheduling [68]

Hybrid gravitational-annealing Traveling salesman [69]

Particle swarm Permutation �ow-shop sequencing [70]

Fire�y Scheduling jobs on grid computing [71]

Cuckoo search Reliable embedded system recon�guration [72]

Metaheuristic discretizations Teaching-learning Distribution system [73]

operator transformation, where the metaheuristic operator is
adapted to a binary problem. When we analyze the operator
adaptation, we found methods that transform the algebraic
operations andmethods that use a probability for performing
the transition in the search space. Table 3 summarizes these
results.

Moreover, we provide a summary of the main discretiza-
tion techniques, indicating the metaheuristic that was used
and what problem was resolved. 	is summary is shown in
Table 4.

Additionally, we investigate what speci�c metaheuristics
use these binarization techniques. 	e conclusion is that the
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Table 5: Summary of two-step binarization methods.

Binarization
techniques

Metaheuristic Problem References

Transfer function

Fire�y

Set covering problem [132, 133]

Synthesis of thinned planar antenna array [134]

Nonlinear binary optimization [135]

Network and reliability constrained unit commitment problem [78]

Permutation �ow-shop scheduling problem [136]

Algae Knapsack problem [41]

Arti�cial bee colony
Set covering problem [96]

	ermal unit commitment [137]

Cuckoo search Bulk power system [37]

Di�erential evolutionary
Multiagent systems [29]

Knapsack problems [30]

Binary bat
Unimodal, multimodal [138]

Traveling Salesman [139]

Gravitational search Unimodal, multimodal [80, 138]

Open source development model Combinatorial problems [140]

Particle swarm

Optimize sizing of capacitor banks [82]

Bulk power system [81]

Network recon�guration [83]

Unit commitment problem [31]

Knapsack problems [41, 74]

Teaching-learning based
Designing plasmonic nanobipyramids based on absorption

coe
cient
[85]

Electromagnetism-like method Traveling sales [141]

Cat�sh Feature selection [142]

Great value priority
Binary Bat Antenna positioning problem [87]

Particle swarm Quadratic assignment problem [86]

Angle modulation

Particle swarm

N-queens [92]

Binary problems [89]

Finding defensive islands of large-scale power systems [90]

Di�erential evolution
Knapsack problems [93]

Binary problems [94]

Arti�cial bee colony
Binary problems [96]

Feature selection [95]

Binary bat
Graph coloring [143]

Antenna positioning problem [87]

most frequently usedmethod is the transfer function, belong-
ing to two-step binarization. Furthermore, we searched for
what type of optimizations problems were resolved by the
di�erent techniques. 	e summary is shown in Tables 5 and
6.

	e principal research in this area is to try to under-
stand in a general way how exploration and exploitation
properties are mapped from continuous metaheuristics to
discrete or binary metaheuristics. 	is allows improving the
result of the metaheuristics and enlarging the spectrum of
discrete or binary problems to solve. 	is compilation work
of discretization and binarization techniques allows us to

conclude that no general technique exists that allows for
e
cient discretization.
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Table 6: Summary of continuous-binary operator transformation.

Binarization techniques Metaheuristic Problem Reference

Boolean approach

Particle swarm
Antenna design problem [98, 99]

Binary problems [97]

Binary arti�cial bee colony Binary problems [100]

Set-based approach

Particle swarm

Traveling salesman problem [103]

Multidimensional knapsack problem

Vehicle routing problem [101]

Feature selection [144]

Jumping frogs Combinatorial problems [145]

Water cycle Truss structure [146]

Mine blast Truss structure [146]

Gravitational Traveling Salesman [147]

Imperialist competition Transmission expansion Planning [148]

Invasive weed
Typical benchmark functions (Sphere, Rosenbrock, Rastrigin,

Griewank)
[149]

Social impact theory Pattern recognition [150]

Quantum binary approach

Particle swarm

Competitive facility [151]

Location problems

Knapsack problem [108]

Power quality monitor placement method [111]

Di�erential evolution

Knapsack problem [151]

Combinatorial problems [113]

Image thresholding [114]

Cuckoo search
0-1 knapsack problem [115]

Bin packing problem [116]

Ant colony optimization Image thresholding [114]

Harmony search 0-1 knapsack problem [117]

Monkey 0-1 knapsack problem [118]

Binary method based on
estimation of distribution

Particle swarm Knapsack problem [120]

Di�erential Evolution Optimization problems [121, 122]

Genetic Economic dispatch problem [106]

Local search Probabilistic traveling salesman problem [123]

Memetic Probabilistic traveling salesman problem [123]
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[96] G. Pampará and A. P. Engelbrecht, “Binary arti�cial bee colony
optimization,” in Proceedings of the IEEE Symposium on Swarm
Intelligence (SIS ’11), pp. 1–8, IEEE Perth, April 2011.

[97] F. Afshinmanesh, A. Marandi, and A. Rahimi-Kian, “A novel
binary particle swarm optimization method using arti�cial
immune system,” in Proceedings of the International Conference
on Computer as a Tool (EUROCON ’05), vol. 1, pp. 217–220,
IEEE, 2005.

[98] A. Marandi, F. Afshinmanesh, M. Shahabadi, and F. Bahrami,
“Boolean particle swarm optimization and its application to the
design of a dual-band dual-polarized planar antenna,” in Pro-
ceedings of the IEEE International Conference on Evolutionary
Computation (CEC ’06), pp. 3212–3218, Vancouver, BC, Canada,
July, 2006, Part of WCCI 2006.

[99] K. V. Deligkaris, Z. D. Zaharis, D. G. Kampitaki, S. K. Goudos,
I. T. Rekanos, and M. N. Spasos, “	inned planar array design
using boolean PSO with velocity mutation,” IEEE Transactions
on Magnetics, vol. 45, no. 3, pp. 1490–1493, 2009.

[100] D. Jia, X. Duan, and M. K. Khan, “Binary arti�cial bee
colony optimization using bitwise operation,” Computers and
Industrial Engineering, vol. 76, pp. 360–365, 2014.

[101] Y. J. Gong, J. Zhang, O. Liu, R. Z. Huang, H. S. H. Chung, and
Y.-H. Shi, “Optimizing the vehicle routing problem with time
windows: a discrete particle swarm optimization approach,”
IEEE Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, vol. 42, no. 2, pp. 254–267, 2012.

[102] M. Neethling and A. P. Engelbrecht, “Determining RNA sec-
ondary structure using set-based particle swarm optimization,”
in Proceedings of the IEEE International Conference on Evolu-
tionary Computation (CEC ’06), pp. 1670–1677, Vancouver , BC,
Canada, July 2006, Part of WCCI 2006.

[103] W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu,
and Y. H. Shi, “A novel set-based particle swarm optimization
method for discrete optimization problems,” IEEE Transactions
on Evolutionary Computation, vol. 14, no. 2, pp. 278–300, 2010.

[104] J. Langeveld and A. Engelbrecht, “A generic set-based particle
swarm optimization algorithm,” in Proceedings of the Interna-
tional Conference on Swarm Intelligence (ICSI ’11), Paris, France,
2011.

[105] J. Langeveld and A. P. Engelbrecht, “Set-based particle swarm
optimization applied to the multidimensional knapsack prob-
lem,” Swarm Intelligence, vol. 6, no. 4, pp. 297–342, 2012.

[106] Y.-P. Chen and C.-H. Chen, “Enabling the extended compact
genetic algorithm for real-parameter optimization by using
adaptive discretization,” Evolutionary Computation, vol. 18, no.
2, pp. 199–228, 2010.

[107] J. Sun, B. Feng, and W. Xu, “Particle swarm optimization with
particles having quantum behavior,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’04), pp. 325–331,
Portland, Ore, USA, June 2004.

[108] Y. Shuyuan,W.Min, and J. Licheng, “A quantum particle swarm
optimization,” IEEECongress on Evolutionary Computation, vol.
1, pp. 19–23, 2004.



18 Complexity

[109] J. Wang, Y. Zhang, Y. Zhou, and J. Yin, “Discrete quantum-
behaved particle swarm optimization based on estimation of
distribution for combinatorial optimization,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC ’08), pp.
897–904, Hong Kong, China, June 1-6, 2008.

[110] J. Zhao, J. Sun, andW. Xu, “A binary quantum-behaved particle
swarm optimization algorithm with cooperative approach,”
International Journal of Computer Science, vol. 10, no. 2, pp. 112–
118, 2005.

[111] A. A. Ibrahim, A. Mohamed, H. Shareef, and S. P. Ghoshal,
“An e�ective power qualitymonitor placementmethod utilizing
quantum-inspired particle swarm optimization,” in Proceedings
of the International Conference on Electrical Engineering and
Informatics (ICEEI ’11), pp. 1–6, Bandung, Indonesia, 7-19 July,
2011.

[112] A. R. Hota and A. Pat, “An adaptive quantum-inspired dif-
ferential evolution algorithm for 0-1 knapsack problem,” in
Proceedings of the 2ndWorld Congress onNature and Biologically
Inspired Computing (NaBIC ’10), pp. 703–708, December 2010.
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