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ABSTRACT

The magnetic field strength inside a model coronal loop is “estimated” using coronal seismology, to examine the re-
liability of magnetic field strengths derived from observed, transverse coronal loop oscillations. Three-dimensional
numerical simulations of the interaction of an external pressure pulse with a coronal loop (modeled as a three-
dimensional density enhancement inside a two-dimensional magnetic arcade) are analyzed and the “observed”
properties of the excited transverse loop oscillations are used to derive the value of the local magnetic field strength,
following the method of Nakariakov & Ofman. Due to the (unexpected) change in periodicity, the magnetic field
derived from our “observed” oscillation is substantially different from the actual (input) magnetic field value (approx-
imately 50%). Coronal seismology can derive useful information about the local magnetic field, but the combined
effect of the loop curvature, the density ratio, and aspect ratio of the loop appears to be more important than previously
expected.
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1. INTRODUCTION

Coronal seismology (Uchida 1970; Roberts et al. 1984) can
provide estimates of local plasma parameters that are difficult to
obtain by direct measurements (see reviews by e.g., De Moortel
2005; Nakariakov & Verwichte 2005 or Banerjee et al. 2007).
The recent confirmation of the ubiquitous presence of waves and
oscillations in the solar atmosphere by, for example, Tomczyk
et al. (2007), is likely to substantially widen the possible
application of coronal seismology. One of the most promising
applications so far has been the determination of the magnetic
field strength from observed loop oscillations. Nakariakov
et al. (1999) reported flare-induced, transverse coronal loop
oscillations, which were interpreted as fast, standing, kink,
magneto acoustic modes. Using this interpretation, Nakariakov
& Ofman (2001) deduced the magnetic field strength of the
oscillating coronal loops, by combining observed parameters
and basic MHD wave properties, as suggested by Roberts et al.
(1984). Assuming a density ρ0 = 1×10−14–1.5×10−15 g cm−3

and a density ratio of ρe/ρ0 = 0.1 (where ρ0 is the density
inside the coronal loop and ρe is the density of the external
medium), the magnetic field strength was estimated to be in the
range B0 = 4–30 G. Following the same calculation, but for
different examples of observed, transverse loop oscillations by
TRACE, Aschwanden et al. (2002) and Verwichte et al. (2004)
reported values of B0 = 3–90 G and B0 = 9–46 G, respectively.
More recently, Van Doorsselaere et al. (2008) used Hinode/EIS
observations of a coronal kink mode oscillation to derive a
magnetic field strength of 31–47 G. Finally, Wang et al. (2007)
followed essentially the same method to deduce the magnetic
field strength from observed oscillations interpreted as standing,
slow modes and found values of the order of B0 = 12–61 G.

All the above authors used observed coronal loop oscillations
to estimate the value of the local magnetic field strength. These
estimates are essentially based on the observed periodicity,
loop length, and density, combined with the interpretation
of the observed oscillations as MHD modes. Pascoe et al.
(2009, hereafter Paper I) presented three-dimensional numerical
simulations of coronal loop oscillations, investigating the effect
of the attack angle of a pressure perturbation on the induced

kink mode oscillations. In Paper I, it was noted that the
periodicity of the loop oscillation differed substantially from
the theoretically expected value. Here, we investigate how this
modified periodicity could affect coronal seismology estimates
of the local magnetic field strength. We will essentially follow
the analysis of Nakariakov & Ofman (2001) to “estimate” the
magnetic field strength inside our model coronal loop and will
then compare this value to the actual magnetic field strength
in the numerical domain. This comparison will allow us to
examine the reliability of the magnetic field strength derived
from coronal seismology. The Letter is organized as follows: the
simulations are described in Section 2 and analyzed in Section 3.
A Discussion and conclusions are given in Sections 4 and 5,
respectively.

2. MODEL SETUP

The numerical simulations on which the results presented
in this Letter are based follow the same setup as described in
Paper I: the three-dimensional numerical domain contains a
two-dimensional arcade magnetic field (B ∼ 1/r), in which a
loop of (minor) radius a is modeled as a density enhancement,
using a modified Epstein profile (see Equation (1) in Paper I).
We use a density ratio ρ0/ρe = 10. Figure 1 shows the modeled
coronal loop as an isosurface of density (red), as well as a few
representative magnetic field lines. The color gradient on the
bottom boundary shows the vertical component of the magnetic
field (Bz) in this plane.

The ideal, nonlinear MHD equations are solved using the
Lare3D code (Arber et al. 2001). The numerical domain is
roughly 175×175×90 Mm with a resolution of 400×400×200
grid points. This higher resolution (compared to Paper I)
enables us to actually track the loop displacement, consistent
with the analysis of observed, transverse loop oscillations
(see, e.g., Nakariakov et al. 1999). As in Paper I, the open
corona is approximated using damping layers to avoid reflection
of any perturbations back into the numerical domain. The
normalization is based on the loop oscillations studied by
Nakariakov et al. (1999), so the radius of curvature rc is chosen
to give a loop length of L = πrc = 130 Mm and a kink speed
of about 1 Mm s−1 at the loop apex. Finally, we use a relatively
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Figure 1. Three-dimensional numerical domain showing the density-loaded
model coronal loop (red isosurface) as well as a few representative magnetic
field lines outlining the arcade structure. The color contours at z = 0 represent
the vertical magnetic field strength in this plane.

large value for the coronal plasma β, namely β = 0.1 at the
loop apex, to avoid a loop top density enhancement caused by
ponderomotive effects (Terradas & Ofman 2004).

A few initial time steps are run without a driver to ensure
that any flows resulting from the nonequilibrium near r = 0
are negligible. Subsequently, a pressure pulse is released inside
the numerical domain. The pulse has a width comparable to
the loop diameter and is situated at the same height as the loop
apex, at a distance of about 40 Mm away. The pressure pulse
travels through the numerical domain and excites a transverse,
global kink mode oscillations in the coronal loop. This process
is described in detail in Paper I so we will here only repeat those
aspects needed for our calculation of the magnetic field.

3. ANALYSIS OF TRANSVERSE LOOP OSCILLATIONS

Following the analysis of Nakariakov et al. (1999) and
Nakariakov & Ofman (2001) we track the loop apex by
determining the position of the local maximum in density.
As we are using a (modified) Epstein profile for the density
(Nakariakov & Roberts 1995), this maximum is clearly defined.
Figure 2 shows cross sections of the density through the loop
apex (and perpendicular to the plane of the loop), stacked along
the y-axis as a function of time (an arbitrary constant has been
added to the intensity at each time step). We can clearly see
an oscillatory displacement of the loop apex, initially of the
order of several grid points (red) but decaying very rapidly at
later times (blue). We will here only focus on those parameters
needed to determine the magnetic field strength and hence will
not discuss this rapid damping further.

In Paper I, we interpreted the loop oscillations as global kink
mode oscillations and hence, the phase speed is given by

2L

P
= ck ≈ vA0

(
2

1 + ρe/ρ0

)1/2

, (1)

where P is the period of the oscillation, L the loop length,
vA0 the Alfvén speed inside the loop, and ck the kink speed.
Note that this approximation is based on the assumption that
B0 = Be. In our magnetic arcade model, the field strength of the

Figure 2. Cross sections of the density around the loop apex (perpendicular to
the plane of the loop) for a strong initial pressure perturbation (δp/p ≈ 4000).
The cross sections are stacked along the y-axis as a function of time by adding
an arbitrary constant to the density at each time step (red corresponds to earlier
times, blue to later times).

Figure 3. Displacement of the loop apex as a function of (nondimensional) time
for three different amplitudes of the initial pressure pulse (black: δp/p ≈ 4000;
red: δp/p ≈ 2000; blue: δp/p ≈ 1000).

external magnetic field (Be) varies but the assumption B0 = Be

is still true in the plane of the (transverse) kink oscillation. The
Alfvén speed is given by vA0 = B0/

√
ρ0 (as the normalization

of Lare3D implies that μ = 1) and hence we can express the
magnetic field (in nondimensional units) inside the coronal loop
as

B0 =
√

2L

P

√
ρ0(1 + ρe/ρ0) . (2)

From this expression we can see that the estimate of the magnetic
field strength depends on the loop length, the “observed” period,
the internal density, and the density ratio.

In Figure 3, the position of the loop apex is plotted as
a function of time. The different colors correspond to three
different amplitudes of the initial pressure perturbation: δp/p ≈
1000 (blue), δp/p ≈ 2000 (red), and δp/p ≈ 4000 (black). The
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Figure 4. Periodogram of the oscillatory loop displacements shown in Figure 3.
Note that the period on the horizontal axis is given in nondimensional units
(multiplying by 4.3 gives the corresponding periods in seconds). The dashed
vertical line represents the theoretically predicted period.

displacement of the loop apex is clearly oscillatory. Naturally,
the amplitude of the displacement is higher for a stronger
pressure pulse but the period of the oscillation is roughly the
same in all three cases. This is confirmed in the corresponding
periodogram (Figure 4) and the actual “observed” periods for
the three different examples are Pobs = 39.7 (high pulse),
Pobs = 40.5 (medium pulse), and Pobs = 43.1 (low pulse).
In dimensional units, using t̃ = 4.3 s, these periods correspond
to 171, 174, and 185 s, respectively.

Using these periods, as well as a (nondimensional) loop length
L = 5.8, a loop density ρ0 = 10 and density ratio ρe/ρ0 = 0.1,
we can now estimate the local magnetic field strength from
Equation (2). We find values of Bobs = 0.69 (high pulse),
Bobs = 0.67 (med pulse), and Bobs = 0.63 (low pulse). In
our subsequent discussion, we will use the average value of
Bobs = 0.66. From the initial snapshot, the actual input value of
the magnetic field strength at the loop apex, in nondimensional
units, is given by B0 = 0.46 and hence, the estimates obtained
from coronal seismology (of our numerical oscillations) are
substantially different.

To convert the values of the magnetic field strength to dimen-
sional quantities, we choose a loop density ρ0 = 109.3±0.3 cm−3

(see Nakariakov & Ofman 2001). Using this value, the nor-
malizing constant for the magnetic field strength in our simu-
lations is 22–44 G. Hence, the value of the derived magnetic
field is about 15–30 G, compared to an input magnetic field of
10–20 G.

4. DISCUSSION

The value for the magnetic field strength obtained from our
coronal seismology estimate differs from the actual (input) mag-
netic field strength by almost 50%. This substantial difference
is caused by the modification of the period of the loop oscilla-
tions. In Paper I, we showed that, qualitatively, the (numerical)
loop oscillations correspond to a global, transverse kink mode;
the amplitude of the displacement has a single maximum at the
loop apex and is zero at both loop footpoints. Theoretically, for
a global kink mode, the given loop length (L = 5.8) and kink
speed (ck = 0.2) would result in a global kink mode period
of 58 (using P ≈ 2L/ck , see vertical dashed line in Figure 4).
The actual periods of our loop oscillation are of the order of
40–43, much smaller than theory predicts. This reduction in pe-
riod was already noted in Paper I and was previously described
by Miyagoshi et al. (2004). It is also present (but not noted) in

McLaughlin & Ofman (2008). Miyagoshi et al. (2004) found
(empirically) that in a curved geometry, the period scales as
P ∼ ρ0.33

0 , whereas theoretically (in a straight cylinder), one
would expect P ∼ ρ0.5

0 . According to this scaling and using
ρ0 = 10, our “expected” period of 58 would reduce to 39, which
is very close to the actual periods of the loop oscillations.

As stated above, the modification of the period and the
possible scaling with the loop density ρ0 has so far only been
determined empirically and hence, more work is needed to
investigate in which circumstances this reduction of the period
will occur. Curvature and loop density seem to be important
ingredients but the loop aspect ratio (ratio of the loop length
and loop (minor) radius) probably also plays a role. Indeed, Van
Doorsselaere et al. (2004) found that in the limit of thin coronal
loops, the period of oscillation was only marginally affected by
the curvature whereas the numerical simulations tend to model
loops with relatively large aspect ratios, due to restriction in the
number of grid points. The aspect ratio used in our numerical
simulation is 0.035, compared to the observational value of
0.013–0.018 (corresponding to a loop radius of 2 ± 0.36 Mm)
quoted by Nakariakov et al. (1999). For larger aspect ratios (i.e.,
a larger loop radius a), Edwin & Roberts (1983) expected a
lower phase speed, and hence, a higher period. It is not clear
why our simulations, as well as those by Miyagoshi et al. (2004)
and McLaughlin & Ofman (2008), do not follow this trend. We
speculate it is due to the combination of a relatively large aspect
ratio and density contrast and the loop curvature but this aspect
will be investigated in detail in a forthcoming paper.

The loop length and density ratio in our numerical simulations
are based on the observational values also used in the magnetic
field estimate by Nakariakov & Ofman (2001). Our numerical
aspect ratio is somewhat larger than the observational value
but only by a factor of 2–3. Hence, the modification of the
period, and, as a consequence, the substantial overestimate of
the magnetic field, could be a realistic problem for coronal
seismology. In their original paper, Nakariakov & Ofman (2001)
acknowledged that there is significant uncertainty in the value
of the density ratio ρe/ρ0 but pointed out that this does not
affect the estimate of the magnetic field strength substantially.
However, the modification of the period has a much larger effect
on the determination of the magnetic field strength. Nakariakov
& Ofman (2001) estimate the uncertainty in the value of B as

δB =
√

(δL)2 + (δP )2 + (δρ0/2)2, (3)

where δL, δP , and δρ0 are the relative errors in the loop
length, oscillation period, and loop density, respectively. Using
Equation (3) and δL ≈ 10%, δP ≈ 3%, and δρ0 ≈ 50% (the
values quoted by Nakariakov & Ofman (2001)), the error in the
magnetic field strength would be of the order of 30%. However,
if the uncertainty associated with the period (compared to the
theoretically expected value) is of the order of δP ≈ 35%,
the relative error in B increases to about 45% (which is in
good agreement with the difference between the derived and
theoretically predicted values in our numerical simulations).

5. CONCLUSIONS

In this study, we used three-dimensional numerical simu-
lations of the interaction between a model coronal loop and
an initial pressure pulse to examine impulsively excited coro-
nal loop oscillations. Following the analysis of Nakariakov &
Ofman (2001), we used the properties of the oscillations to de-
rive an estimate for the magnetic field strength of our model
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coronal loop and found that this “coronal seismology” estimate
differs substantially from the actual input magnetic field. The
error is of the order of 50% and is caused by a reduction in
the oscillation period compared to the theoretically predicted
value. Although this modification of the period has been noted
before in Paper I (as well as in Miyagoshi et al. 2004), a large-
scale parameter study of the combined effects of curvature,
loop density, and aspect ratio is needed to assess the impact
and occurrence of this modified periodicity. We plan to verify
the possible P ∼ ρ0.33

0 scaling both numerically and analyti-
cally in a forthcoming paper. It is likely that at least in some
cases, the uncertainty associated with the value of the magnetic
field strength derived from coronal seismology will be larger
than previously expected. The results presented in this Letter
are based on a very simple arcade model but clearly highlight
the need to develop three-dimensional numerical simulations of
realistic active region environments, to assess the reliability of
plasma parameters derived from coronal seismology.
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