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In this paper we describe the development and refinement of evidence rules and measurement 

models within the evidence model of the evidence-centered design (ECD) framework in the context 

of the Packet Tracer digital learning environment of the Cisco Networking Academy. Using Packet 

Tracer learners design, configure, and troubleshoot computer networks within an interactive 

interface. This leads to product data, which result from the students’ final submitted network 
configurations, and process data, which are log file entries detailing how they got to the final 

configurations. We discuss how an iterative cycle of empirical analyses and discussions with 

subject-matter experts is essential for identifying and accumulating evidence about skill profiles of 

learners and their development. We present results from descriptive, exploratory, and confirmatory 

diagnostic modeling analyses for both data types, which required bringing to bear a diversity of 
tools from multivariate statistics, modern psychometrics, and educational data mining. We close the 

paper with a discussion of the implications of this work for evidence-based argumentation guided 

by ECD principles within digital learning environments more generally. 
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1. INTRODUCTION  

This special issue of JEDM is dedicated to the application of evidence-centered design 

(ECD) [e.g. Mislevy et al. 2003; Mislevy et al. 2006; Mislevy et al. this issue] to the 

design, implementation, and data analysis of innovative digital learning environments 

that can be used for diagnostic assessment. At a conceptual level, the ECD framework 

was created to support assessment developers in making explicit the rationales, choices, 

and consequences reflected in their assessment design.  

While ECD can be applied to the development of any kind of assessment where the a 

priori definition of constructs and associated variables is meaningful, it is particularly 

suitable to the development of digitally delivered performance-based assessments that are 

created in the absence of easily delineable test specifications [e.g. Rupp et al. 2010]. It is 

in these contexts that the number, complexity, and connectedness of decisions that need 

to be made about the assessment design and results interpretation are most daunting. 

1.1 Evidence Models in ECD 

As reiterated by Mislevy et al. in this issue, the key components of a validation argument 

based on ECD practices are (a) domain analysis, (b) domain modeling, (c) the conceptual 

assessment framework, (d) the assessment implementation, (e) the assessment delivery, 

and (f) post-assessment activities. While the work that we describe in this paper will 

touch necessarily on all of these components to some degree, we are most concerned with 

activities within the conceptual assessment framework.  

More specifically, we are concerned with the interplay between theory and data, via 

continual exchanges between subject-matter experts and statisticians, in order to develop 

the evidence rules and measurement models that make up the evidence model of the 

conceptual assessment framework. Evidence rules refer to the means by which we select 

particular elements from a student’s work product and apply scoring rules to obtain 

observable values for score variables (i.e. evidence identification). Measurement models 

provide us with the method of combining these observables score variables to make 

inferences about our constructs of interest (i.e. evidence accumulation). We refer the 

reader to Almond et al. [2002] for a more detailed discussion of the relationships of 

measurement models and score variables within the conceptual assessment framework 

and its operationalization in the assessment delivery system.   
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1.2 Practical Implications of Evidence Models 

The evidence model is not just a theoretical component within a conceptual framework 

that exists for design purposes only; in actual assessment delivery it drives the 

identification and accumulation of empirical evidence about expertise within the digital 

learning environment. Its specification helps teams of interdisciplinary experts determine 

how to evaluate which features of the work product provide evidence about student 

proficiencies, how to apply rules to those work products to obtain observable values of 

score variables, and how to connect the observable values to student model variables that 

represent the proficiencies that are of inferential interest. In other words, the evidence 

models provide the structure and the logic of the processes that take place in an 

assessment. 

In practice, evidence rules and measurement models are often more complex for 

digital learning environments than for traditional standardized large-scale assessments. 

For example, for a multiple-choice question a scoring rule can simply be “if the correct 

option is chosen, then score the answer as correct; otherwise, score it as incorrect”. In a 

digital learning environment, the submitted work products (e.g. configured computer 

networks, causal maps, reports of experiments) are often more complex and thus require 

sets of scoring rules that attend to specific features.  

For example, in the network engineering environment that is the focus of this paper, a 

scoring rule could be “if data can move from one PC to another then score this part of the 

network as correct; otherwise, score it as incorrect.” However, it is often less clear how 

the resulting scores should be weighted and aggregated which is why one, or often 

multiple, evidence models need to be specified. Moreover, once we focus our attention on 

the log files of learners, often consisting of hundreds of commands for individual 

learners, it is much less clear what appropriate scoring rules should be that produce 

observable score variables or how these should be synthesized. 

1.3 Objectives of Paper 

In this paper we articulate both the science and the art of specifying and implementing 

evidence models within a digital learning environment. We present a case study based on 

Packet Tracer 

(http://www.cisco.com/web/learning/netacad/course_catalog/PacketTracer.html), a 

simulation and visualization environment designed to support the teaching, learning, and 

http://www.cisco.com/web/learning/netacad/course_catalog/PacketTracer.html
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assessment of computer network engineering  skills [Frezzo et al. 2010; Frezzo et al. 

2009].  

Like many digital learning environments, Packet Tracer produces two prototypical 

types of data structures that we alluded to in the previous subsection. Product data arise 

from the application of prespecified scoring rules to submitted work products; these 

scoring rules are generated and refined by experts and are then automated within the 

system. Process data arise from the moment-to-moment actions that are captured by the 

computational engine that is running the digital learning environment, which result in 

complex log files of these action sequences.  

In this paper, we first employ various potential measurement models using the product 

data to examine and test alternative rules for evidence identification and accumulation. 

We then analyze the process data (i.e. the log files) to similarly define evidence rules that 

can be used to help translate this mass of data into meaningful observable score variables 

and resulting aggregates.  

While doing this, we build two principal arguments. First, we show how a continual 

information exchange between subject-matter experts and statisticians is indispensable 

for building coherent evidence-based narratives for product and process data. Second, we 

demonstrate how data-analytic work can benefit from a coordinated use of tools from 

areas as diverse as multivariate statistics [e.g. Lattin et al. 2003], psychometrics [e.g. 

Raykov and Marcoulides 2011], and educational data mining [e.g. Baker and Yacef 2009; 

Romero et al. 2011]. Put another way, we argue that the technological advances that 

digital learning environments provide require a similar match in advancements in 

assessment design and the methodological tools that are brought to bear to analyze their 

output. 

1.4 Organization of Paper 

We have divided our paper into three main sections. In the first main section we describe 

(a) the Packet Tracer environment, (b) the task that learners were asked to solve, and (c) 

the learner samples used in the subsequent analyses. The second main section is 

dedicated to the structure and analysis of product data using various measurement 

models. We specifically describe measurement model analyses with both diagnostic 

classification models [e.g. Rupp et al. 2010] and Bayesian networks [e.g. Almond et al.  

in press].  
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The third main section is dedicated to the structure and analysis of the process data 

from Packet Tracer. We begin by describing the structure of the log files and subsequent 

tagging efforts. We then describe specifications of evidence identification rules for 

translating these work products into observable scores and subsequent efforts to 

accumulate this evidence with tools from multivariate data analysis and educational data 

mining. We then describe how learner characterizations from the process data analyses 

can be empirically connected to learner characterizations from the product data analyses. 

We close this paper by articulating the lessons that we have learned in this project for 

principles and practices around specifying and implementing evidence models for 

complex data structures in digital learning environments in order to construct a coherent 

and comprehensive validation argument guided by the ECD framework. 

2. THE PACKET TRACER ENVIRONMENT AND LEARNER SAMPLES 

The Packet Tracer environment that we referred to in the previous section is one of the 

digital learning environments that are provided as part of the Cisco Networking Academy 

(http://www.cisco.com/web/learning/netacad/index.html), a global program in which 

information technology is taught through a blended program of face-to-face classroom 

instruction, an online curriculum, and online assessments.  

Courses are delivered at high schools, two- and three-year community college and 

technical schools, and four-year colleges and universities. Since its inception in 1997, the 

Networking Academy has grown to reach a diverse population of about a million students 

each year in more than 165 countries. Learners participate in in-class work, laboratory 

activities on real equipment and the Packet Tracer simulation tool, standardized large 

scale assessments with multiple choice and other selected response formats, and digital 

gaming activities. As part of Cisco's corporate social responsibility program, most 

instructional materials, including the Packet Tracer environment, are made available to 

the learners in Networking Academy classes for free.  

2.1 The Packet Tracer Environment 

Packet Tracer is a flexible digital platform for designing, administering, and scoring 

complex tasks in the area of network engineering. Part of the appeal of Packet Tracer for 

learners is the authentic representations of real-life equipment, which include images of 

their physical shells, their ports, and their interiors, as well as authentic command line 

structures for interacting with the devices. The Packet Tracer environment also allows 

http://www.cisco.com/web/learning/netacad/index.html
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instructors to design novel activities and assessments. Instructors can choose to  create 

relatively simple activities (e.g. troubleshooting an already configured network with a 

minimum number of PCs, routers, and switches) or rather complex assessments (e.g. 

setting up, configuring, and troubleshooting a network with multiple PCs, rout ers, and 

switches where subparts of the network serve different functions), in addition to 

administering prewritten activities and assessments.  

Figure 1 shows a screenshot of the Packet Tracer interface with a relatively complex 

network structure. Each device is identified with an icon and clicking on the icon brings 

up a window with both a physical representation of the device and simulated 

configuration interfaces, which is shown in Figure 2. The toolbars on the top, right, and 

bottom contain a variety of icons that allow learners to simulate and visualize packets of 

data moving through the network.  

 

 

Fig. 1. Screenshot of Packet Tracer window with a complex network structure. 



 

55                  JEDM Special Issue, Article 2, Volume 4, Fall 2012 

 

 

Fig. 2. Screenshot of Packet Tracer interface allowing configuration of a router. 

 

The task that is the focus of this paper is a Packet Tracer Skills-based Assessment 

(PTSBA) designed for the Network Fundamentals course in the Exploration curriculum 

of the Networking Academy. The Network Fundamentals course is the first course in a 

four-course series that teaches introductory networking skills; hence, we refer to this 

exam as the E1 PTSBA in the following. The E1 PTSBA is most often, although not 

exclusively, administered as a low-stakes formative assessment that prepares learners  for 

the hands-on skills exam that they take at the end of their class in which they demonstrate 

their learned skills on real equipment. 

We note that the network for the E1 PTSBA is much simpler than the network shown 

in Figure 1 but we cannot show the specific E1 task since it is used in some cases as a 

summative assessment activity. The E1 PTSBA gives learners a network topology of two 

PCs, one router, and one switch; the learners are asked to perform basic configuration and 

troubleshooting tasks to establish communication among these devices. Specifically, 

learners must assign IP addresses to two router ports and a switch port and troubleshoot a 

PC IP address. In addition, they must configure the hostnames, banners, and passwords 

on the router and switch and correctly cable the devices. Further information about the 
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general design of PTSBAs, including information about the processes of domain analysis 

and domain modeling within the ECD framework in this context, can be found in 

Chapple et al. [2009]. 

2.2 The Learner Samples 

The total dataset that was available for the analyses in this paper consisted of 2,269 

learners. However, there was some notable heterogeneity in this sample because 

instructors in the Networking Academy use the curriculum and tools provided to them in a 

variety of ways. For example, instructors can have learners take the E1 PTSBA during 

class time or can assign it for homework.  

Similarly, most instructors have learners take the E1 PTSBA as a formative learning 

experience, which is the way its use was intended, but some instructors use the 

assessment for summative grading purposes. It is likely that learners in the latter context 

are more motivated to perform better than learners in the former context. Thus, we would 

expect that they typically score somewhat higher and have more effective and efficient 

solution paths compared to learners who use the E1 PTSBA primarily as a learning tool.  

Analysis of data in the online grade book for the purpose of identifying the stakes 

with which the E1 PTSBA was likely given by instructors indicated that the E1 PTSBA 

was used for summative high-stakes purposes in approximately 11% of classes. In this 

data, 280 learners (14.28%) were in this summative subsample leaving 1,989 learners in 

the formative subsample. In this paper we do not necessarily always report analyses on 

both subsamples due to space limitations; however, we do point out places where there 

were noticeable differences in results. Table I summarizes gender and age characteristics  

of the combined, formative, and summative subsamples.  

 

Table I. Demographic Breakdown of Learners in Samples   

 

  

Combined 

Sample 

(n = 2,269) 

 

Formative 

Subsample 

(n = 1,989) 

 Summative 

Subsample 

(n = 280) 

% Male (% Missing) 83.1 (6.10) 

 

82.10 (7.00)  90.70 (0.00) 

Age Mean (SD) 26.94 (8.90) 

 

26.98 (8.99)  26.71 (8.33) 

Age Range [Min, Max] [12.50, 75.30] 

 

[12.50, 70.60]  [15.00, 75.30] 
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The information shows that learners were predominantly males in their mid - to late-

twenties in all three samples, although all three samples ranged from teenagers to 

septuagenarians.  

Table II shows the distribution of geographical regions for the three samples and the 

reference distributions for the general Networking Academy population. The information 

in Table II shows that the PTSBA exams are used more in some regions than others. For 

example, over 40% of the sample of PTSBA users is from the United States and Canada, 

while those countries only make up 14% of Networking Academy students. Similarly, 

only 1% of the sample is from Latin America, while Latin American students make up 

18% of the Networking Academy population. This is likely because the PTSBAs are 

currently only offered in English; they are in the process of being translated into the other 

languages. There were also some regions in which the PTSBAs were not used in a 

summative manner (i.e. Africa, Greater China, Latin America, and the Middle East).  

 

Table II. Regional Breakdown of Learners in Samples and the Networking Academy 

Population (%) 

 

 

Combined 

Sample 

Formative 

Subsample 

Summative 

Subsample 

Networking 

Academy 

Africa 2.6 3.0 0.0 5.0 

Asia Pacific  7.5 8.2 2.9 19.0 

Greater China 8.2 9.4 0.0 7.0 

Central and Eastern Europe 7.8 6.8 14.6 7.0 

Western Europe 21.8 20.4 32.1 19.0 

Latin America & Caribbean 1.0 1.2 0.0 18.0 

Middle East 1.4 1.6 0.0 7.0 

Russia & CIS 1.9 2.1 0.4 2.0 

US and Canada 41.6 40.5 50.0 14.0 

 

Thus, we note some disproportionate representations of learners according to 

geographical region in our sample data set.  
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2.3 Evidence Models for Product and Process Data for Packet Tracer 

As we noted in the first section, product data in Packet Tracer consist of scores that are 

assigned to the network configurations; specifically, we focus on the final network 

configuration submitted by the learner at the end of the E1 PTSBA  (i.e. the network with 

all of its connections and device configurations). The software currently evaluates 

particular features of the work product (e.g. an IP address, a label, or a password), 

compares them to predefined criteria and rules , and assigns an observable variable value 

(e.g. “if the submitted IP address is between 192.168.1.1 and 192.168.1.100 it is scored as 

correct; otherwise, it is scored as incorrect”). All of the current scoring rules lead to 

binary (i.e. ‘0’ vs. ‘1’) score variables and are fairly straightforward in the context of the 

E1 PTSBA even though they are more complex for other PTSBAs within the Networking 

Academy.  

The E1 PTSBA that is currently used operationally also includes a series of automated 

evidence accumulation rules that combine the observable score variables into subskill 

scores and a single total score. The scoring rules are conjunctive / non -compensatory in 

nature for the subskill levels and compensatory in nature for the total score level; all 

scoring rules were developed by the subject matter experts. That is, all of the binary 

observed score variables need to take on a value of ‘1’ (i.e. all of the steps in a subtask 

need to be solved correctly) for learners to obtain the full credit for the subskill variable. 

In contrast, total scores were simply computed as the sum of the subskill score variables 

so that a weaker performance for one subtask could be compensated for by a stronger 

performance on another subtask. Formal measurement models with latent variable 

models for testing the empirical viability of the evidence accumulation rules had so far 

not been applied to the data and are the focus of the second section of this paper.  

As we noted earlier, process data consist of log file entries, which are the time-

stamped commands learners enter on the devices of the network while they are designing, 

configuring, and checking it. Other actions within the network that do not lead to 

command line entries such as click sequences in the GUI are currently not tracked even 

though such tracking capabilities are currently in development. At the beginning of this 

project there were no agreed-upon operational scoring rules for the log files even though 

preliminary evidence identification rules for tagging the log files according to key sets of 

actions (e.g. management, configuration, and verification actions) had been postulated 

and tested offline. The work presented in the third section of this paper thus presents the 



 

59                  JEDM Special Issue, Article 2, Volume 4, Fall 2012 

 

first serious empirical foray into specifying and empirically utilizing alternative evidence 

identification and accumulation rules. 

2.4 Interplay between Interdisciplinary Expert Teams 

As we will show in the remaining sections of this paper, developing evidence rules and 

measurement models is not a problem that can be solved by statisticians alone. For 

example, choices need to be made by analysts about the grain size at which both produc t 

and process data should be analyzed for a given purpose. The decisions about which 

variables are important for a particular analysis are made based on an understanding of 

how observable score variables provide empirical evidence about unobservable 

proficiency variables in a student model for the reporting and decision-making purpose 

that is identified.  

For example, providing a summative report on a few relatively coarse-grained 

subskills (e.g. device connection, device configuration, IP addressing, troub leshooting) 

upon completion of a single or even multiple tasks requires different choices for evidence 

identification and accumulation than providing fine-grained diagnostic feedback for the 

purpose of misconception / error analysis and targeted scaffolding either during or after 

the completion of a single task.  

Similarly, indices from measurement models that speak to model-data fit or the degree 

to which numerical patterns in the output are robust across multiple samples do not 

provide insight into whether the produced accumulations of evidence are meaningful for 

the stakeholders who need to interpret them. Resolving issues surrounding the use of 

assessment information requires a continual and in-depth collaboration between 

statisticians, content and curriculum developers, learning scientists, assessment experts, 

and ideally, teachers.  This leads to a highly iterative process amongst these collaborators 

in practice. In other words, as our title for this paper implies, it is neither nuanced theory 

nor sophisticated statistical analysis alone or separate, but rather their interplay that 

creates evidentiary richness that carries practical utility for real-life decision making with 

it. 

3. EVIDENCE IDENTIFICATION AND ACCUMULATION FOR PRODUCT DATA 

As stated above, PTSBAs in the Networking Academy contain evidence identification 

rules for the product data that automatically score work product features as well as 
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automated evidence accumulation rules based on the assessment authors’ student model 

for the constellation of knowledge, skills, and abilities assessed.  

When following ECD assessment design, the structure of the measurement model that 

is responsible for evidence accumulation (i.e. that specifies which observable score 

variables are connected to which unobservable student model variables) is built into the 

structure of the tasks in that elements of a task are designed to provide evidence about a 

specific student model variable. In practice, the conceptual measurement models require 

empirical investigation to validate whether these hypothesized relationships are reflected 

in data from actual learners. In this section we describe the use of two diagnostic 

measurement approaches to empirically investigate the fit of the hypothesized 

measurement model for the product data to the score relationships observed in data.  

In describing our modeling approaches we want to underscore three critical 

methodological points. The first one is that an empirical evaluation of the tenability of a 

particular combination of observable variables should not only be consistent across 

descriptive analyses and a single model analysis but, rather, across multiple analyses with 

different structurally commensurate models. The second point is that different modeling 

approaches provide, themselves, different empirical ‘lenses’ onto the issue of combining 

observable score variables, and that one inevitably learns some unique aspects about this 

issue from each modeling approach. The third point is that any evaluations of results 

from statistical models can only be meaningfully made with reference to future decision -

making processes through exchanges between the subject -matter experts and the 

statisticians. 

We will specifically describe three modeling approaches that we utilized for our 

analyses. The first modeling approach that we describe is based on unidimensional item 

response theory (IRT) models [e.g. de Ayala 2009] and associated classical test theory 

(CTT) statistics [e.g. Crocker and Algina 1986], which we applied to observable score 

variables that were designed to provide coarser summaries of learner performance. 

The second modeling approach that we describe is based on a set of statistical models 

that are known as cognitive diagnosis / diagnostic classification models (DCMs) [e.g. 

Rupp and Templin 2008; Rupp et al. 2010], which we applied to observable score 

variables that were designed to provide finer summaries of learner performance. They are 

restricted latent class models that assign learners to a particular latent class (i.e. 

unobserved group) that is associated with a particular skill profile; the models we used 
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employed a simple ‘mastery’ vs. ‘nonmastery’ indicator for each skill. For example, a 

learner with the profile [1, 0, 1, 0] on four skills is said to have mastered the first and 

third skills but neither the second nor the fourth skill.  

The third modeling approach that we describe is based on Bayesian networks, or 

Bayes nets, for short [e.g. Almond et al. in press; Levy and Mislevy 2004], which we also 

applied to observable score variables; they were constructed to provide finer summaries 

of learner performance. Bayes nets are conceptually very close to DCMs in terms of 

modeling objectives and can produce almost identical results in some cases, depending 

on the model specification and estimation approach. An interesting practical reason for 

the joint use of DCMs and Bayes nets in this project was the differential expertise of 

different team members in these areas, which actually allowed the team to explore the 

theoretical and empirical relationships between these frameworks in ways that are not 

typically articulated or explored in the applied measurement literature. 

We emphasize specifically that we do not seek to describe one ‘correct’ statistical 

model. Rather, we demonstrate the complex decision-making processes that are involved 

in determining multiple ‘possible’ methodological approaches for determining multiple 

‘possible’ combinations  of observable score variables . We show that a combination of 

expert insight and statistical information can exclude some postulated combinations – as 

they are either not interpretable, not statistically robust, or neither – but that they do not 

necessarily directly point to a single preferable scoring solution either. In addition, 

different methodological approaches have different pros and cons and offer different 

insights. 

3.1 Investigating and Refining an Operational Scoring Structure 

Figure A1 shows the relationships among the observable score variables from the E1 

PTSBA that is currently used for operational reporting purposes; it also includes a 

specification of the expert-determined weights that were given to different subsets of 

variables. We will refer to this scoring structure as the component-based scoring 

structure for the remainder of the paper. 

The first level of the scoring structure is formed by 36 so-called primary observables 

that capture the presence or absence of key aspects of the final network configuration at a 

relatively fine grain size. Consequently, these primary observables are binary score 

variables that take a value of ‘1’ if a particular aspect of the network is set up and 

configured properly, and a value of ‘0’ otherwise, as specified in the evidence rules.  
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The second level of the scoring structure is formed by agg regating the primary 

observables into a set of 20 relatively coarse-grained compound observables. The scoring 

for the compound variables follows a conjunctive condensation rule [e.g. Maris 1999] in 

that a score of ‘1’ is given on the compound observables only if all of the constituent 

primary observables are ‘1’, and ‘0’ otherwise. Table A-I shows the names of the primary 

and compound observables along with a variety of descriptive statistics whose pattern we 

discuss in the following subsections.  

The compound observables are then further aggregated up into four proficiency 

variables, which are called performance components by the development team. These 

variables represent the primary skill sets that are targeted by the E1 PTSBA and are 

labeled device connection (DC), basic device configuration  (BDC), IP addressing (IP), 

and verification and troubleshooting  (VT). 

As noted above, the binary scores for the compound observables were weighted by an 

expert panel based on considerations about the relative importan ce of each of the 

components of the final network configuration or necessary actions that are represented 

by the compound observables. The 20 weighted compound observables add up to 100 

points for ease of interpretation, which is a final score aggregation that represents a 

global proficiency score for this assessment.  

The statistical aggregations of the primary observables into compound observables, 

compound observables into performance components, and performance components into 

a proficiency score, represent a theory-driven process for evidence accumulation. In order 

to investigate the empirical viability of the particular evidence accumulation that this 

scoring structure represents, we performed a variety of descriptive, exploratory, and 

confirmatory analyses.  

3.1.1 Descriptive Analyses and Unidimensional IRT Models. Due to space limitations 

we do not provide a comprehensive summary of all of our descriptive analyses at a fine 

level of detail here and instead focus on the key messages as they relate to our assessment 

of the proposed component-based scoring structure described above.  

First, we inspected the descriptive statistics for the primary observables, which are 

based on concepts and formulas in CTT. Specifically, we computed the proportions 

correct / p values as estimates of difficulty as well as the point-biserial correlation 

coefficient and D index as estimates of discriminatory power. Following Kline [2005, 

chapter 5] we computed the D index as the difference in p values between the lowest- and 
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highest-scoring 27% of learners. We computed the point-biserial correlation coefficients 

twice, once using the global proficiency total score and once using the four performance 

component scores; Table A-I shows these statistics. 

Consistent with the hypothesis that the learners in the s ummative subsample were 

motivated to perform better than those in the formative subsample, the p values for the 

summative subsample were higher than the corresponding values for the formative 

subsample. Similarly, with respect to both the single proficiency score and the 

performance component subscores, the values of the discrimination indices tended to be 

larger for the formative subsample than the summative subsample, particularly for the D 

index.  

Coefficient α estimates of scale homogeneity showed high internal consistency for the 

global proficiency score for all three samples (𝛼 = .95 for each). Thus, we estimated the 

one-, two-, and three-parameter unidimensional IRT models for each of the three 

samples. We compared both their relative fit – via likelihood-ratio tests and information 

indices – as well as their absolute fit – via item-fit statistics.  In short, the two-parameter 

IRT model, which allows for differences in difficulty and discrimination across th e 

primary observables, was the best-fitting model in relative and absolute terms across all 

samples using all of the tests and indices. The estimated reliabilities were .95 for the 

combined sample, .95 for the formative subsample, and .92 for the summative  subsample, 

which aligned with the Coefficient α estimates of .95 reported in the previous paragraph. 

Therefore, the descriptive analyses for the unidimensional proficiency score reflected 

that this was a relatively easy exam, especially for learners in the summative subsample, 

which the subject-matter experts viewed as being in alignment with their expectations. 

This was also reflected in the negatively skewed distributions of the observed global 

proficiency scores and the estimated latent trait scores from the IRT models in all 

samples. However, the statistical properties of the primary observables, as captured by 

CTT and IRT statistics, underscored that the statistical information provided these score 

variables varied quite a bit.  

In contrast, the Coefficient α estimates for the four subscales associated with the DC, 

BDC, IP, and VT performance components deteriorated somewhat as one would expect 

when there are fewer pieces of statistical information available per dimension. They 

specifically ranged from .71 to .93 for the combined sample, from .66 to .93 for the 
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summative subsample, and from .72 to .93 for the formative subsample. Moreover, the 

primary observables had similarly mixed measurement properties on these subscales.  

3.1.2 Diagnostic Modeling with DCMs. Based on the findings reported above, we 

decided to use DCMs and Bayes to investigate whether four discrete subscales could be 

used to accumulate evidence for the four subskills of DC, BDC, IP, and VT. We chose 

this approach over a traditional approach in, say, multidimensional item response theory 

[e.g. Reckase 2009] or multidimensional factor analysis [e.g. Thissen and Wainer 2001] 

because the relatively few primary observables with high discriminatory power that were 

available for each performance component made a finer differentiation of proficiency 

levels with continuous subscales statistically challenging, if not impossible.  

We estimated the DCMs for both the formative and summative subsample. Due to 

space limitations, all results in this subsection are for the larger formative subsample 

only; the patterns for the summative subsample were very similar. The classification 

using the four subskills of DC, BDC, IP, and VT showed a highly certain classification of 

the learners into the 24 = 16 possible latent classes; these classes represent all the possible 

combinations of mastery and nonmastery of the four performance components. That is, 

the posterior probabilities of membership in one of the 16 latent classes – the one that the 

learner would be assigned to – exceeded 90% for almost all learners .  

In order to criticize the fit of this model to the data, we chose to inspect the root 

mean-squared error of approximation  (RMSEA) index for each score variable. Its 

behavior was relatively well unders tood from previous simulation work [e.g. Kunina-

Habenicht et al. 2012], which suggested a desirable range of values between .00 and 

about .06 for ‘acceptable’ model-data fit at the score variable level. Unfortunately, the 

RMSEA fit index values for the primary observables in this model gave some cause for 

concern as more than 25% of score variables had values that were larger than desired 

(min = .02, P25 = .04, median = .07, P75 = .09, max = .13).  

Thus, in order to see whether the local model-data fit could be improved, we sought 

to simplify the model by imposing a restriction on the latent class space that allowed 

learners to be classified only into a subset of the original 16 latent classes; this subset 

needed to be specified a priori. We inspected the latent class membership probabilities 

across the 16 latent classes to identify those latent classes that had either no learne rs or 

very few learners in them relative to the remaining latent classes.  
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Furthermore, feedback from the subject-matter experts was sought to decide whether 

the skill profiles for the remaining latent classes that we identified as plausible were (a) 

theoretically defensible and (b) practically useful from an instructional / reporting 

viewpoint. After a consensus had been reached on this point, we imposed a set of 

restrictions in the original DCM that reduced the total number of estimated latent classes 

to five by means of a so-called attribute hierarchy [e.g. Tatsuoka 2009].  This improved 

the distribution of the RMSEA fit index (min = .01, P25 = .03, median = .04, P75 = .05, 

max = .09) while simultaneously improving classification certainty as the classification 

problem had now become statistically simpler.   

Due to internal coding, the four subskills that define the attribute profile for each 

latent class were, in sequence, DC, IP, BDC, and VT. Under this restricted DCM, 4.1% 

of learners were classified as not having mastered any of the four performance 

components (i.e. they had attribute profile [0, 0, 0, 0]), 18.7% were classified as having 

mastered only the DC component (i.e., they had attribute profile [1, 0, 0, 0]), 12.2% were 

classified as having mastered only the DC and BDC components (i.e. they had attribute 

profile [1, 0, 1, 0]), 11.5% were classified as having also mastered the IP component (i.e. 

they had attribute profile [1, 1, 1, 0]), and 53.6% were classified as having mastered all 

four performance components, including VT (i.e. they had attribute profile [1, 1, 1, 1]).  

This model structure reflects essentially an ordinal five-class solution that separates 

learners into five proficiency groups. As shown in Figure 3, the relationship between the 

latent-class membership variable and the observed total score from CTT as well as the 

estimated latent trait score (θ) from the two-parameter IRT model were rather strong 

(Spearman’s r = .844, p <.001 for the CTT score and Spearman’s r = .852, p < .001 for 

the IRT score).  

As Figure 3 suggests, a one-way ANOVA with latent class membership as the 

independent variable and post-hoc polynomial contrasts confirmed that the mean total 

score from CTT follows a cubic trend across the latent classes (t(1) = 6.443, p < .001, 

partial η2 = .811) while the mean IRT score follows a linear trend across the latent classes 

(t(1) = 2.121, p < .001, partial η2 = .683) in the E1 PTSBA learner population. The 

subject-matter experts verified that these distributional patterns were, indeed, consistent 

with the relative easiness of the PTSBA E1 assessment as well as the instructional 

ordering and cognitive complexity of the four skills.  
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          CTT Total Score                        IRT Latent Trait Score 

 

Fig. 3. Proficiency score distributions for DCM analysis of components-based scoring structure with linear hierarchy 
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3.1.3 Diagnostic Modeling with Bayes Nets. To push the diagnostic analyses one step 

further, we decided to also estimate a joint measurement model for all three subskill 

levels of the variable hierarchy (i.e. primary observables, compound  observables, and 

performance components); we used latent variables to represent the compound 

observables and performance components and used the primary observables as the 

observable score variables . This could not be done easily within the model specification 

and estimation framework for DCMs. However, a relatively effective alternative way of 

specifying, estimating, and refining such a model is with Bayesian nets. 

A Bayesian approach to model specification and estimation for the Bayes nets 

allowed us to rely on a series of very flexible model criticism tools that are often 

subsumed under the term posterior predictive model checking  (PPMC) [e.g. Levy et al. 

2011; Sinharay 2006]. PPMC proceeds by employing functions called discrepancy 

measures that either capture features of the data or the discrepancy between the data and 

the model, which one can essentially think of as fit statistics.  

Values for the discrepancy measures are computed from the observed data and then 

compared to values obtained using replicate data drawn from the posterior predictive 

distribution, which represent the expectation of score patterns under the model. For 

example, PPMC using first- and second-order moments, residualized quantities, and 

frequencies can help one judge whether the model is able to reproduce the means of 

individual primary observables, pair-wise associations between pairs of primary 

observables, or observed score vectors.  

Determining a set of the most effective discrepancy measures for Bayes nets for the 

kinds of data structures we had at hand is an issue of our ongoing research; nevertheless, 

we utilized a few commonly used measures. Specifically, we inspected three discrepancy 

measures that reflect different statistical levels of fit, (a) univariate proportions correct / p 

values for each primary observable, (b) bivariate residuals for pairs of primary 

observables based on the Q3 statistic [e.g. Yen 1984], and (c) a marginal generalized 

dimensional discrepancy measure (GDDM) [Levy and Svetina 2011] for all of the 

primary observables as well as for each of the subsets of primary observables as defined 

by the four performance components.  

As noted above, we specified the primary observables as observable score variables 

– which they are by definition – but specified the compound variables, performance 
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components, and proficiency variables as higher-order latent variables; Figure A2 shows 

the structure of this Bayes net, which mimics the scoring structure shown in Figure A1 

referenced earlier. Differences between the DCMs and the Bayes net are (a) the lack of 

compound observables associated with only one primary observable in the Bayes net, for 

statistical identification reasons, and (b) a saturated structure associating the four 

performance components in the Bayes net. While this Bayes net was able to reproduce 

the proportions correct with reasonable accuracy for all primary observables for both 

learner subsamples, it showed superior model-data fit in terms of the Q3 and GDDM 

statistics for the summative subsample (see Levy et al. [2011] for additional detailed 

results using the combined sample).  

To demonstrate model-data fit assessment strategies, Figure A3 shows a so-called 

heat map of the posterior predictive p values for the Q3 statistic for all pairs of primary 

observables. One would like to see all, or at least most, of these p values close to .50, 

which would indicate that the observed values of the Q3 statistic are typical of predicted 

values of the Q3 statistic under the fitted model. In contrast, p values that are either rather 

small or rather large, which are depicted in the figure by white and black squares, 

respectively, indicate that the observed values are largely atypical and, thus, that the 

Bayes net does not reproduce well the associations among the observables.  

In Figure A3, the formative subsample has more white and black squares than the 

summative subsample indicating that the Q3 values are better reproduced by the 

summative subsample. With respect to the GDDM the summative subsample yielded 

acceptable patterns for the DC as well as VT components while the formative subsample 

only yielded an acceptable pattern for the DC component. 

In order to refine this model, we decided to perform a series of statistical 

modifications in consultation with the subject-matter experts similar to what we did for 

the DCM refinement. However, due to the different nature of the discrepancy measures 

used for the Bayes net compared to the RMSEA statistic for the DCMs this set o f 

modifications took a different path. We used information contained in the Q3 heat map 

for the summative subsample as a starting point as that model had been most stable to 

begin with. For each pair of observables that was depicted as a white square in th e heat 

map, the Q3 statistic suggested that the model did not sufficiently represent the observed 

relationship in the data. In other words, those variable pairs were more strongly related to 

each other in the data than in the model.   
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The white squares can therefore be thought of as variable pairs which, according to 

the data, ought to be more directly connected to each other in the model diagram. 

Looking at the summative subsample heat map in Figure A3, there were 89 white 

squares. Increasing the model-implied covariation for even one variable pair could be 

attempted in a variety of ways, and for each structural change to the model, the model-

implied relationships among many variables could be affected. Content experts are in the 

best position to interpret what the patterns of data-model misfit mean substantively, and 

are best suited for devising modifications that do not merely capitalize on sampling 

variability. Our approach was to focus on the areas with the mostly white squares, and to 

make step-wise modifications to the model structure in consultation with content experts. 

Improvements to the most problematic areas often improved fit elsewhere as well.   

A theme which emerged in this process was that many of the targeted variable pairs 

consisted of similar tasks on different devices; for example, setting a password on a 

switch and setting a password on a router. The scoring system had been structured to 

emphasize the relationships among tasks on a given device. The empirical feedback 

suggested that in addition to their relationships with other tasks on the same device, some 

tasks showed residual covariation with similar tasks on different devices. The 

modifications that were made represented these additional associations among groups of 

primary observables  by either collapsing compound observables or introducing new 

compound observables.   

The model that resulted from this series of modifications showed considerably better 

fit to the data according to the Q3 statistic as the heat map now contained almost no  more 

white squares. Just as importantly, the model modifications were consistent with domain 

knowledge. One content expert commented that the modifications represented ideas that 

had been considered in the initial discussions of the scoring design, but ha d been 

discarded because the experts felt constrained to choose between an organization based 

on device or task.  

Empirical evidence thus helped to reintroduce associations between observables that 

had been contemplated all along but had then been judged to be secondary in importance. 

The experts who created the scoring system understood that the observables were related 

in multiple ways, but had no way of quantifying the implications of various choices they 

had to make. The empirical feedback from the Bayes net allowed them the opportunity to 



 

70                  JEDM Special Issue, Article 2, Volume 4, Fall 2012 

 

reevaluate the tradeoffs of increasing the complexity of the scoring model to achieve 

better fit to the data.   

3.1.4. Section Summary. In sum, the three sets of analyses described in this section 

(i.e. descriptive statistics, diagnostic modeling with DCMs, and diagnostic modeling with 

Bayes nets) for the component-based scoring structure provided different types of 

evidence about the measurement model for the E1 PTSBA exam. Descriptive statistics 

were only useful for detecting statistical issues with individual score variables and 

dimensional subscores but were not insightful for refining the postulated scoring 

structure, which is where diagnostic modeling approaches became powerful. The initial 

DCM and Bayes net analyses for both subsamples provided mixed evidence that the 

observable score variable combinations that the component-based scoring structure 

reflected was tenable. However, using model-data fit evaluation / model criticism tools, 

in conjunction with expert feedback, we were able to determine model structures that 

showed much better fit to the data.  

In the end, both DCM and Bayes -net driven revisions of the component-based 

scoring structure were statistically defensible even though the model structure for the 

final Bayes net was more complex than the model structure for the final DCM. 

Interestingly, from the perspective of classifying learners, there was a very strong 

alignment between the latent class membership distributions between the final Bayes net 

and the final DCM. Out of the 24 = 16 latent classes that could be formed by the four 

higher-level performance component variables in the Bayes net, only nine latent classes 

had learners in them. In other words, even though the association structure in the Bayes  

net became more complex, the resulting latent class structure was simplified in terms of 

actual memberships.  

Overall, a total of 86.43% of the learners were classified into latent classes with 

identical attribute profiles for the DCM and the Bayes net. Thus, integrating our insights 

from the DCM and Bayes net analyses, we were reasonably confident that a five-class 

solution was defensible based on the evidence within and across modeling frameworks 

and the feedback from our experts. 

3.2 Procedural Carry-over Effects: Defining a New Scoring Structure 

An interesting practical outcome of the continual interchange between the subject -matter 

experts and statisticians in this project was that the subject -matter experts became 
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inspired to think differently about evidence identification and accumulation for the E1 

PTSBA. In fact, working within the constant feedback loop between statistical 

information and expert insight made everyone become more aware of the possibilities of 

modeling different kinds of relationships between observable score variables, rather than 

thinking in predefined categories such as task boundaries or variable label boundaries. As 

a result, the team postulated an alternative scoring structure and subsequently 

investigated it empirically. 

The source for developing the alternative scoring structure was a newly refined task 

bank of traditional standardized assessment tasks whose design specifications had been 

guided explicitly by ECD principles. What this meant for our data analyses was that the 

development team had articulated a series of hierarchically organized claims about 

learner proficiency, in ECD parlance. Most importantly, the claims cut across steps that 

learners had to do in order to design, configure, and troubleshoot the network in the  E1 

PTSBA; they arguably reflected a slightly stronger, or perhaps more direct, cognitive lens 

on complex task performance. In some ways, this alignment was already reflected in the 

results from the model refinement steps from the Bayes net analysis above, but the 

claims-based framing linked such connections more explicitly to larger assessment efforts 

and developmental learning progressions of skill sets. 

We do not report on the results for these analyses in detail since they follow a similar 

methodological logic as the descriptions in the preceding subsection; for illustration we 

show the loading structure and basic CTT statistics in Table A-II and the resulting Bayes 

net structure in Figure A4. We briefly note, however, that the claims -based DCM showed 

the best fit amongst all DCMs that we fitted across both scoring structures for both 

subsamples, which was true both in terms of relative information-based fit indices such as 

AIC and BIC and the distribution of RMSEA values. The classification certainty was  

again relatively high for most learners. For example, for the formative subsample, 

learners were classified into all of the 23 = 8 classes, with only 8.3% of learners being 

classified as nonmasters of all three claims-based proficiencies and 31.9% of learners 

being classified as masters of all three proficiencies in alignment with the expected 

difficulty of the assessment.  

The Bayes net analyses showed a more mixed picture of model-data fit. For instance, 

percentage correct values were again recovered rather accurately for formative and 

summative subsamples but some, albeit fewer, problems persisted at the pair-wise and 
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dimensional levels for both subsamples. Specifically, when it came to the GDDMs, 

neither subsample showed adequate fit for any of the groupings of observables defined by 

the three claims variables although the summative subsample still showed better fit than 

the formative subsample.  

Therefore, when we connect the process data analyses in the next section of the 

paper with the product data analyses in this section, we will only use the five-class 

membership assignments based on the revised DCM and Bayes net for the component-

based scoring structure, rather than an assignment based on either DCMs or Bayes nets 

for the claims-based scoring structure. 

4. EVIDENCE IDENTIFICATION AND ACCUMULATION FOR PROCESS DATA 

In the previous section we detailed the investigation of measurement models using 

product data. The use of these measurement models was made possible because the 

evidence rules for identifying and evaluating features of the final submitted network 

configurations were already well-specified. Such rules were not specified for process 

data, however, and the assessment developers did not have explicit hypotheses about 

what exactly these rules should look like.  

In this part of the paper, we thus discuss how a continual exchange between subject -

matter experts and statisticians served to identify potential evidence rules and a 

measurement model for process data. Below we explore the use of summary statistics for 

log files as observable variables and create a measurement model using principal 

component analysis (PCA) [e.g. Jolliffe 2010]. The PCA analysis allowed us to create 

two summary dimensions of performance, which can be interpreted as characterizations 

of the effectiveness and efficiency of the solution process. We also show how we can 

connect the scores on these dimensions to the five-class structure from the revised DCM 

and Bayes net for the product data to arrive at a more integrated, and evidentiary 

coherent, characterization of learners’ performance on the E1 PTSBA. 

 As noted in the first main section of this paper, the Packet Tracer engine allows for 

an automated tracing that results in complex data in the form of log files. These data now 

need to be converted into evidence, which is a nontrivial endeavor. While the idea of 

capturing problem-solving behavior during task completion is certainly not new (e.g. the 

use of think-aloud protocols as discussed in Leighton [2004]), the unobtrusiveness with 

which this information about actions can be collected from digital interactions certainly 
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opens new analytic possibilities. Log files seemingly solve the intrusiveness problem of 

think-aloud protocols that require learners to interrupt their cognitive response process 

and rely on a rather sophisticated level of meta-cognition in situ.  

However, log files suffer from the opposite problem in that they are raw pieces of data 

without any direct guidance by the learner as to how they should be interpreted. On the 

one hand, the fine grain size at which log files typically trace activities of learners allows 

for a potentially fluid window into the minds of learners while they solve complex tasks. 

On the other hand, this grain size makes the task of creating evidence rules without a 

clear link between this large number of actions and sharply aligned theories of cognitive 

response processes daunting. Contrary to the more confirmatory nature of evidence 

model work for the analysis of product data that we have described in the previous 

section, evidence model work for process data thus typically has a more exploratory 

nature.  

Statistically it is thus not surprising that techniques in areas such as educational data 

mining [e.g. Baker and Yacef 2009; Romero et al. 2010] or business process mining [e.g. 

van der Aalst 2011] are more attractive to solving evidence model-related problems for 

log file data than IRT models, DCMs, or Bayes nets . Of course, none of the resulting 

output is interpretable without at least a reasonably sound articulation of a theory of how 

task features and learner characteristics combine to produce classes of activity traces for 

different learner groups, which is where a framework like ECD is invaluable. As a  

consequence, just as with product data analyses above, it is crucial to have an 

interdisciplinary team of subject-matter experts and statisticians working together to 

arrive at meaningful interpretations for process data analyses. 

4.1 Preprocessing / Tagging of Log files 

The structure of log files in digital learning environments is often such that a direct 

analysis of the raw files is practically not meaningful as too many functionally necessary, 

but evidentiary meaningless, aspects of activity are being tagged in a single log file entry. 

For example, in the E1 PTSBA certain symbols and spaces are recorded which are 

important for the underlying computational engine to understand the command but are 

not necessary for substantive analyses.  

Process data such as log files thus typically require various steps of preprocessing, 

such as stemming and tagging , before they can be used for exploratory statistical 



 

74                  JEDM Special Issue, Article 2, Volume 4, Fall 2012 

 

analyses. In stemming, all forms of the same command are replaced with the full 

command name. In tagging, each command is given a new label (i.e. tag) that reflects the 

purpose of the command; this can be seen as part of the process of evidence 

identification. Both procedures have their roots in the natural language processing  

literature [e.g. Feldman and Sanger 2006; Manning and Schuetze 1999].  

Tagging log files carries with it a few important requirements that make this task 

harder in practice than it may seem intuitively. This is especially true for learning 

environments like Packet Tracer where tasks can be relatively unstructured with few 

natural boundaries unlike, say, different levels in a video game [e.g. Kerr et al. this issue]. 

Importantly, the tags for log files need to be interpretable from a substantive perspective 

by themselves, which can often be checked by asking subject-matter experts to ‘read’ 

tagged log file entries in order to see whether the resulting activity flow is interpretable [ 

e.g. Gobert et al. this issue]. This ensures that interpretable descriptive analyses of log 

files can be done. Similarly, it ensures that any subsequent aggregations of log file entries 

or characterization of learner groups using summary statistics are also interpretable in 

practically meaningful terms.   

 Therefore, the labels can be neither too technical nor too detailed nor too simplistic – 

in other words, they needed to be at just the ‘right’ level of granularity for meaningful 

interpretability. Moreover, the process needs  to be automated since a data set with 

complete log files of individual learners typically consists of thousands of entries. For 

example, for the E1 PTSBA exam, experts agreed that a minimum of 36 commands was 

required to successfully complete the task but learners produced up to 336 commands.  

Through multiple conversations between subject-matter experts and statisticians we 

performed cycles of data analyses using various coding schemes and levels of 

granularity, some of which were retained and some of which were not. For example, we 

attempted to link log file entries to primary observables and compound observables 

directly. However, that proved difficult given that some learners showed rather inefficient 

solution behavior where it was difficult to associate a single log file entry with a 

particular action. In addition, some scores were given for tasks performed partially 

outside the log file environment (e.g. computing correct IP addresses) and so were not 

tracked directly in the log files . We also attempted to integrate a coding scheme 

associated with interface access levels on devices for s ome subsets of tasks but it proved 
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to be a far too technical to be of use for creating characterizations that could be easily 

summarized for learners and other users. 

We eventually arrived at two tagging schemes that captured the functional objectives 

that the log file entries represent. At a coarse-grained level we differentiated between four 

types of log file entries, (a) management entries, (b) configuration entries, (c) verification 

entries, and (d) syntactically incorrect / ‘fail’ entries. At a fine-grained level we 

differentiated between 23 types of log file entries, which were related most closely to 

targeted actions of learners. These labels were closely related to the functional labels for 

the compound observables and performance components even though they are not fully 

identical with them due to the coding problems mentioned above; Figure 4 shows a part 

of a log file for a particular learner along with the coarse-grained and the fine-grained 

tags assigned to them. 

 

 

Fig. 4. Sample log file entries with associated tags for a particular learner. 

 

In the following section we describe how we used the coarse- and fine-grained tags as 

input for statistical analyses aimed at characterizing them in terms of the efficiency and 

effectiveness of their solution process, as mentioned at the beginning of this section. 

4.2 Evidence Rules for Log Files 

In many product data analyses the values of the observable variables are often binary 

reflecting a correct or an incorrect solution. However, there are no restrictions on the 

potential values that observable score variables for process data can assume; they simply 

must be of a format that can be included in a measurement model. On the basis of (a) the 
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time stamps for the log files as well as (b) the four coarse-grained tags and (c) the 23 

fine-grained tags, we computed summary statistics for each learner's log file. The 

statistics included marginal measures such as the total time for the task and the total 

number of commands for the task as well as conditional tag-specific measures such as the 

total time, number of commands, and percentage of commands used per tag; we also 

included the total score on the E1 PTSBA in this set.  

We then computed the distributions of these statistics across learners from the 

summative and formative subsamples; the distributional characteristics for key indicators 

and the coarse-grained tags only are shown in Table A-III. Clearly, the distributional 

features are similar across the two subsamples with the strongest notable differences 

being the larger maximum values and measures of variation for the formative subsample. 

However, these univariate distributions do not provide a direct insight into learner 

differences across subsamples. 

Ideally, however, process data analysis should provide an added statistical value and 

added substantive insight beyond what one can learn from product data analysis. One 

way to investigate whether this is indeed the case is to examine the process data for 

individual learners who have identical or similar product scores. To illustrate this point, 

Table III displays select process summary scores for two learners  from the summative 

subsample who both earned a total product score of 94 on the E1 PTSBA. Learner 1 used 

49 commands to complete the task, had proportionally fewer device switches and 

management commands but more configuration commands than Learner 2; both had 

approximately the same proportion of fail and verification commands in alignment with 

their identical total scores .  

 

Table III. Summary Statistics from Log Files for Two Learners with Identical Product 

Scores  

 
# of 

Commands 

Time 

(s per 

command) 

# of 

Device 

Switches 

Configure 

(%) 

Fail 

(%) 

Manage 

(%) 

Verify 

(%) 

Learner 1 49 
2357 

(2s) 
2 

30 

(61.2) 

3 

(6.0) 

8 

(16.3) 

8 

(16.3) 

Learner 2 104 
1964 

(5s) 
10 

35 

(33.6) 

7 

(6.7) 

44 

(42.3) 

18 

(17.3) 

Note. s = seconds. 
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Clearly, these learners approached the task solution very differently even though they 

would both be characterized as equivalently competent if only their final submitted 

network configuration were used as evidence. Since the observable score variables for the 

log files can clearly provide some additional insight into learner performance, we sought 

to aggregate and synthesize the evidence contained within them next.  

4.3 Measurement Model for Log Files  

In order to combine the various summary statistics produced from the application of 

evidence rules to the log files, we performed PCAs with varimax rotations using the total 

score, the total number of commands, the total time on task, the number of switches 

between devices, and the percentage of commands for each of the four coarse-grained 

tags as outcome variables; we conducted two separate PCAs for the two learner 

subsamples. For both subsets, we were able to reliably extract two components that 

accounted for about 60% of the total variance in the log file variables; we subsequently 

saved the estimated PCA scores on both components using the regression method. 

Table IV shows the varimax rotated loading matrices for the formative and summative 

learner subsamples, which show very similar loading patterns across the two learner 

subsamples; recall that the loadings for the individual variables are their correlations with 

the dimensional subscores created by the PCA.  

 

Table IV. Loadings for the First Two Principal Components for Subsamples 

 Formative Subsample Summative Subsample 

 Component 1 

(Inefficiency) 

Component 2 

(Effectiveness) 

Component 1 

(Inefficiency) 

Component 2 

(Effectiveness) 

Total score .300 .756 -.180 .850 

# of commands .864 -.103 .828 .260 

Total time  .609 -.381 .677 -.168 

# of switches .839 .104 .757 .382 

% manage  .397 .166 .268 .531 

% configure -.340 .780 -.781 .178 

% verify  .427 .309 .205 .387 

% fail  -.140 -.929 .408 -.843 

Notes. Loadings greater than .35 are shown in boldface. Time is measured in seconds; 

percentages are computed based on all commands for each learner. 
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For both learner subsamples, score variation on the first principal component was 

consistently strongly driven by the total number of commands, the total time on task, and 

the number of switches between devices; these loadings are indicative of a measure o f 

inefficiency. To make this dimension more easily interpretable vis -à-vis the effectiveness 

dimension, we reversed the sign on the saved scores so that higher scores reflected, 

indeed, a higher degree of efficiency in the task solution.  

Similarly, for both learner subsamples, score variation on the second principal 

component was consistently strongly driven by the total score and the percentage of fail 

commands; these loadings are indicative of a measure of effectiveness. The signs of the 

loadings on the effectiveness component are in line with what would be expected in that 

learners with higher total scores and a lower percentage of fail commands have a higher 

score on this component.  

The percentage of verify commands has relatively moderate loadings on both 

components across both subsamples, suggesting that it is not as informative in 

distinguishing between efficient or effective learners. For both subsamples, the 

percentage of management and configuration commands is slightly more informative 

about learner differences. For example, for the formative subset the percentage of 

configuration commands loads strongly positively on the effectiveness component while 

for the summative subset it loads strongly negatively on the inefficiency component. 

Similarly, the percentage of management commands loads moderately positively on the 

inefficiency component for the formative subsample but moderately positively on the 

effectiveness component for the summative subsample. 

This seemingly divergent pattern is congruent with the expected behavior within each 

subsample upon reflection, however as there is a wider range of ability in the formative 

subsample. Therefore, for the formative subsample higher percentages of configuration 

and management commands indicate a more effective, albeit somewhat  less efficient, 

solution relative to other learners in that subsample. In the summative subsample, higher 

percentages of configuration and management commands indicate a more effective and 

efficient solution relative to other learners in that subsample, indicating that these actions 

are likely more targeted in this subsample.  

In order to connect the two-dimensional scores of the learners with the proficiency / 

primary effectiveness characterizations from the product data, we used the latent class 

assignments from the diagnostic measurement analyses for the component -based scoring 



 

79                  JEDM Special Issue, Article 2, Volume 4, Fall 2012 

 

structure. As mentioned at the end of the second main section in this paper, we chose the 

ordered five-class solution as a conditioning variable. We focused on the DCM analyses 

because (a) they were successfully completed for both the summative and formative 

subsets and (b) they provided a very similar latent class assignment as the Bayes net 

analysis for the summative subset.  

Recall that the relationship between the latent-class membership variable and the total 

score on the assessment was rather strong as illustrated in Figure 3 earlier in the paper 

along with the associated effect-size measures. Thus, conditioning on the latent class 

membership for this particular DCM model structure can be methodologically seen as a 

statistically ‘refined’ version of conditioning on proficiency score bands.  

Figure A5 shows the distributions of the effectiveness and efficiency scores from the 

PCAs separately across the two learner subsamples. We can see that the locations of the 

score distributions for the effectiveness dimension increase with latent classes that 

represent the mastery of more skills across both learner subsamples, as one would expec t. 

A one-way ANOVA for the effectiveness score using latent class membership as the 

independent variable and post-hoc polynomial contrasts confirmed that the mean 

effectiveness score followed a monotonically increasing cubic trend across the latent 

classes for the formative population (t = .210, p < .001, partial η2 = .473) as well as the 

summative population (t = .369, p < .001, partial η2 = .584). 

In contrast, the locations of the score distributions for the efficiency dimension 

decrease across latent classes. A one-way ANOVA for the efficiency score using latent 

class membership as the independent variable and post -hoc polynomial contrasts 

confirmed that the mean efficiency score followed a weak quadratic trend across the 

latent classes for the formative population (t = .249, p < .001, partial η2 = .107) and 

showed no specific reliable trend for the summative population (F(4,272) = 1.593, n.s., 

partial  η2 = .023). 

In addition, the range of the efficiency scores increased across the five latent classes 

for both learner subsamples while the range of the effectiveness scores decreased. A 

plausible interpretation for these patterns is as follows. Even though the efficiency score 

distribution for the first latent class was located higher than those of the other latent 

classes and showed less variance, we know that this is a class of weak learners, which 

implies that the efficiency score should be more appropriately interpreted as a measure of 

‘brevity’ for these learners. In other words, higher efficiency scores have a negative 
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practical connotation for weaker learners since they have lower proficiency scores 

overall, but they have a positive practical connotation for stronger learners who have 

higher proficiency scores overall. 

A further inspection of the bivariate distributions for the effectiveness and efficiency 

scores across the latent classes revealed an even more differentiated picture; Figure A6 

shows these relationships for the larger formative subset. For the first two latent classes, 

which represent those learners who have either not mastered any skills or who have 

mastered only DC, the two scores remain essentially uncorrelated. For the other three 

latent classes, which represent learners with higher degrees of mastery, there is a positive 

relationship, albeit only a moderately strong one, between effectiveness and efficiency.  

That is, for each of these three different subgroups of learners, the more effective 

learners are also the more efficient ones, on average. Moreover, as noted earlier, learners 

are placed in higher score ranges on the effectiveness dimension as reflected by the 

relative positioning of the bivariate scatterplots. The strength  of this bivariate relationship 

is relatively weak, however, with R2 values ranging from about 15 to 23 percent. It will 

be important to investigate such patterns with future samples of learners to see whether 

stronger relationships become visible.  

Finally, returning to our two learners from Table III, we examined the efficiency and 

effectiveness scores for both. As one might expect, the efficiency score of Learner 1 is 

.75 while the score for Learner 2 is -.99, indicating that Learner 1 is much more efficient 

in his or her solution process than Learner 2 while both learners have a similar 

effectiveness score. 

In summary, in the previous two subsections we provided an illustration of how 

summary statistics can be used to create observable variables from log files. We then 

demonstrated how an evidence accumulation or measurement model was developed to 

synthesize these observable variables into measures of effectiveness and efficiency. 

These measures revealed differences in the performance of learners whose proficiency 

scores from the product data indicated that they performed similarly. It revealed that 

learners can vary in the efficiency with which they execute the task, even when their total 

score or latent class membership is similar or even identical. More importantly, it 

revealed that the relation between efficiency and effectiveness in task solution varies in 

ways that can be meaningfully interpreted, which conceptually opens up avenues for 

designing interventions targeted to specific subpopulations of learners.  
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In closing, we note one important caveat that we alluded to at the beginning of the 

paper, which is the partial representativeness of our sample of learners. Thus, if the 

heterogeneity in the population influences the response processes to the E1 PTSBA 

differentially (i.e. if different DCM or Bayes net models or PCA solutions would be 

appropriate for different subpopulations defined by geographical region) then the results 

in this paper would not be generalizable to the overall population of learne rs in the 

Networking Academy. More data are needed to investigate this question in more depth but 

some caution with regards to the generalization of our findings is probably warranted. 

5. DISCUSSION 

In this paper we have described various key steps in the creation of evidence models 

using evidence rules and statistical measurement models for product and process data that 

result from the Packet Tracer digital learning environment in the Cisco Networking 

Academy. We want to close this paper with a few reflections on the lessons that we have 

learned in the process that we think are useful for others to consider as well.  

5.1 On Evidence Models for Product Data 

Though much of statistical modeling of assess ment data in educational measurement is 

geared toward the identification of a single ‘correct’ model, our illustrations in this paper 

showed that this need not be the default. Multiple models may not only be used to gain an 

understanding of different facets of the data but may also be used to support different 

reporting levels for different use contexts. In ECD parlance, this means that it can be 

perfectly defensible to have several different student models tied to different evidence 

models.  

For example, if we desire to characterize learners in terms of the four particular 

subskills that motivated, in part, the components-based scoring structure this would lead 

us to use statistical models that reflect that structure as we did in our DCM and Bayes net 

analyses. A desire to explicitly link performance on the Packet Tracer assessment with 

other assessments developed using theoretical claims about learner competencies would 

lead to the use of the claims-based scoring model and associated statistical models. The 

desire for a single proficiency score, rather than a multidimensional score profile, might 

lead us to use a different aggregation (e.g. the unidimensional proficiency score from IRT 

or CTT or a coarse-grained proficiency classification in a higher-order DCM or a four-

level Bayes net).  
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This openness to considering and using multiple measurement models does not mean 

that any statistical model is empirically defensible, of course. An honest analytical 

critique, like the ones that we conducted in the second main section of this paper, 

highlights its strengths in terms of reproducing certain aspects of the observed data 

patterns in a consistent manner and, more importantly perhaps, its weaknesses. This can 

lead to valuable insights that would be lost if one only searched for a single true model 

while discarding any strongly misfitting models during this process. As we noted in the 

second section of the paper as well, criticism of the model-data fit for various models 

associated with the component-based scoring structure for the product data motivated the 

creation of a second claims-based scoring structure, which possessed procedural validity 

and resulted in superior model-data fit in various instances. 

Philosophically speaking, this line of argumentation reflects  a distinct frame of 

thinking about what modeling is supposed to accomplish, because it reflects a belief that 

the development of an assessment and associated statistical model(s) is not about seeking 

the single true structure of the world. As Box [1976] noted, this is a fool’s errand, for all 

our models are wrong in the end. Rather, a model is built by an interdisciplinary team of 

researchers to capture certain relevant features of the data while necessarily ignoring 

others in the service of desired inferences.  

5.2 On Leveraging Collateral Information about Learners 

As noted throughout this paper, analyses of product and process data from digital 

learning environments for the purpose of diagnostic assessment are complicated by the 

openness of the workspace and the resulting variability in learner behaviors. In order to 

build a comprehensive validation argument for inferences about learners  [Kane 2006], 

analysts must leverage a wide variety of data sources based on results from domain 

modeling and analysis s teps in the ECD framework, including collateral information 

beyond the product and process data learners produce.  

In the case of the E1 PTSBA, sampling considerations suggested the distinction 

between the summative and formative subsample, which led to differential hypotheses 

about performance that were largely corroborated using the product data. Similarly, 

additional collateral information could take the form of scores from other assessments 

that learners have been taking. In the case of the Networking Academy, performance 

information from traditional standardized assessments could be used as covariates in 



 

83                  JEDM Special Issue, Article 2, Volume 4, Fall 2012 

 

explanatory modeling approaches or to inform the structure of particular models that are 

being used (e.g. disallowing particular latent classes in DCMs  or Bayes nets). Thus, it is 

not just combining information from multiple assessments that matters, but also 

leveraging information from one established assessment to help understand modeling 

approaches for novel assessments such as the E1 PTSBA. While this work was beyond 

the scope of this paper, it is part of our research agenda for the project. 

Incorporating collateral information about learners can also be viewed as an instance 

of expanding the conceptual narrative of the model [Mislevy et al. 2008]. As illustrated in 

this paper, a straightforward analytic approach to multiple subgroups involves conducting 

separate analyses for each subgroup. Additional model-based approaches include multi-

group models where group membership is known and latent mixture models where group 

membership is unknown. Such approaches allow for the simultaneous analysis of all data 

and provide procedures for addressing questions such as parameter invariance and group 

differences in latent variables. Extensions of these models exis t that allow for the 

incorporation of collateral information about tasks and learners, an area known as 

explanatory (item response) modeling  [e.g. De Boeck and Wilson 2004; Mislevy et al. 

2008]. 

Similarly, new models might be created by combining various features of certain 

existing models for suiting the comprehensive inferential purpose of a program such as 

the Networking Academy. This requires a flexible and powerful approach to modeling of 

which the Bayesian modeling paradigm is an attractive example. In this paper, we 

discussed the use of a fully Bayesian approach for fitting Bayes nets to both subsamples; 

the framework can also be used to incorporate many additional complex features 

including multilevel structures, latent mixtures, collateral covariates, and missing data 

[Levy 2009; Levy et al. 2011; Lynch 2007]. In addition, a Bayesian approach is aligned 

with the principles of ECD in terms of the nature and form of the assessment argument 

and the use of probability-based reasoning [Mislevy and Levy 2007; Mislevy et al.  

2003]. 

5.3 On Evidence Models for Process Data 

Due to the volume of data produced, we saw that making use of process data required 

automation of procedures. With digital environments such as Packet Tracer, the potential 

to record activity sequences is built in, but the critical issue becomes knowing what to 
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record and how to make sense of it. Here is where design-based thinking, guided by a 

principled development framework such as ECD, becomes important. Decisions about 

what features of behavior to pay attention to, and how they have evidentiary bearing on 

the desired inferences, require an integration of expert knowledge from areas as diverse 

as the targeted professional domain, curriculum development, ins tructional design, the 

creation of digital learning tools, the learning sciences more broadly, computer 

programming, multivariate statistics, and modern measurement.  

In our project, the specification and implementation of evidence rules for process data 

consumed far more time than the specification and implementation of evidence rules for 

product data. Much of the discussion of the analyses of the process data involved the 

tagging of log file entries. As noted in the previous section, tagging is a form of evidence 

identification where we take something the learner does and identify the relevant aspects 

of performance that we want to pay attention to. In our case, it was the function of the 

commands as reflected by the two sets of tags at different levels of grain size.  

No matter what aspect of the data structure we are shining an evidentiary spotlight on, 

however, there are always also aspects that we are leaving in the dark. To the extent that 

we are blending out things that are not of inferential interest  to us, this is not a problem. 

To the extent that what we neglect is indeed relevant to our desired inferences, this 

becomes a problem. To return to the case study of our learners in the previous section 

who scored 94 on the E1 PTSBA, if we only cared to make inferences or distinctions 

among students based on the functionality of the resulting network (i.e. the effectiveness 

of their solution), the process data are not needed at all. In fact, all distinctions are 

perfectly captured by the total score on the assessment and the dimensional subscores. 

However, if we are interested in notions of efficiency as well, then it is important to 

recognize that learners who have the same scores in terms of the product data might vary 

wildly in terms of their efficiency. We conjecture that most researchers are interested in 

some version of a two-axial characterization of learners based on efficiency and 

effectiveness. 

5.4 On the Linearity of ECD Representations vs. Nonlinearity of Its 

Implementation 

The power of the ECD framework lies in its ability to frame the discussion about the 

desired inferences / distinctions we want to make about learners and how to make sense 
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of their complex behavior to make those inferences / distinctions. Even though there may 

seem to be a linear flow suggested by many graphical representations of the ECD 

framework, as we have illustrated in this paper, in practice the constituent processes are 

decidedly nonlinear [Mislevy et al. 2011, this issue]. The process is not merely nonlinear 

at any given point in time for a given purpose, but the way we think about evidence 

identification and accumulation within an ECD framework also changes when data -

analysis purposes are changed. 

For example, the operational use of a scoring structure based on product data is 

aligned with a set of desired inferences and distinctions about learners based on the 

accuracy of the final network configuration. An additional desire to pursue learner 

distinctions around a construct like efficiency brings on new questions about acceptable 

behavior in the domain and possible sources of evidence for such behavior. For example, 

do we operationalize efficiency simply by the time taken for the task, more complex 

aggregates based on multiple variables, more linear solution processes, o r solution 

processes that are more closely aligned with particular prototypical ones taught in the 

classroom? Novel evidentiary desiderata often bring with them consequences for the 

design of new assessments and the re-design of existing assessments. 

5.5 On the Interplay between Subject-matter Experts and Statisticians  

As we have clearly shown repeatedly in this paper, having either just data or just 

theory is not enough to create meaningful inferences. For example, scoring structures for 

final network configurations and tags for log files do not merely ‘emerge’ from the data 

or are a priori ‘conceived of’; instead, they are equally informed by expert consensus and 

by results from exploratory and confirmatory statistical analyses. Put differently, it is the 

interplay between theory and data that is most powerful. As we have demonstrated in this 

paper, just the specification of the ECD evidence model requires both a large tool kit of 

potential analysis methods and collaboration among experts in a variety of fields.   

While this interplay between theory and data holds much potential for improving 

diagnostic assessment within digital learning environments, it is not always simple to 

implement in practice and we have encountered logistical challenges in this project that 

are probably familiar to researchers working in similar contexts. To name a few of these, 

we have observed that different resource constraints  across different teams such as 

limited financial resources and time can make continual information exchanges difficult 

at times, operational requirements for updating a computational engine can make 
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implementing suggested changes infeasible or impractical, the scope of use of a learning 

environment can make the tracking of rich collateral information prohibit ive and 

impractical, and a lack of well-understood guidelines for desired levels of reporting for 

different subpopulations of learners can make it difficult to justify certain operational 

changes to the computational engine. Finally, changes in evidence id entification and 

accumulation procedures may also hold implications for the design of future assessments, 

and thus have implications for the development of conceptual models of learning over 

time that can be cost-intensive to implement.  

Put differently, interdisciplinary research teams that work with digital learning 

environments for diagnostic assessment purposes have to decide what an appropriate 

balance is between efforts that lead to changes in operational practice and efforts that lead 

to the creation and documentation of a comprehensive program of validation [e.g. Kane 

2006; Williamson et al. 2012]. Even though they are both obviously interconnected, the 

associated allocation of resources will likely differ notably depending on which goal is 

pursued at any given point in time. As we have demonstrated in this paper, the ECD 

framework can guide such decision-making processes. Furthermore, the specification, 

implementation, and empirical evaluation of evidence rules and measurement models for 

product and process data play an important empirical part in this complex endeavor. 
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Table A-I. Descriptive Statistics for Primary Observables from the Final Network Configuration  

PC ID Device Command 

Classical Test Theory Statistics 

Difficulty Discrimination (Total Score) Discrimination (Subscores) 

S F S F S F S F S F 

(p) (p) (pbs) (pbs) (D) (D) (pbs) (pbs) (D) (D) 

DC 1 PC 1 Link to Switch 1 .91 .92 .41 .41 .22 .22 .62 .62 .33 .29 

DC 2 Router 1 Link to Switch 1 .94 .92 .56 .44 .19 .26 .99 .85 .24 .31 

DC 3 Router 1 Link to Switch 2 .95 .93 .57 .49 .18 .28 .77 .85 .20 .27 

IP 4 Router 1 Power (0/0) .96 .89 .64 .79 .12 .65 .62 .79 .12 .37 

IP 5 Router 1 IP Address (0/0) .91 .81 .70 .76 .29 .83 .72 .82 .28 .62 

IP 6 Router 1 Subnet Mask (0/0) .91 .79 .78 .82 .32 .89 .79 .87 .29 .70 

IP 7 Router 1 Subnet Mask (0/1) .96 .84 .65 .81 .14 .80 .65 .83 .14 .52 

IP 8 Router 1 Power (0/1) .86 .70 .76 .79 .44 .95 .78 .84 .40 .85 

IP 9 Router 1 IP Address (0/1) .88 .72 .73 .78 .39 .93 .69 .80 .33 .76 

IP 10 Router 1 Description (0/0) .79 .59 .77 .62 .64 .80 .74 .65 .70 .75 

IP 11 Router 1 Description (0/1) .78 .56 .75 .66 .65 .81 .73 .69 .73 .79 

IP 12 Switch 1 Power .88 .69 .61 .73 .32 .88 .62 .74 .32 .72 

IP 13 Switch 1 IP Address .88 .69 .85 .81 .44 .95 .86 .86 .41 .85 

IP 14 Switch 1 Subnet Mask .87 .69 .80 .83 .44 .96 .87 .87 .41 .88 

IP 15 Switch 1 Default Gateway .70 .48 .69 .74 .70 .80 .76 .78 .57 .75 

IP 16 PC 1 IP Address .86 .71 .82 .73 .51 .82 .80 .79 .43 .79 

IP 17 PC 1 Subnet Mask .88 .74 .70 .73 .40 .83 .74 .77 .36 .71 

IP 18 PC 1 Default Gateway .85 .74 .72 .69 .43 .75 .72 .73 .41 .68 
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BDC 19 Router 1 Host Name .94 .88 .60 .64 .19 .59 .65 .68 .15 .32 

BDC 20 Router 1 Enable Secret .85 .71 .55 .65 .38 .80 .64 .73 .26 .66 

BDC 21 Router 1 Login (console) .78 .63 .55 .61 .52 .80 .77 .75 .59 .74 

BDC 22 Router 1 Password (console) .71 .61 .61 .68 .64 .89 .81 .82 .67 .81 

BDC 23 Router 1 Login (VTY) .78 .64 .62 .63 .61 .81 .76 .75 .56 .74 

BDC 24 Router 1 Password (VTY) .78 .63 .61 .67 .57 .87 .72 .79 .53 .79 

BDC 25 Router 1 Banner motd .93 .79 .65 .69 .23 .79 .69 .74 .17 .54 

BDC 26 Switch 1 Host Name .92 .80 .59 .75 .23 .86 .64 .78 .17 .57 

BDC 27 Switch 1 Enable Secret .83 .67 .62 .74 .45 .92 .68 .79 .28 .81 

BDC 28 Switch 1 Login (Console) .73 .56 .69 .75 .64 .94 .84 .86 .66 .92 

BDC 29 Switch 1 Password (Console) .69 .56 .74 .77 .71 .97 .87 .88 .71 .93 

BDC 30 Switch 1 Login (VTY) .75 .57 .71 .76 .68 .95 .82 .87 .61 .92 

BDC 31 Switch 1 Password (VTY) .76 .60 .68 .77 .65 .97 .74 .86 .56 .90 

BDC 32 Switch 1 Banner motd .91 .72 .65 .74 .27 .91 .66 .77 .19 .71 

VT 33 PC 2 IP Address .76 .56 .78 .76 .69 .88 .90 .93 .62 .99 

VT 34 PC 2 Subnet Mask .79 .62 .68 .75 .57 .88 .84 .89 .53 .96 

VT 35 PC 2 Default Gateway .70 .54 .74 .76 .71 .88 .87 .88 .77 .97 

VT 36 PC 2 Link to Switch 2 .89 .77 .53 .58 .31 .60 .68 .80 .29 .58 

  

Note. PC = performance component, DC = device connection, IP = IP addressing, BDC = basic device configuration, VT = verification a nd 

troubleshooting, F = formative subsample, S = summative subsample, pbs = point -biserial correlation coefficient, p = p-value / % correct, D 

= discrimination coefficient (i.e., differences in p-values between low- and high-scoring groups). 
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Table A-II. Postulated Loading Structure and CTT Discriminations for Claims-based Scoring Structure 

Claim(s) PO Device Command 
Claim 3 Claim 4 Claim 5 Claim 3 Claim 4 Claim 5 

3.2 3.3 3.5 4.2 4.4 4.5 4.6 5.1 5.2 5.3 5.4 S F S F S F 

5 1 PC 1 Link to Switch 1 0 0 0 0 0 0 0 0 0 1 0 .28 .20 .28 .23 .33 .27 

5 2 Router 1 Link to Switch 1 0 0 0 0 0 0 0 0 0 1 0 .44 .23 .43 .24 .49 .30 

5 3 Router 1 Link to Switch 2 0 0 0 0 0 0 0 0 0 1 0 .45 .24 .42 .26 .49 .32 

4, 5 4 Router 1 Power (0/0) 0 0 0 1 0 1 0 1 1 0 0 .48 .52 .56 .61 .55 .61 

3, 4, 5 5 Router 1 IP Address (0/0) 1 1 0 1 0 1 0 1 1 0 0 .74 .74 .62 .64 .66 .67 

3, 4, 5 6 Router 1 Subnet Mask (0/0) 1 1 0 1 0 1 0 1 1 0 0 .79 .80 .69 .70 .72 .73 

3, 4, 5 7 Router 1 Subnet Mask (0/1) 1 1 0 1 0 1 0 1 1 0 0 .74 .76 .65 .68 .69 .71 

4, 5 8 Router 1 Power (0/1) 0 0 0 1 0 1 0 1 1 0 0 .52 .63 .57 .67 .57 .69 

3, 4, 5 9 Router 1 IP Address (0/1) 1 1 0 1 0 1 0 1 1 0 0 .84 .83 .66 .68 .72 .73 

4, 5 10 Router 1 Description (0/0) 0 0 0 1 0 1 0 1 1 0 0 .53 .39 .72 .55 .70 .53 

4, 5 11 Router 1 Description (0/1) 0 0 0 1 0 1 0 1 1 0 0 .52 .42 .70 .57 .68 .56 

4, 5 12 Switch 1 Power 0 0 0 1 0 1 0 1 1 0 0 .50 .62 .56 .66 .57 .67 

3, 4, 5 13 Switch 1 IP Address 1 1 0 1 0 1 0 1 1 0 0 .81 .79 .73 .73 .77 .75 

3, 4, 5 14 Switch 1 Subnet Mask 1 1 0 1 0 1 0 1 1 0 0 .82 .81 .71 .74 .75 .76 

3, 4, 5 15 Switch 1 Default Gateway 1 1 0 1 0 1 0 1 1 0 0 .65 .63 .57 .59 .60 .60 

3, 5 16 PC 1 IP Address 1 1 0 0 0 0 0 0 0 0 1 .86 .79 .67 .59 .77 .67 

3, 5 17 PC 1 Subnet Mask 1 1 0 0 0 0 0 0 0 0 1 .77 .75 .61 .59 .68 .66 

3, 5 18 PC 1 Default Gateway 1 1 0 0 0 0 0 0 0 0 1 .74 .70 .60 .54 .68 .61 
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4, 5 19 Router 1 Host Name 0 0 0 1 1 0 0 1 0 0 0 .41 .39 .53 .53 .52 .51 

4, 5 20 Router 1 Enable Secret 0 0 0 1 0 0 1 1 0 0 0 .35 .42 .51 .61 .41 .58 

4, 5 21 Router 1 Login (con) 0 0 0 1 0 0 1 1 0 0 0 .26 .31 .56 .57 .48 .53 

4, 5 22 Router 1 Password (con) 0 0 0 1 0 0 1 1 0 0 0 .28 .38 .59 .63 .53 .59 

4, 5 23 Router 1 Login (VTY) 0 0 0 1 0 0 1 1 0 0 0 .38 .35 .62 .58 .56 .55 

4, 5 24 Router 1 Password (VTY) 0 0 0 1 0 0 1 1 0 0 0 .41 .40 .57 .63 .55 .59 

4, 5 25 Router 1 Banner motd 0 0 0 1 0 0 1 1 0 0 0 .52 .47 .62 .65 .61 .62 

4, 5 26 Switch 1 Host Name 0 0 0 1 1 0 0 1 0 0 0 .43 .54 .57 .69 .55 .67 

4, 5 27 Switch 1 Enable Secret 0 0 0 1 0 0 1 1 0 0 0 .40 .50 .58 .69 .56 .66 

4, 5 28 Switch 1 Login (con) 0 0 0 1 0 0 1 1 0 0 0 .36 .43 .66 .68 .60 .64 

4, 5 29 Switch 1 Password (con) 0 0 0 1 0 0 1 1 0 0 0 .37 .46 .68 .70 .63 .66 

4, 5 30 Switch 1 Login (VTY) 0 0 0 1 0 0 1 1 0 0 0 .44 .45 .68 .70 .63 .66 

4, 5 31 Switch 1 Password (VTY) 0 0 0 1 0 0 1 1 0 0 0 .46 .48 .63 .71 .60 .67 

4, 5 32 Switch 1 Banner motd 0 0 0 1 0 0 1 1 0 0 0 .51 .53 .61 .70 .60 .67 

3, 5 33 PC 2 IP Address 1 1 1 0 0 0 0 0 0 0 1 .80 .77 .61 .56 .71 .66 

3, 5 34 PC 2 Subnet Mask 1 1 1 0 0 0 0 0 0 0 1 .72 .74 .54 .58 .63 .66 

3, 5 35 PC 2 Default Gate 1 1 1 0 0 0 0 0 0 0 1 .74 .75 .53 .55 .64 .64 

5 36 PC 2 Link to Switch 2 0 0 0 0 0 0 0 0 0 1 0 .45 .48 .40 .42 .48 .50 

                                                  

Notes. PO = primary observable, F = formative subsample, S = summative subsample, con = console. Discrimination index values are the 

point-biserial correlation coefficients using the three separate dimensional total scores for claims dimension 3, 4, and 5, respectively; al l 

correlations were significant at the p < .01 level. Differences between correlations for summative and formative subsample greater than or 

equal to .10 are shown in boldface.    
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Table A-III. Descriptive Statistics for Log Files for Learner Subsamples 

 
Summative Subsample (n = 277) Formative Subsample (n = 1,942) 

 

Min Max Mean Median IQR SD Min Max Mean Median IQR SD 

Total score 4.00 100.00 80.56 90.00 27.00 24.15 0.00 100.00 64.53 72.00 48.00 29.02 

Total time (in seconds) 594.00 6659.00 2378.37 2155.00 1384.00 1103.93 311.00 7182.00 2593.59 2307 1869.00 1418.24 

# of commands 12.00 235.00 90.14 81.00 48.00 39.06 2.00 336.00 80.77 72.00 47.00 41.56 

Mean time per command 0.00 0.12 0.04 0.04 0.02 0.02 0.00 0.32 0.04 0.03 0.02 0.02 

# of switches b/t devices 0.00 25.00 6.94 6.00 5.00 4.49 0.00 46.00 5.63 4.00 5.00 4.86 

# of manage commands 0.00 97.00 29.18 24.00 21.00 17.57 0.00 122.00 24.57 21.00 20.00 17.28 

# of configure commands 0.00 78.00 35.52 34.00 9.00 11.63 0.00 166.00 31.32 31.50 12.00 14.29 

# of verify commands 0.00 50.00 11.74 10.00 10.00 8.85 0.00 92.00 8.86 7.00 9.00 9.23 

# of fail commands 0.00 90.00 13.90 10.00 14.00 13.94 0.00 174.00 15.26 10.00 15.00 16.46 

% of manage commands 0.00 0.59 0.31 0.31 0.12 0.09 0.00 0.77 0.30 0.29 0.12 0.09 

% of configure commands 0.00 0.67 0.41 0.43 0.17 0.11 0.00 0.78 0.40 0.42 0.19 0.15 

% of verify commands 0.00 0.60 0.13 0.12 0.10 0.08 0.00 1.00 0.10 0.09 0.11 0.09 

% of fail commands 0.00 0.80 0.15 0.12 0.13 0.12 0.00 1.00 0.19 0.14 0.16 0.17 
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Fig. A1a. Graphical representation of the component -based scoring structure for the E1 PTSBA. 
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Fig. A1b. Graphical representation of the component -based scoring structure for the E1 PTSBA. 
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Fig. A2. Three-level Bayes net for the components-based scoring structure. 
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Fig. A3. Heat map for the Q3 statistic for pairs of score variables for both learner subsamples 

Formative Subsample 
Summative Subsample 
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Fig. A4. Full Bayes net for the claims-based scoring structure. 
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Fig. A5. Distributions of the effectiveness and efficiency scores across the five latent classes from the DCM with linear structural hierarchy for the component -based scoring structure. 
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Fig. A6. Bivariate relations between the effectiveness and efficiency scores across the five latent classes in the DCM with linear structural hierarchy for the component -based scoring 

structure (parametric and nonparametric regression lines with R
2
 and sample size values shown). 


