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Abstract

Various studies have investigated the predictability of different aspects

of human behavior such as mobility patterns, social interactions, and shopping

and online behaviors. However, the existing researches have been often limited to

a single or to the combination of few behavioral dimensions, and they have adopted

the perspective of an outside observer who is unaware of the motivations behind the

specific behaviors or activities of a given individual. The key assumption of this work

is that human behavior is deliberated based on an individual’s own perception of the

situation that s/he is in, and that therefore it should also be studied under the same

perspective. Taking inspiration from works in ubiquitous and context-aware com-

puting, we investigate the role played by four contextual dimensions (or modalities),

namely time, location, activity being carried out, and social ties, on the predictability

of individuals’ behaviors, using a month of collected mobile phone sensor readings

and self-reported annotations about these contextual modalities from more than two

hundred study participants. Our analysis shows that any target modality (e.g. location)

becomes substantially more predictable when information about the other modalities

(time, activity, social ties) is made available. Multi-modality turns out to be in some

sense fundamental, as some values (e.g. specific activities like “shopping”) are nearly

impossible to guess correctly unless the other modalities are known. Subjectivity

also has a substantial impact on predictability. A location recognition experiment

suggests that subjective location annotations convey more information about

activity and social ties than objective information derived from GPS measurements.

We conclude the paper by analyzing how the identified contextual modalities

allow to compute the diversity of personal behavior, where we show that individuals

are more easily identified by rarer, rather than frequent, context annotations.

These results offer support in favor of developing innovative computational models

of human behaviors enriched by a characterization of the context of a given behavior.
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1 Introduction

In the last decade, several works have investigated the role of randomness in human be-

havior and how predictable are various aspects of human activities such as mobility [1–8],

social interactions [9–12], shopping [13, 14], and online [15] behaviors.
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Research studies have also highlighted how similarmechanisms seem to govern different

human activities. For example, people show a finite number of favourite places [6] and

friends [11]. In a similar way, some individuals tend to explore and change favourite places

[16] over time, as they do with friendships [11] and mobile phone apps [17], while others

tend to maintain stable their behavior.

However, existing studies on human dynamics have been often limited to a single or

to the combination of few behavioral dimensions (e.g. mobility and social interactions)

[2, 3, 18–20]. Moreover, these studies have adopted the perspective of an outside observer

who is unaware of the motivations behind the activities of a given individual.

In our work, we propose a different angle for analyzing the predictability of human be-

havior. In particular, our study revolves around the observation that, in typical circum-

stances, human behavior is deliberated based on an individual’s own perception of the

situation s/he is involved in, as captured by the notion of personal context [21–23]. For

this reason, we analyze regularity and diversity in behavior through the joint interplay of

fourmodalities of personal context (i.e. time, location, activity, and social ties) widely used

in context-aware and ubiquitous computing communities [21–25].

In particular, we performa rigorous statistical analysis of the effects of these fourmodali-

ties of personal context on the predictability of human behavior using amonth of collected

mobile phone sensor readings and self-reported annotations about time, location, activity

and social ties frommore than 200 volunteers [26, 27]. Our analysis leverages information

theoretic techniques introduced by studies on human mobility [3, 15, 28] to characterize

the predictability of individual behavior for single modalities and extends them to study

correlations across distinct modalities. In addition, we look at behavior diversity across

individuals through the lens of the four identified contextual modalities.

Our analyses and findings offer several pieces of evidence in support of the role played

by the investigated contextual modalities. As a first step, we have estimated the perfor-

mance of an ideal, optimal classifier for independently predicting eachmodality (i.e. time,

location, activity, and social ties) for each individual in the data set. This showed that an

optimal classifier with access to the previous annotations for the same user and contextual

modality, but not their chronological order, cannot do better than 45% to 65% accuracy. In

other words, ignoring correlations across time and between contextual modalities entails

a large irreducible error of 35% to 55%, depending on the target modality. Disclosing the

order of past annotations (again, available for the target modality only) makes the optimal

classifier performs much better and the irreducible error decreases to 10% to 15%. How-

ever, supplying the optimal classifierwith information about the othermodalities (e.g. pro-

viding time, activity, and social ties while predicting location) but not their order decreases

the irreducible error even more, below 5%. This shows that taking inter-modality corre-

lations into account makes a substantial difference in the predictability of an individual

behavior and supports the idea that inter-modality correlations may be more important

than short- and long-term correlations over time. These results, which hold for optimal

classifiers, were shown to carry over to practical classifiers (namely, Random Forests) in a

location recognition experiment. This experiment also shows that some locations that are

hard or impossible to predict using sensor data suddenly become easy to predict when in-

formation from time, activity, and social ties is taken into account. This further highlights

the fundamental importance of the jointly interplay of different contextual modalities in

behavior analysis.
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Then, the analysis was extended to determine the impact of subjectivity on predictability

of behavior. Consistently with our finding that activity and location are strongly tied, we

compared the impact of injecting objective versus subjective location information on the

performance of optimal classifiers for activity and social ties. Here, subjective locationwas

implemented using self-reported annotations, while objective location was derived from

GPSmeasurements. Our results support the argument that subjective location is far more

informative than objective location for predicting behavior.

In a final experiment, we investigated the role played by the identified four contextual

modalities in studying behavior diversity across individuals. The goal of this experiment

was to determinewhether commonor uncommonbehaviors arewhat distinguishes differ-

ent individuals. The results clearly show that, first of all, the context distribution is heavy

tailed, and therefore that contextual modalities offer support for analyzing “rare” behav-

iors, and second that annotations in the tail of the context distribution are much more

effective than those in the head at identifying individuals. This was verified in a practical

identity recognition experiment.

2 Related work

In this section we review key works related to our paper from two distinct research areas:

(i) capturing and modeling contextual information and subjective experiences using mo-

bile sensing approaches, and (ii) modeling predictability, entropy and diversity of human

behaviors.

2.1 Previous studies on capturing contextual information using mobile sensing

Numerous works adopt mobile sensing approaches on modeling and recognizing contex-

tual information, which not only serve applications such as health and physical activity

monitoring [29–32], mental health monitoring [33–35], and aging care [36, 37], but also

benefit the research on understanding and predicting human individual behaviors and

traits [19, 38–41].

A decade ago, Lane et al. [42] surveyed a number of existing studies on mobile phone

sensing algorithms, applications, and systems and pointed out that how to characterize

contextual information is one of the most challenging research problems in the mobile

sensing community.More in general, ubiquitous computing and context-aware computing

researchers have produced several works on modeling and characterizing the contextual

dimensions of human behaviors and activities [18, 19, 21, 43].

For example, various studies have leveraged the Experience Sampling Method (ESM)

[44] approach on mobile devices to capture self-reported contextual information on the

daily activities and routines of people [45–47]. ESM is a methodology aiming at collecting

information on behaviors and feelings of study participants throughout their daily activi-

ties [44]. As in traditional diary studies, ESM collects data by means of study participants’

self-reports; however, study participants, unlike in diary studies, are proactively triggered

at various moments during the day. Along this line, a group of ubiquitous computing re-

searchers has designed Aware [48, 49], a platform for context-aware mobile sensing that

captures different contextual information such as time, location and proximity interac-

tions.

In our current work, we took inspiration from these previous efforts and we focus on

collecting information on four contextualmodalities often investigated in the past, namely
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time, location, activity, and social ties. However, we advance the state-of-the-art perform-

ing a rigorous and extensive analysis of the joint effects of these contextual modalities on

the regularity and diversity of human behaviors. Doing this, we merge contributions from

ubiquitous and context-aware computing communities with computational social science

approaches characterizing the predictability of human behaviors by means of information

theoretic measures [3, 15, 28].

2.2 Previous studies on human predictability

In addition to studies and methods focused on capturing and modeling contextual in-

formation relevant for understanding human behaviors, there is a large body of work on

human predictability. Notably, these studies are canonically split into topics based on the

modality and data being considered: researches on human mobility look at location data

[2, 3, 6, 8, 15, 28], studies on behavioral routines analyze activities and recurrent patterns

[9, 50], and finally work on social networks investigates the role played by social relations

and interactions [24]. Only few works consider combinations of distinct modalities, such

as location and social ties [6, 18–20], or look at the predictability of human behavior at

a more general level [9]. Here, we make use of the statistical and information theoretic

measures developed mainly in studies on modeling human mobility [2, 3, 15], while ex-

tending them to the analysis of multiple modalities. Our experiments show that the four

contextual modalities identified are fundamental for determining, and thus for analyzing,

predictability and diversity of human behaviors.

3 Materials andmethods

Given the variety and complexity of individual experiences, formalizing context in its en-

tirety is essentially impossible, and application-specific or study-specific solutions are nec-

essary. In our paper, we focus on four modalities of context—time, location, activity, and

social ties—widely used in ubiquitous computing communities for capturing and describ-

ing situations occurring in everyday life [21–25].

Here, we illustrate these contextual modalities using a simple university life scenario, in

which a student is attending a lecture at the University of Trento, at 11:00 AM, together

with a friend named “Shen”.

Formally, the context can be represented as a tuple:

Context = 〈TIME,WE,WA,WO〉,

where:

• TIME is the temporal context: It answers “What TIME is it?” and encodes the time in

which that context was observed, e.g. “morning”;

• WE is the endurant context and answers “WhEre are you?” It indicates the relevant

location that a person is at, e.g. “classroom”;

• WA is the perdurant context and answers “WhAt are you doing?” It refers to the main

activity taking place, e.g. “lesson”;

• WO is the social context and answers “WhO are you with?” It covers all the relevant

people in the current context, e.g. “teacher”, “classmates”, and “Shen”.
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3.1 Data collection

The data was collected as part of the Smart UniTn 2 project, which lasted from the 7th of

May to the 7th of June 2018, for a total of four weeks (32 days) [27]. The research protocol

was designed on top of a prior analogous, but slightly smaller, study [26]. More precisely,

following the research protocol an e-mail inviting participation in the data collection was

sent to all 12,000 regularly enrolled students at the University of Trento. The e-mail clearly

explained that students could choose to participate in the study for two or four weeks,

and that in the first two weeks they would receive a notification every half hour, while

in the second two weeks every two hours. Moreover, as stated by Keusch et al. [51], the

willingness to participate in mobile data collection is strongly influenced by the incentive

promised for study participation. Thus, amonetary incentivewas introduced to encourage

prompt and truthful reporting. A reward of 20 euros was promised to each participant

every two weeks. In addition, each participant was informed that at the end of the survey

therewould be a lottery among thosewho responded tomore than 75% of the notifications

consisting of 3 prizes of 100 euros for the first two weeks and 3 prizes of 150 euros for the

second two weeks. From the 1089 volunteers, a stratified random sample of 237 students

from 10 different departments at the University of Trento, Italy, was invited to participate

in the survey.

Following the Italian regulations, all participants were asked to sign informed consent

forms and the study was conducted in accordance to them. The research protocol and the

informed consent forms were also approved by the Ethical Committee of the University

of Trento.

The data was logged using the i-Log app [52], which all volunteers were required to in-

stall on their mobile phones. The app records measurements from several sensors, both

hardware (e.g. GPS, accelerometer, gyroscope) and software (e.g. applications running on

the device). Table 1 lists all sensors with their frequencies and units of measurement. The

appwas also used to track the personal context of each study participant (namely their cur-

rent activity, location, and social context) by periodically administering questionnaires.

Figure 1 reports the questions appearing in each questionnaire and the set of possible

answers. The participants had 150 minutes (2.5 h) since submission to answer a question-

naire. If a study participant failed to timely reply to five consecutive questionnaires, the

oldest one was dropped and the answer treated as a missing value.

As previously said, the data collection was split in two phases, each two weeks long. In

the first phase (7th to 24th of May) questionnaires were submitted to the volunteers every

30 minutes, while in the second one (25th of May to 7th of June) every 2 hours, to lessen

the cognitive load. In this second stage, the volunteers were also specifically requested to

leave the app running at all times.

3.2 Data preprocessing

Despite these precautions, the self-reported annotations are not unlikely to be noisy and

biased. This is compatible with earlier observations about a similar collection experiment

[53]. In order tominimize the remaining bias, the raw annotations were cleaned as follows.

In a first step, a simple criterion was used to identify valid (that is, “trustworthy”) study

participants. A participant was deemed valid if s/he failed to reply no more than 7 times

within any 10-hourwindow, completed all questionnaires for at least 13 days, and provided

at least 300 valid answers. All of these conditions must hold for a study participant to be
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Table 1 List of sensors. Proximity triggers when the phone detects close objects, like the subject’s

hand or head

Sensor Frequency Unit

Acceleration 20 Hz m/s2

Linear Acceleration 20 Hz m/s2

Gyroscope 20 Hz rad/s

Gravity 20 Hz m/s2

Rotation Vector 20 Hz Unitless

Magnetic Field 20 Hz μT

Orientation 20 Hz Degrees

Temperature 20 Hz TC

Atmospheric Pressure 20 Hz hPa

Humidity 20 Hz %

Proximity On change 0/1

Position Every minute Lat./Lon.

WIFI Network Connected On change Unitless

WIFI Networks Available Every minute Unitless

Running Application Every 5 seconds Unitless

Screen Status On change 0/1

Flight Mode On change 0/1

Battery Charge On change 0/1

Battery Level On change %

Doze Modality On change 0/1

Headset plugged in On change 0/1

Audio mode On change Unitless

Music Playback On change 0/1

Audio from the internal mic 10 seconds per minute Unitless

Notifications received On change Unitless

Touch event On change 0/1

Cellular network info Once every minute Unitless

Activity Performed (Google data) Once every minute Unitless

Figure 1 The questionnaire used in the Smart UniTn 2 project

deemed valid. A total of 184 study participants were marked as valid. The records of all

invalid study participants were discarded. The next step was to delete events with invalid

or missing values (like empty string labels) and records spuriously occurring before the
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Figure 2 Number of annotations per participant in the final data set. Most study participants have between

400 and 1000 fully annotated contexts

Figure 3 Annotations of an irregular (top) and a regular (bottom) study participant. For each participant, left

to right: annotations for What, Where, and Who. Each row is a day, columns are hours. Colors indicate different

values. The values were grouped by similarity, for interpretability. Missing values are in blue. Weekends are

indicated on the y axis

8th of May or after the 5th of June. Finally, in order for all statistics of the data in the

two phases to be directly comparable, the records obtained from the second phase were

replicated four times.

After the processing, there are 156 study participants with 124,963 records in total

in the data set. The processed dataset consists of several time series x
u,m, one time

series for each valid study participant u ∈ {1, . . . , 156} and contextual modality m ∈

{TIME,WE,WA,WO}. Each time series can be viewed as a vector xu,m = (xu,m1 , . . . ,xu,mT ),

where T is the number of questionnaires administered to a study participant during the

collection procedure and every xu,mt , with t = 1, . . . ,T , indicates the annotation for modal-

itym reported by study participant u at time t. The number of annotations per study par-

ticipant, reported in Fig. 2, shows that most participants have in-between 400 and 1000

records. To get an intuition of the regularity in the behavior of volunteers, we selected

two participants with the highest and lowest annotation diversity and visualize their an-

notations in Fig. 3. The most regular study participant has a distinctly simpler behavior

than the other one, as expected. The figure also shows that even the behavior of the more

regular volunteer is still quite irregular and displays substantial variability across days and

across weeks.
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4 Results

We organize this section in several subsections. First of all (Sects. 4.1, 4.2, and 4.3), we

analyze each contextual modality in isolation. Second (Sects. 4.4 and 4.5), we study the

influence of the four modalities on one another. Then, empowered by the positive results

of the previous sections we proceed the analysis by studying the impact of subjectivity on

predictability (Sect. 4.6). We conclude (see Sects. 4.7 and 4.8) by providing evidence that

the investigated contextual modalities are useful in computing the diversity of personal

behavior across individuals.

4.1 Intra-modal predictability

Figure 4 reports the distribution of annotations in the data. The plot shows that, for all

contextual modalities, few values take up most of the mass. Roughly speaking, this means

that study participants spend most of their time performing four basic activities (namely

studying, sleeping, eating, and moving between locations, which account for about 55%

of the records), mostly stay at home (either their home or their relatives, more than 50%),

and mostly by themselves or with their friends (almost 50% and 16%, respectively). TIME

is special in that its annotations are extremely regular andmostly determined by the exper-

imental setup rather than by individual preferences. This is especially true for nocturnal

annotations, as the user can set i-Log to “sleep mode” so that it will automatically reply to

the questionnaires accordingly during the night. For this reason, TIME is omitted from the

Figure 4 Value distribution of different aspects. From top to bottom: WA, WE, and WO. Only the eight most

frequent annotations are shown for each aspect. The boxes extend from the 1st to the 3rd quartiles, while the

bars extend to ±1.5 inter-quartile range from the median. Study participants with very high annotation

frequency (i.e. outliers) are denoted by crosses
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figure. The profile transpiring from the data reflects the source demographics.1 The con-

centration of mass on few preferred values is consistent with previous studies on mobility

[3, 6].

We are interested in understanding to what degree individual modalities are predictable

and whether some modalities are intrinsically more predictable than others. In line with

previous work [2, 3, 15, 28], we answer these questions using entropy and predictability.

We introduce these notions in turn.

4.2 Entropy and predictability

Entropymeasures the number of bits necessary to encode a random source: an entropy of

b bits indicates that, on average, an individual who chooses her/his next value (i.e. location,

activity, or social tie) randomly according to the ground-truth distribution will be found in

2b distinct states with high probability [54]. Hence, higher entropy implies higher uncer-

tainty. In order to evaluate the contribution of different factors, consistently with previous

studies [3, 15], we estimated three forms of entropy:

(1) The random entropy, defined as:

Hrand

(

Xu,m
)

= log2N
u,m,

where Xu,m is a random variable that represents the value of modality m for individual u

and Nu,m is the number of distinct values observed for that modality and individual in the

full data set. The random entropy assumes that the study participant is equally likely to

choose any of the values that s/he has annotated.

(2) The time-uncorrelated or flat entropy, defined as:

Hflat

(

Xu,m
)

= –
∑

x

Pr
(

Xu,m = x
)

log2 Pr
(

Xu,m = x
)

,

where the sum runs over all the possible values for modality m and Pr(Xu,m = x) denotes

the empirical probability that individual u reported value x for modality m, as estimated

from the data. The flat entropy is more informed than the random entropy as it takes the

full value distribution into account.

(3) The true entropy, defined as the limit of the joint entropy:

Htime

(

Xu,m
)

= lim
T→∞

1

T

T
∑

t=1

H
(

Xu,m
1 , . . . ,Xu,m

t

)

.

HereXu,m
t is a random variable that captures the value provided by individual u formodal-

itym at time t, and the joint entropy H(Xu,m
1 , . . . ,Xu,m

t ) measures the disorder of t random

variables:

–
∑

x1 ,...,xt

Pr
(

Xu,m
1 = x1, . . . ,X

u,m
t = xt

)

× log2 Pr
(

Xu,m
1 = x1, . . . ,X

u,m
t = xt

)

.

1Considering that the volunteers are university students, the self-reported amount of studying is likely to be a (slight)
over-estimate.
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Compared to the flat entropy, the true entropy takes correlations over time, including

short- and long-range correlations, into account. The true entropy is estimated from the

data using the Lempel–Ziv estimator [55].

While entropy measures uncertainty, it only gives indirect information about how “easy

to guess” a random source is. This is better captured by the notion of predictability, which

was introduced to assess regularity of human mobility [3]. Formally, the predictability

�(X) ∈ [0, 1] of a random variable X is the accuracy of an optimal classifier for X, that

is, the probability that this classifier outputs the correct value. As a consequence, if the

predictability of a random variable is 0.8, then no classifier can have an accuracy higher

than 80%—or, in other words, all classifiersmust bemistaken 20% of the time. Thismeans

that predictability measures the irreducible error intrinsic in a random source. A notable

property of the predictability � is that, thanks to Fano’s inequality [54], it can be derived

directly from the entropy H by solving the equation:

H = –
(

� log2 � + (1 –�) log2(1 –�)
)

+ (1 –�) log2(N – 1). (1)

HereN is the number of distinct values thatX can take. Please see [3] for a detailed deriva-

tion. For our goals, it suffices to know that, very intuitively, lower entropy entails higher

predictability. In order to measure the effect of annotation distribution and correlations

over time, the predictability of each individual u and modality m was obtained by solv-

ing Eq. (1) using the random, flat, and true entropy. The resulting values are indicated as

�
u,m
rand, �

u,m
flat , and �

u,m
time, respectively.

4.3 Results for intra-modal entropy and predictability

Figure 5 illustrates the distribution of entropy (left) and predictability (right) for each

modality. The histograms show that while all modalities are to some extent regular, some

are more regular than others. This is partly due to the fact that the theoretical maximum

Figure 5 Empirical distribution of entropy (left) and corresponding predictability (right). From top to bottom:

WA, WE, and WO. The bar height indicates the number of participants. The green bar indicates the maximum

possible entropy
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Table 2 Empirical entropy (left) and predictability (right) averaged over all study participants and

standard deviation thereof

Modality Hrand Hflat Htime �rand �flat �time

WHAT 4.11± 0.15 3.32± 0.31 1.25± 0.23 0.20± 0.07 0.45± 0.07 0.85± 0.03

WHERE 3.88± 0.24 2.43± 0.57 0.87± 0.22 0.32± 0.07 0.65± 0.10 0.90± 0.03

WHO 2.58± 0.30 1.82± 0.37 0.82± 0.20 0.40± 0.15 0.67± 0.10 0.89± 0.04

of the entropy is log2N
m, and it is controlled by the number of possible values Nm for

modality m. Hence, modalities with more states, like activity and location, are intrinsi-

cally more uncertain and less predictable thanmodalities with fewer states. In our setting,

the theoretical maximum of the entropy (represented in the entropy plots by a green line)

is about 4.4 for location, 4.3 for activity, and 3 for social tie. The plots show that entropy is

largely determined by distributional information and short- and long-range correlations

always impact the measured entropy: random entropy (blue) is always much higher than

flat entropy (red), which is itself much higher than true entropy (purple). These changes

in uncertainty demonstrate that taking annotation distribution and time correlations into

account can substantially lower uncertainty and increase predictability. The same effect

can be observed for all modalities, with some differences. For all entropy measures, the

WA modality has the highest entropy, followed by WE and WO. However, the difference

betweenmodalities ismore pronounced for the random and flat entropy, while it is limited

for the true entropy, confirming the usefulness of taking time correlations into account.

Figure 5 (right) shows predictability of each modality for the different types of entropy.

Comparing these histograms with those on the left makes it clear that increasing the

amount of information dramatically increases predictability, as expected. Table 2 reports

means and standard deviations of empirical entropy and predictability of each modality

and type of entropy. The predictability for the true entropy �time (and hence maximal

prediction accuracy) is 85% for activity, 89% for social tie, and 90% for location. This en-

tails that irreducible error, even when taking all the available information into account, is

about 10%–15% acrossmodalities. The irreducible error for the flat entropy is even larger,

35%–55%.

The standard deviation of predictability—that is, the spread of the histogram—does

considerably shrink asmore information is taken into consideration. This points at the fact

that, as more information is considered, all participants appear to act more predictably.

It is worth noting that, however, the standard deviation of the true entropy is non-zero,

hinting at the fact that some participants are intrinsically less predictable than others. This

partially motivates our study of behavior diversity across individuals, presented later on.

4.4 Inter-modal predictability

So far, we have studied individual modalities taken in isolation. This approach is simplistic

in that it neglects correlations between modalities, which we hypothesize to be very sig-

nificant. In the following, we study the effect of inter-modal correlations on predictability.

This is achieved by estimating the conditional entropy H(Xu,m|Xu,m′
), which quantifies

the number of bits b needed to encode a random sourceXu,m assuming thatXu,m′
is known

(with m′ �= m). Intuitively, the more Xu,m′
influences or determines Xu,m, the lower the

conditional entropy [54]. The conditional entropy is defined as:

H
(

Xu,m|Xu,m′)

=
∑

x′

Pr
(

Xu,m′

= x′
)

H
(

Xu,m|Xu,m′

= x′
)

,
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Figure 6 Entropy (top) and predictability (bottom) of each modality after conditioning on all subsets of other

dimensions, averaged over all study participants. Left to right: the target modality is WA, WE, and WO,

respectively. As more information about other dimensions is revealed, entropy decreases and predictability

increases

whereH(Xu,m|Xu,m′
= x′) is the entropy ofXu,m estimated only on those records that satisfy

Xu,m′
= x′. An issue with conditioning is that it is incompatible with the full entropy Htime,

as it breaks time correlations: two non-consecutive records may appear to be consecutive

in the conditional data set simply because they satisfy the same condition Xu,m′
= x′ and

none of the records in-between them does. This means that the conditional and uncondi-

tional entropy cannot be compared directly.2 For this reason, in the following we use the

flat, time-uncorrelated entropy Hflat in all computations.

The reduction in flat entropy due to conditioning, averaged over all study participants,

is illustrated in Fig. 6 (top). The green line represents the entropy prior to conditioning

(as reported in Table 2), while the red bars represent the conditional entropy. The change

in predictability is reported below in the same figure. The plots show very clearly that

in all cases, inter-modal information substantially reduces uncertainty and improves pre-

dictability.3 Indeed, conditioning anymodality on the rest of the context (including TIME,

rightmost bar in the plots) reduces entropy bymore than 80% and increases predictability

by at least 30%. More in detail, upon conditioning on the full context model, the entropy

drops from3.32 to 0.42 forWA, from2.43 to 0.28 forWE, and from1.82 to 0.29 forWO.At

the same time, the predictability goes from 0.45 to 0.96 forWA, from 0.65 to 0.97 forWE,

and from 0.67 to 0.97 for WO, cf. Table 2. This shows that the potential gain in accuracy

from using multi-modal contextual dimensions is extremely large for all the modalities.

The results for predictability make this point even clearer, as conditioning gives an im-

pressive reduction of the irreducible error (that is, 1 – �). In particular, the irreducible

error of WA sees a huge drop from 55% to 4%, that of WE from 35% to 3%, and that of

WO from 33% to 3%. This is consistent with our argument that time, location, activity,

and social ties strongly influence each other, and provides empirical evidence in favor of

our approach of taking into consideration all the four contextual dimensions.

The magnitude of entropy reduction is largely independent of the target modality: con-

ditioning reduces entropy ofWAby 84%, ofWEby 86%, and ofWOby 81%, and increases

predictability by 160%, 133%, and 131%, respectively. At the same time, some modali-

2Anaïve comparison shows that the conditional full entropy appears to be larger than the unconditional full entropy, which
is clearly impossible.

3The conditional entropy is—by definition—never larger than the unconditional entropy, that is, H(X|X ′) ≤ H(X), regardless
of the relation between X and X ′ . Still, if X ′ is independent of X , then conditioning has no effect on entropy. This is clearly
not the case in our plots.
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ties appear to carry more information than others: while conditioning on TIME shrinks

entropy by only 15-20%, conditioning on WO, WA, and WE reduces entropy by 45%,

54–67%, and 59–77%, respectively. The four modalities can be ordered by average im-

pact as TIME ≺ WO ≺ WA ≺ WE, meaning that TIME is the least informative modality

and location the most informative one in the setting under investigation in this study. The

largest impact is observed when conditioning activity on location or vice versa, although

conditioning on multiple modalities makes this effect more noticeable.

Comparing these results, which refer to flat entropy and predictability and that there-

fore ignore correlations over time, with those for full entropy supports the idea that inter-

modal correlations are more influential than pure temporal correlations. Indeed, the full

entropy of WA, WE, and WO reported in Table 2 are 1.25, 0.87, and 0.82, respectively,

while the flat entropy obtained upon conditioning on the rest of the context is much lower,

namely 0.42, 0.28, and 0.29, respectively.

4.5 Location prediction in practice

The above analysis shows that taking multiple contextual modalities into account helps to

identify regularities in the behavior of individuals. Along this line, we also expect that some

activities, locations, or social relationships cannot be predicted unless information from

other modalities is available. Furthermore, while predictability measures the performance

of an optimal classifier, it is important to study whether improvements in predictability

due to conditioning affect the performance of real classifiers in practice.

To investigate this issue, we carried out a practical location prediction experiment.

Specifically, wemeasured the difference in prediction performance between a prototypical

statistical classifier [56] that predicts location from sensormeasurements and that of anal-

ogous classifiers that were additionally given annotations about activity and/or social ties.

As for the classifier, we opted for Random Forests due to their performance and reliability

[57].

We trained one Random Forest classifier for each participant u. Each Random Forest

takes as inputs the sensormeasurements sut of user u at time t—and optionally the annota-

tions for the activity xu,WA
t and social ties xu,WO

t —and predicts the corresponding location

xu,WE
t . For simplicity, the sensor measurements sut were restricted to features derived from

GPS information, and in particular to longitude, latitude, and total distance traveled by the

subject since the last questionnaire. This simple setup is sufficient for location prediction,

and readings from the other sensors were found empirically to not be very relevant for the

task at hand.

Prediction performance was evaluated using a 5-fold cross validation procedure.

Namely, for each study participant, her/his records were randomly partitioned into 5

folds: one fold was used for performance evaluation while the remaining four were used

for training the classifier. This step was repeated five times by varying the test fold. The

performance of the Random Forest was taken to be the average over the five repeats.

For each user, we evaluated the impact of inter-modal annotations by comparing the

performance of four classifiers: a baseline Random Forest that uses only GPS-derived in-

puts sut and three Random Forests—with the very same depth—that were given also an-

notations for WA and/or WO as inputs. All hyper-parameters were kept to their default

values.4 except for forest depth, whichwas selected on a separate validation set to optimize

4As given in the scikit-learn package, version 0.24 [58]
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Figure 7 Left: Macro mean F1 scores achieved by a Random Forest classifier for location using sensors only,

sensors with WO, sensors with WA, and sensors with WO and WA. Right: per-label F1 score achieved by the

same classifier for individual locations

the performance of the baseline Random Forest. In order to account for annotations skew

(i.e. some locations are naturally more frequent than others), performance was measured

using the macro F1 score. The latter is simply the F1 score of individual locations averaged

over all locations.

The overall macro F1 scores averaged across study participants, as well as a break-

down of the F1 scores for individual locations, are reported in Fig. 7. The plots show that

GPS information can predict reasonably well several locations (red bars), like “Home”,

“Relative’s home”, and “Library”, among others, on which the baseline Random Forest

achieves 40% F1 score. We conjecture this to be partially due to the fact these locations

are very specific—in our data, the home of most users is unique and often easily iden-

tified from even few examples—and partially due to the abundance of annotations for

these locations, cf. Fig. 4. GPS information, however, is clearly insufficient for locations

like “Shop/Supermarket/etc.”, “Theater/Museum/etc.”, “Gym”, which are far more generic.

Here the baseline RandomForest performs very poorly. This can be explained by two facts.

First, these locations are composed of multiple objective locations (e.g. different shops,

some of which possibly never observed during training), and therefore they are harder to

predict based on GPS data alone. Second, the number of annotations for these locations

is much lower.

Performance dramatically improves once WA and WO are supplied as inputs. In par-

ticular, the overall F1 score increases by about 30%. Moreover, while knowledge of either

WO orWA always helps recognition performance, supplying both improves performance

even more, as expected. We also note that WA is more useful than WO in general. These

observations are consistent with the results for the optimal classifier.

One question is whether these results are influenced by the performance of particularly

easy to predict classes. We assessed this possibility by computing a variant of the macro

F1 that considers the median (rather than the mean) performance over classes, and as a

result is naturally insensitive to classes that perform exceptionally well or exceptionally

badly. The results are as follows: the macro mean F1 for the four cases (sensors only, sen-

sors with WO, sensors with WA, and sensors with WO and WA) is 0.19, 0.25, 0.42 and

0.47 respectively, whereas the macro median F1 is 0.09, 0.13, 0.43 and 0.47. The more

significant difference between macro mean and median F1 appears when no activity in-

formation is present: the baseline drops by about 10% and the “withWO” Random Forest
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by 13%. However, the latter can be almost entirely explained by the former: adding social

information contributes roughly +5% to both macro mean and median F1 (from 0.19 to

0.25 and from 0.09 to 0.13, respectively). Summarizing, this shows that the macro mean

F1 overestimates the quality of the sensor-only baseline by about 10%. This probably oc-

curs because all on-the-way locations like driving and walking are very hard to predict

from sensors only (they individually achieve less than 8% F1), meaning that the macro

median F1 tends to consider the higher-performing classes as outliers and ignores them.

Most importantly, the contribution of inter-modal information to predictive performance

is confirmed even by this more strict metric.

An important finding of this experiment is that some locations that were completely un-

predictable fromGPS data alone, aremuch easier to recognize ifWA andWOannotations

are supplied as inputs. The two most impressive examples are “Shop/Supermarket/etc.”

and “Theater/Museum/etc.”, in which the correlation between location and activity boosts

the F1 score from less than 5% to more than 70%. This very encouraging result offers fur-

ther support for the jointly leverage of different contextual modalities, as some locations

that are essentially impossible to recognize suddenly become essentially trivial to recog-

nize when rich contextual information is provided.

4.6 Subjectivity and predictability

Here, we investigate whether subjective annotations aremore relevant than objective ones

for determining predictability of behavior.

In particular, we compared the reduction in entropy due to conditioning on subjective

location (namely, the WE annotations) to that due to conditioning on objective location,

interpreted here in terms of GPS coordinates and related information. As in the location

recognition experiment, we defined objective location using longitude, latitude, and to-

tal distance travelled since the last questionnaire. Computing the conditional entropy for

continuous variables—in our case, the GPS coordinates—is not statistically straightfor-

ward. In order to avoid issues, we discretized the GPS information using a simple binning

procedure. In particular, we allocated k = 3 equal size bins for each of the three dimensions

(longitude, latitude, amount travelled), for a total of 27 values for the objective data. This

is done by using the KBinsDiscretizer class provided by scikit-learn [58] using the “quan-

tile” strategy, which ensures that all bins contain roughly the same number of points. The

number of bins roughlymatches the number of subjective values (i.e. locations), which are

22. Since the variance of the conditional entropy estimator depends strongly on the num-

ber of alternative values, our choice of having roughly the same number of values for both

subjective and objective data discourages the estimator from having dramatically different

variances for the two cases.

A comparison of conditional entropy of WA and WO obtained by conditioning using

subjective (red) versus objective (blue) location is reported in Fig. 8. The two left bars

in each plot refer to conditioning the target modality using location only, while the two

right bars indicate conditioning on all other modalities. There is a very clear difference

between self-reported locations (WE) and GPS data: while knowing the GPS coordinates

and traveled distance of the study participant reduces entropy in all cases, the reduction is

farmoremodest than that obtained by conditioning on subjective location. The impact on

predictability is analogous: GPS information provide a substantial boost to predictability

(cf. Table 2), from 45% to 70% for WA and from 67% to 81% for WO. This is compatible
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Figure 8 Entropy (left) and predictability (right) of modality WA and WO after conditioning on subjective

labels (red) and objective labels (blue)

with the results obtained above for inter-modal correlations. The improvement is however

always inferior to the one induced by subjective location: for WA, predictability is 70%

when supplying objective location but goes up to 92% when supplying subjective anno-

tations. For WO, the difference is less pronounced: 81% (objective location) against 90%

(subjective). This is, again, likely due to the strong connection between activity and loca-

tion. The situation is roughly unchanged if we condition the target modality on the rest

of the context, namely location (either subjective or objective), time, and the remaining

modality. These results show that subjectivity, besides being necessary for framing behav-

ior from the subject’s perspective, has a substantial effect on predictability and regularity

of behavior in practice.

4.7 Diversity: motivation

In the last experimentwe studied the diversity of personal behavior. Themotivation under-

lying this experiment is to provide some evidence of the intrinsic diversity, both objective

and subjective, of the personal context of an individual. It is a widespread intuition that

most of the time people behave similarly to each other. Indeed, everybody sleeps, eats,

works, and socializes, and these activities take up most of our time. So, at a high level,

everybody behaves the same during these high-frequency (subjective) activities. Our in-

tuition is that individual differences manifest themselves in infrequent behaviors—for in-

stance, while most people only go to the cinema in the evening, a cinephile has no issue

going to a matinée.

A prerequisite to this argument is that rare behaviors occur often enough to be statisti-

cally meaningful. To determine whether this is the case, we checked whether the empiri-

cal distribution of context annotations is heavy-tailed. This was achieved by fitting three

candidate distributions, a power law distribution, a log-normal distribution, and an ex-

ponential distribution to the data.5 It is apparent from the plot shown in Fig. 9 that the

log-normal distribution (with μ = –8.2, σ = 1.6) offers a much better fit of the behavior

of individuals than the exponential model, which is not heavy-tailed. This supports the

idea that individual behavior described using the four identified contextual modalities is

heavy-tailed, as expected.

Inspired by some studies on the uniqueness of mobility [60, 61] and apps usage [62]

behaviors, we investigate whether annotations in the tail of the context distribution are

indicative of personal identity, that is, whether it is easier to identify individuals using

5Using the powerlaw package [59].
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Figure 9 Comparison of power-law distribution and exponential distribution fit on the empirical distribution

annotations from the tail or from the “head” of the distribution. For instance, in our uni-

versity setting we expect common (head) annotations like 〈morning, classroom, lesson,

classmates〉 to convey very little information about individual identity, as most university

students attend lectures in the morning, and rarer (tail) annotations like 〈morning, work-

place, work, alone〉 to be far more informative.

4.8 Diversity: experiment and results

We designed a classification task in which the goal was to predict the identity of individ-

uals based on context annotations only. All records in our data set were annotated with

the ID of the subject they were generated by. The head and tail of the distribution were

then defined using an arbitrary threshold τ ≥ 0: annotations that appear with frequency

below τ were taken to fall in the tail and the others in the head. Next, we trained two

Support Vector Machine (SVM) classifiers [63] separately on the tail data and on the head

data, and compared their performance. Both models received annotations for all modal-

ities as inputs. As above, performance was measured in terms of F1 score (the higher the

better) in a 10-fold cross validation setup. Notice that the number of personal IDs is 156,

which is fairly large and renders the classification task highly non-trivial. For reference,

the expected F1 score of a random classifier is 1/156 (indicated in cyan in the plots).

The results can be viewed in Fig. 10. The top plot shows the F1 score of the two classifiers

as the threshold τ is increased. Recall that a lower threshold entails that fewer annotations

fall in the tail andmore in the head. The threshold ranges from 0 (left of the plot), in which

case no annotation falls in the tail, to the smallest value for which all data fall in the tail,

which is ≈ 0.57 (right of the plot). Broadly speaking, the tail classifier always outperforms

the head classifier by a large margin, while the head classifier never performs better than a

classifier trained on both head and tail annotations (the green line in the figure). In order to

better analyze the plot, we split it into three regions, highlighted by the purple lines (notice

that the sticks on the x-axis are non-uniform.) In the leftmost region, the tail classifier does

outperform the head classifier as soon as there are enough annotations in the tail, and it

stabilizes at around 40% F1 score for τ from about 0.00005 to 0.00012. Here the tail is
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Figure 10 Top: average F1 score over all study participants for classifiers trained on tail (blue) and head (red)

data for increasing values of the threshold τ . The performance of a classifier trained on all data (green) and of

a random baseline (cyan, dashed) are also reported, for comparison. Bottom: F1 score of each individual for

thresholds τ = 0.00001 (left) and τ = 0.00007 (right). The x-axis represents the 156 participants. Individuals are

sorted by increasing F1 score of the tail classifier

maximally informative, presumably because it only contains rare and informative context

annotations. As the threshold increases and less “rare” annotations fall in the tail (middle

region), the tail classifier drops off in performance but it still outperforms the “all” and the

head classifiers. The head classifier also performs worse and worse, as more annotations

move from the head to the tail. In the rightmost region, the tail converges to the full data

set and hence the tail classifier converges to the performance of the “all” classifier.

A break-down of performance for different study participants is reported in Fig. 10 (bot-

tom) for the two thresholds corresponding to the minimum (τ = 0.00001) and maximum

(τ = 0.00007) of F1 respectively. Individuals are sorted on the x-axis according to the F1

score of the tail classifier, for readability. In the left figure, when τ = 0.00001, the size of tail

data is extremely small and only less than 20 users have annotations. This explains clearly

why the performance of the tail classifier drops when the threshold is too small. On the

other hand, for τ = 0.00007 (right figure) the overwhelmingmajority of individuals ismore

likely to be identified correctly by looking at their infrequent behaviors—with less than 10

exceptions. This provides evidence in support of the fact that the tail of the distribution

conveys muchmore information about personal identity than the head. The “exceptional”

participants themselves can also be easily explained. These individuals are hard to classify

because their behavior is slightly more regular than that of the other volunteers, meaning

that their most of their annotations occur more frequently and therefore are more likely

to fall in the head of the distribution. Indeed, we verified that this issue disappears once

the threshold is increased slightly (data not shown). A proper solution for this issue would

be to choose the threshold τ on a subject-by-subject basis. This is however orthogonal to

our goals, and beyond the scope of this paper.
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5 Conclusion

In this work, we have studied the predictability of human behavior through the notion of

personal context. Our study captures a rich, multi-faceted picture of individual behavior

by looking at four orthogonal but interrelated dimensions—namely time, location, activ-

ity, and social ties—viewed from the subject’s own perspective. An empirical analysis on

a large data set of daily behaviors shows the benefit of this choice: the different contextual

modalities and their subjective description are shown to provide important cues about

the predictability of individual behavior. Motivated by this, we also applied our contextual

modalities to study behavioral diversity. The obtained results highlight that individuals

are more easily identified from rarer, rather than more frequent, subjective context anno-

tations.

This work can be extended in several directions. First and foremost, while our results

are promising, we plan to further validate them in more settings and in specific applica-

tions. To this end, we are currently working on collecting a much larger data set, with

students from several universities in four different countries, which will serve as a basis

for a thorough investigation of the results presented here.

This work also highlights an interesting conundrum. Our results suggest that subjective

annotations are very useful for predicting certain contextual modalities. However, these

subjective annotations, obtained by filling questionnaires, have some degree of error re-

lated to, for example, the list of alternatives that are allowed to the respondent, e.g. the list

of activities, places, or people; the memory effect of the respondent when s/he does not

respond immediately; the social desirability effect that may prevent the study participant

from reporting certain (socially disapproved) activities; and unreported activities when

the participant perceives this as an intrusion into her/his privacy. Moreover, in practical

applications, collecting self-reported annotations is not always an option. This means that

in some settings and scenarios one has to compute predictions from sensormeasurements

only, which is likely to incur a substantial performance penalty. Going forward, one op-

tion is to replace the ground-truth self-reported annotations with predictions. This makes

especially sense in a multi-task prediction pipeline in which all contextual modalities are

predicted jointly from sensor measurements. This way, the predictor can leverage inter-

modal correlations, which are key for inferring some locations and activities and for avoid-

ing inconsistencies. This prediction pipeline would be fully operationalizable even in the

absence of subjective annotations, so long as an initial training set is available. The down-

side is that replacing annotations with predictions does introduce noise into the system.

Finding a complete solution to this problem is an interesting avenue for future work.
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