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   Abstract: Certain key features of brain-like 
intelligence are essential to fulfill the main goals of 
policy-makers and environmentalists for the 
“smart grid” – a key item in the new economic 
stimulus law, and a key item in a rational strategy 
for energy sustainability. This paper will explain 
why and how, and how the neural network 
community could play a crucial role in making this 
real.  
 

I.  THE GLOBAL NEED 
 
In any engineering application, it is necessary to 
start out by spending some time in problem 
formulation, in order to avoid wasting time and 
effort in well-crafted useless sophisticated dodo 
birds, which have become all too common in 
recent years. “Smart grid” technology is a prime 
example of this.  At NSF, a careful evaluation of 
“broader benefits” is a major part of deciding 
which research is worth funding.  
 Many people (for marketing reasons)  
use the term “smart grid” to mean conventional 
types of investment in building wires and 
substations, in order to reduce the chances of 
future blackouts. There is a need for such 
investments, but they do not require 
computational intelligence. While useful, they 
are not enough by themselves to meet some of 
the very urgent needs of the world energy 
economy. Some of the short-term investment 
needs could be met more efficiently by importing 
technologies like the SIL wiring technology from 
Brazil, which often allows 60% more electricity 
to be carried on a given right-of-way, and could 
have been very useful to the state of California in 
reducing its budget problems after the electricity 
shortages a few years ago[1]. 

 A new vision for an intelligent grid was 
first crystallized in two back-to-back workshops 
in Mexico, planned by James Momoh, Massoud 
Amin and myself, jointly led by NSF and the 
Electric Power Research Institute (EPRI) [2].  
 The practical and urgent need for this 
new vision has become clear in recent years. 
Many people now believe that new energy 
sources like wind offer our only possible escape 
from a combination of terrifying threats from 
greenhouse gasses, nuclear proliferation resulting 
from a flow of enrichment technologies to every 
part of the earth, and conflicts due to growing 
scarcity of energy resources. [3]. But new, 
marginal sources of wind power cost 20 cents 
per kwh in Europe – about three times what 
traditional sources cost – and are not available 
when electricity is needed most. If  had enough 
energy storage in the power grid, and if we 
had the right kind of intelligent control, 
existing wind farms could give us three times 
as much electricity as we now get from them, at 
the times when we want the electricity; when we 
get three times the electricity from the same 
capital investment, it cuts the cost per kwh by a 
factor of three, and suddenly makes it affordable 
to make a massive conversion of the world’s 
energy system starting now.  
 I would like to give special thanks to 
Georg Zimmerman of Siemens and the IEEE 
CIS Alternate Energy Task Force, and to the 
IEEE-USA Energy Policy Committee, for 
explaining some of the practical ramifications 
here to me. There are only three renewable 
energy sources – wind, solar farms and energy 
from space – which clearly could supply all of 
the energy needs of the entire US. Of these three,   
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wind is the only one mature enough to be ready 
for deployment today on that scale. Even as we 
build new wind farms, and build the wires to 
connect the grid to regions of strong wind in the 
Rocky mountains and offshore, we need to work 
equally hard on the storage and on the specific 
kind of intelligent control that we need in order 
to make full use of that storage and of other ways 
to shift the timing of electricity supply. This 
need is now widely recognized among policy 
makers; it is a major reason why the “intelligent 
grid” has been allocated on the order of a billion 
dollars in the economic stimulus bill which 
passed this month (February 2009 [4]). Large-
scale storage and intelligent control would still 
be necessary in meeting total US needs even if 
we also developed solar farms at a cost of 6 cents 
per kwh – a reasonable goal well beyond the 
constrained R&D efforts now underway.  
 The storage part of this challenge is 
also of great importance – not just for wind 
power, but for the changes we need to make in 
cars and trucks [5]. However, there are a number 
of very promising efforts to develop and deploy 
advanced technologies to address that part; for 
example, see [6], see the practical efforts to 
commercialize compressed air storage 
technology, and see discussions at Congress, 
DOE, NSF and DOD about options for new 
efforts. The ability to make full (optimal) use of 
this storage, and of other methods for time-
shifting electricity supply and demand, is the 
critical barrier here – the barrier which 
computational intelligence may be necessary to 
overcome. 
 Strictly speaking, computational 
intelligence is also important on the storage side. 
Intelligent battery management systems, and 
intelligent exploration of the design space, can 
play an essential role there [6]. Intelligent end-
use systems, such as the reinforcement learning 
control for Heating, Ventilation and Air 
Conditioning by Hittle, Anderson and Young, 
could be extended to respond to price 
fluctuations and give more “control authority” to 
an intelligent grid. Price-responsive management 
of distributed storage is described in my patent 
assigned to Greensmith [6] – but we can only get 
the full value from such systems if the right price 
signals are broadcast from the grid itself. Other 
authors such as Harley, Venyagamoorthy, 
Monoh have reviewed a variety of other ways 
that computational intelligence can be used to 
improve other key components of the electric 
power grid. Harley and Venayagamoorthy, 

especially, have begun to scale up to experiments 
on Wide Area Control (WAC) [7] which come 
closer to a true intelligent grid than anything else 
implemented to date.  
 The remainder of this paper will discuss 
the technical details of the intelligent grid 
challenge itself, and the connection to neural 
networks.   
 
  II. THE TECHNOLOGY TO MEET THE 
NEED 
 
In a sense, the challenge here is simply to build a 
better controller for the electric power grid. 
Many people say that the electric power grid is 
the most complex single piece of machinery ever 
built by humans. Even so, we can view this as 
nothing but a testbed for the general problem of 
how to design an adaptive, optimal controller for 
a complex nonlinear system subject to random 
disturbances.  

That is exactly the focus of adaptive 
approximate dynamic programming (ADP) [2,8], 
a major emerging thrust of computational 
intelligence. But in order to handle general 
nonlinear decision problems, the best ADP 
designs all require several components which 
learn to approximate unknown nonlinear 
mappings.  Neural networks are essential to 
handling this task well, in general complex 
environments, because several types of neural 
networks provide more accurate universal 
approximation than any classical alternatives 
[9,10]. They also make it possible to use new 
chips in the Cellular Neural Network family 
which already offer thousands of processors in 
parallel on a single commercially available chip.  
 How does this mathematics map into 
the practical realities of trying to upgrade the 
electric power grid? How and why can we apply 
ADP directly to the global problem of 
controlling the entire electric power grid?  
 To begin with, we need to review some 
key aspects of how the electric power grid is 
controlled today [2,11]. There are many, many 
control methods used for individual components 
of the grid – but these methods usually do not 
control all the pieces together to make them 
optimize the overall performance of the grid as a 
whole. For control of the grid as a whole, the 
best tool available today is Optimal Power Flow 
(OPF). James Momoh of Howard University has 
been the leader in developing an integrated suite 
of optimization tools which make it possible to 
coordinate a wide collection of control decisions 



across the entire grid, to get optimal performance 
of the system as a whole. OPF and ADP are the 
two foundations which we proposed to integrate 
and build upon, starting in 2002.  
 What are the limits of today’s OPF, and 
why do we need something better? OPF 
calculates the best possible combination of 
control actions across the grid, in order to 
maximize some measure of performance U(x), 
based on the best available models of how the 
grid works and assuming no significant random 
disturbances. (Evolutionary computing is part of 
that suite.)  As part of that calculation, it 
calculates a vector λ of “shadow prices” for all 
of the state variables in the system. In recent 
years, economists and power engineers have 
worked together to develop new ways to manage 
and regulate electric power grids based on a new 
concept of “locational marginal cost,” which is 
essentially just a new way of package this vector 
λ calculated by OPF! Strictly speaking, the 
market is solving a multicriterion optimization 
problem here, but it still ends up with the same 
mathematics and the same λ vector! 
 Great and useful as all of this is, it does 
not do anything at all to tell us how to shift 
power or storage from one time to another. It 
only maximizes a measure of present benefits 
from present actions. These locational marginal 
costs do not account for the value of storing 
power instead of selling it immediately.  

There have been a variety of quick fixes 
used to address such problems, beyond the scope 
of today’s OPF. For example, in managing large 
pumped hydro storage of electricity, Chile has 
made widespread use of Dynamic Programming 
(DP) proper. DP proper does address the cross-
time optimization problem and it does allow for 
random disturbances – but no one can afford the 
computational cost of applying DP proper to 
more than a handful of variables at a time. The 
cost of this approach is that one can only account 
for a handful of state variables in doing the 
optimization; the approximation is extreme, and 
tolerable only when nothing better is available. L 

As another example, people have used 
complex auctions of human actors in order to 
plan unit commitments and generation, hour by 
hour, a day to years in advance. But when 
generation schedules are set up years in advance, 
it is hard to make use of the power one gets 
when the wind suddenly and unpredictably starts 
blowing hard in the middle of the night. There 
are certain other problems as well in the gaming 
of such systems, as exhibited by Enron and 
others. Some have even proposed that human 

consumers should be asked to watch price 
signals at 15 minute intervals, every hour of the 
day, and in the middle of the night; it may be 
more practical and efficient to learn how to 
delegate more of these tasks to computer systems 
based on computational intelligence, guided by 
humans in more human-friendly ways.  
 As an alternative – we can use adaptive 
critic networks to provide the necessary price 
signals. 
 In reality, the intelligent grid of the 
future would not be one integrated physical 
computer system directly controlling every 
battery and switch in the United States. For 
example, each individual house might have its 
own intelligent control system, with basic values 
tuned by the user, and with foresight and 
adaptability of its own. In order to function 
efficiently as part of a larger power grid (power 
market), it needs to be responsive to real-time 
electricity price signals coming to it from the 
grid. For example, when the wind blows, the 
larger grid somehow needs to tell the household 
“now would be a good time to charge up your 
battery”; instead of controlling the customer’s  
house in detail, it can simply send a price signal 
which says “I’ll sell you the electricity much 
cheaper for the next 15 minutes.” Many parts of 
the US already broadcast real-time electricity 
prices every 5 or 15 minutes – but we need better 
technology to generate more accurate price 
signals, and to make better use of the price 
signals.  
 Where do these real-time price signals 
come from? Again, locational marginal price 
does not give the correct market signal for the 
cross-time optimization problem, no matter how 
it is jiggered up. Mathematically, the correct 
vector of shadow prices λ for the case of cross-
time optimization with noise is identical to the 
vector of “value signals” approximated by Dual 
Heuristic Programming (DHP), the most 
powerful of the popular ADP methods. (For 
example, at the IEEE ADPRL07 conference, 
Warren Powell showed how he improved the 
performance of some of his classical, demanding 
work in ADP by applying what amounts to ADP 
for the nonlinear function forms he has designed 
for his specific class of applications in large-
scale logistics coordination.) We can also 
calculate λ as the gradient of the output of a 
more conventional scalar critic; it is an easy 
calculation using backpropagation. 
 To take the most straightforward path – 
how can we train a neural network DHP critic to 
evaluate the state of the entire electric power 



grid? The traditional methods for training critics 
for a handful of turbogenerators and switching 
devices would simply not work here, because of 
the sheer size and complexity of the electric 
power grid. 
 In fact, this is a beautiful example of 
convergent evolution between biology and 
evolution. Biology, too, has had to address 
survival in environments far more complex than 
the 10-50 sensor input variables we use in most 
engineering control problems today. Even 
reptiles and amphibians certainly learn how to 
learn nonlinear relations in visual fields which 
comprise many thousands of variables. 
Engineering is not yet ready to start 
implementing the full range of capabilities which 
biology uses to handle complexity [8], but to 
handle the electric power grid as a whole 
effectively, we do need to implement a few of 
the next steps which move us in that direction.  
Multilayer perceptrons already handle 
complexity far better than linear basis function 
designs like Taylor series or local interpolators 
like lookup tables, radial basis functions, and 
networks trained by Hebbian learning [9]. But to 
handle the power grid, we need to move beyond 
multilayer perceptrons to networks which are 
more difficult to train but more powerful in 
handling complexity.  
 There is already an entire family of such 
methods in existence today, ranging up from the 
cellular SRN [10] to the full-fledged recurrent 
ObjectNet. The cellular SRN is very convenient 
for input fields distributed across a Euclidean 
grid, like the pixels of an image. It is also a good 
place to start in building up software and early 
applications. However, the topology of the 
electric power grid (in a proper compact 
description) is not Euclidean; it is more like a 
fishnet of objects and connections. The full-
fledged recurrent ObjectNet is necessary, in 
order to generalize the CSRN capabilities to that 
kind of non-Euclidean case. Instead of mapping 
a complex input field into M rectangular cells, all 
governed by a common “inner loop” neural 
network, one may map it into a network of k 
types of “Objects,” with k different types of 
“inner loop” neural networks. A brief but 
complete formal specification is given in IJCNN 
tutorials posted in the neural network subheading 
at www.werbos.com.  

A patent has been filed via the 
University of Memphis for the training of CSRN, 
of Object Nets, and of Cellular Neural Network 
structures (all of which are closely related) as 
described in [10].  

 The feedforward version of ObjectNets 
has been implemented so far by two groups – by 
Harley and Venayagamoorthy’s group in wide-
area control of the grid [9], and by David Fogel’s 
group in training a computer to play chess [12]. 
Both used evolutionary computing to train the 
critic network. Fogel’s system was the world’s 
first computer system to achieve master-class 
performance in chess without using a 
supercomputer and without using detailed clues 
and advice from a human; it learned how to play 
the game at that level. This is already a major 
milestone in replicating brain-like intelligence, 
but the true intelligent grid based on recurrent 
ObjectNets – centralized or distributed in its 
physical implementation – would be major step 
even closer, of enormous importance to the 
future of humanity.  
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