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Abstract

This paper examines preferences towards particular classes of lottery pairs. We show how

concepts such as prudence and temperance can be fully characterized by a preference rela-

tion over these lotteries. If preferences are de�ned in an expected-utility framework with

di¤erentiable utility, the direction of preference for a particular class of lottery pairs is

equivalent to signing the nth derivative of the utility function. What makes our character-

ization appealing is its simplicity, which seems particularly amenable to experimentation.
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Putting Risk in its Proper Place

The concept of risk aversion has long been a cornerstone for modern research on the

economics of risk. Ask several economists to de�ne what it means for an individual to be

risk averse and you are likely to get several di¤erent answers. Some, assuming an expected-

utility framework, will say that the second derivative of the von Neumann-Morgenstern

utility function u is concave or, assuming di¤erentiability, that u00 < 0. Others might

de�ne risk aversion in a more general setting, equating it to an aversion to mean-preserving

spreads, as de�ned by Michael Rothschild and Joseph E. Stiglitz (1970). It is not likely that

one would de�ne risk aversion via some behavioral consequence, such as the propensity to

purchase full insurance at an actuarially-fair price.

Although somewhat newer, the concept of "prudence" and its relationship to precau-

tionary savings also has become a common and accepted assumption.1 Ask someone to

de�ne what it means for the individual to be "prudent" and they might say that marginal

utility is convex, u000 > 0, but they also might de�ne prudence via behavioral characteris-

tics. For example, Christian Gollier (2001 p. 236), de�nes an agent as prudent "if adding

an uninsurable zero-mean risk to his future wealth raises his optimal saving." In other

words, unlike the case with risk aversion, prudence is often de�ned via an optimizing type

of behavior, rather than some type of more primitive trait.2

More recently, some new concepts have entered the literature such as "temperance"

(uiv < 0) and "edginess" (uv > 0), which arise as necessary and/or su¢ cient conditions for

various behavioral results.3 But what exactly are these concepts and what do they imply
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about one�s preference towards risk?

Within an expected-utility framework, in contrast to ordinal utility, the sign of every

derivative of the von Neumann-Morgenstern utility function u has some economic meaning.

In this paper, we derive a class of lottery pairs such that the direction of preference between

these lotteries is equivalent to signing the nth derivative of utility. The lotteries themselves

are particularly simple, involving equal likelihoods for all outcomes, which would seem par-

ticularly amenable to experimentation. Moreover, since the signs of the �rst n derivatives

of utility are well-known to coincide with a preference for nth-degree stochastic dominance,

our lottery preferences also coincide with stochastic-dominance preference.

Although our results are interpreted in this paper in a context of preferences towards

risk, it turns out that they can be given other economic interpretations. The most direct

application is likely in the area of income distribution, where concepts such as "inequality

aversion" and "aversion to downside inequality" have been employed for some time. See

for example the papers by Anthony B. Atkinson (1970) and by Anthony F. Shorrocks and

James E. Foster (1987). Our results are also relevant to the literatures on the competitive

�rm under price uncertainty, labor supply, auctions and portfolio choice.4

Justifying the sign of higher order derivatives can often meet with skepticism. For

example, Miles Kimball�s (1993) "standard risk aversion," which has been shown to have

many implications, is becoming a more common assumption in the literature. This con-

dition requires uiv � (u000)2=u00 < 0, yet the weaker condition of temperance, uiv < 0,

typically is met with skepticism.

Our goal in this paper is to provide a set of natural conditions regarding behavior

towards risk, in the form of a preference relation between pairs of simple lotteries. In

particular, we start out by assuming that an individual dislikes two things: a certain

reduction in wealth and adding a zero-mean independent noise random variable to the
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distribution of wealth. We de�ne "prudence," for example, as a type of preference for

disaggregation of these two untoward events. We de�ne "temperance" in a similar manner,

except we replace the certain reduction in wealth with a second independent zero-mean

risk. Temperance is de�ned as preference for disaggregating these two independent risks.

We then extend and generalize these concepts by nesting the above types of lotteries.

By de�ning our set of preferences over lotteries, we provide relatively simple behavioral

characterizations of the mathematical assumption that the derivatives of the utility function

are alternating in sign: sgn u(n) = sgn (�1)n+1 for all positive integers n. This describes

the class of so-called "mixed risk averse" utility functions, as de�ned by Jordi Caballé

and Alexey Pomansky (1996), a class which includes most all of the commonly used von

Neumann-Morgenstern utility functions.5

Our "tool" in deriving these results is the utility premium, measuring the degree of

"pain" involved in adding risk. Although this measure actually predates more formal

analyses of behavior under risk, as pioneered by Kenneth J. Arrow (1965) and John W.

Pratt (1964), it has been largely ignored in the literature.6

The following section de�nes preferences over lotteries that correspond to prudence and

temperance. We then show how these behaviors can be "nested" into compound lotteries

to yield particular types of rational behavior that we term "risk apportionment." Next, we

prove how these concepts coincide with those of mixed risk aversion within an expected-

utility framework. Finally, we discuss how our results �t in with several results in the

literature.

1 Prudence and Temperance

We consider two basic "building blocks" for our analysis. The �rst is a sure reduction

in wealth of arbitrary size k, k > 0. The second is the addition of a zero-mean random
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variable e", where e" is assumed to be non-degenerate and to be independent of any other
random variables that may be present in an individual�s initial wealth allocation. We let x

denote the individual�s initial wealth, where x is arbitrary in size, x > 0. We assume x is

non-random for simpli�cation, although initial wealth may be random so long as a random

ex is statistically independent of e". We also assume that random wealth is constructed in

such a way as to have its support contained within a range of well-de�ned preferences.7

In order to avoid mathematical nuances, we only consider weak preference relations in

this paper.8 For any two lotteries A and B, we use the notation B < A to denote the

individual�s preference relation "lottery B is at least as good as lottery A."

We de�ne preferences as monotonic if x < x � k 8x and 8k. We de�ne preferences

to be risk averse if x < x + e" 8x and 8e". While not necessary for our de�nition of risk
aversion, one usually thinks of monotonicity as jointly holding. However, it is certainly

possible to desire as little wealth as possible and still be risk averse.

To keep the notation consistent, de�ne the "lottery" B1 as B1 = [0; 0] and the "lottery"

A1 as A1 = [�k;�k], where all simple lotteries are assumed to have an equal probability

for each outcome. Similarly, de�ne the "lotteries" B2 and A2 as B2 = [0; 0] and A2 = [e";e"].
Thus, we can de�ne preferences as being monotone if B1 < A1 and as being risk averse if

B2 < A2 for all initial wealth levels x and for all k and all e".
1.1 Prudence

Prudence is de�ned within expected-utility con�nes by Kimball (1990), who shows it is

analogous to a precautionary-savings motive in a particular type of consumption/savings

model. We de�ne prudence in this paper as a type of natural preference over simple

lotteries. Later, we will show how this de�nition coincides with Kimball�s characterization.9

De�nition 1: An individual is said to be prudent if the lottery B3 = [�k; e"] is preferred
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to the lottery A3 = [0; e"�k], where all outcomes of the lotteries have equal probability, for
all initial wealth levels x and for all k and all e".

Thus, prudence shows a type of preference for disaggregation of a sure loss of size k and

the addition of a zero-mean random variable e". If preferences are also monotonic and risk
averse, the individual prefers to receive one of the two "harms" for certain, with the only

uncertainty being about which one is received, as opposed to a 50-50 chance of receiving

both "harms" simultaneously or receiving neither. Borrowing terminology from Kimball

(1993), the above property implies that �k and e" are "mutually aggravating" for all initial
wealth levels x and for all k and all e".

We also can interpret prudence as type of "location preference" for one of the harms

within a lottery. In particular, consider the lottery [0; � k]. Now suppose the individual

is told that she must accept a zero-mean random variable e", but she only must receive
it in tandem with one of the two lottery outcomes. The prudent individual will always

prefer to attach the risk e" to the better outcome 0, rather than to the outcome �k. This
characterization already has been noted by Louis Eeckhoudt, et al. (1995) and essentially

follows from the earlier work of Hanson and Menezes (1971). In a sense, we are more

willing to accept an extra risk when wealth is higher, rather than when wealth is lower.

Indeed, this logic helps to explain why someone opts for a higher savings when second

period income is risky in a two-period model. The resulting higher wealth in the second

period helps one to cope with the additional risk, exactly as in Kimball (1990), who uses

prudence as equivalent to a precautionary demand for savings.

Equivalently, we can start from the lottery [0; e"] and de�ne prudence as a preference for
attaching the harm �k to the outcome 0, rather than to the outcome e". Again, we prefer
to attach the new harm to the better of the two lottery outcomes, where the interpretation

of "better" here assumes risk aversion.
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1.2 Temperance

We now add a second zero-mean random variable. Let e"1 and e"2 denote these two zero-
mean random variables. We assume that e"1 and e"2 are statistically independent of each
other as well as independent from other random variables that might be owned by the

individual.

De�nition 2: An individual is said to be temperate if the lottery B4 = [e"1; e"2] is
preferred to the lottery A4 = [0; e"1 + e"2], where all outcomes of the lotteries have equal
probability, for all initial wealth levels x and for all e"1 and e"2.

Thus, temperance shows a type of preference for disaggregation of the two independent

zero-mean random variables. Temperance, as de�ned above, also can be interpreted as a

type of location preference for adding a second independent zero-mean risk to the lottery

[0; e"2]. Suppose the individual must accept a second zero-mean random variable e"1, but
she only must receive it in tandem with one of the two lottery outcomes. The temperate

individual will always prefer to attach the second risk e"1 to the better outcome 0, rather
than to the worse outcome e"2. This means that we must dislike the risk e"1 more in the
presence of e"2. The risks e"1 and e"2 are "mutually aggravating" in the terminology of
Kimball (1993).

2 Generalizing Prudence and Temperance

Let fe"ig denote an indexed set of zero-mean non-degenerate random variables, i = 1; 2; 3; :::,
where we assume that the e"i are all mutually independent and that the e"i are also inde-
pendent of any existing risks in an individual�s wealth. We assume throughout this paper

that all lotteries have equally-likely outcomes. We now generalize the concepts of prudence

and of temperance as a type of preference for disaggregation of the "harms" �k and e"i.
6



2.1 Risk Apportionment

If C denotes a lottery, we can think of this lottery as essentially de�ning a random variable.

In particular, the lottery C generates a probability distribution over wealth outcomes. As

a matter of notation, if ey denotes a random variable that is independent of C , we let ey+C
denote the sum of the random variables.10

As a matter of terminology, we will say that preferences satisfy risk apportionment

of order 1 if they are monotonic, i.e. if B1 < A1. If preferences are risk averse, so that

B2 < A2, we say that preferences satisfy risk apportionment of order 2. In a similar

manner we de�ne risk apportionment of order 3 as the equivalence of prudence, B3 < A3,

and risk apportionment of order 4 as the equivalent of temperance, B4 < A4. To de�ne

risk apportionment of higher orders, we proceed iteratively.11

2.1.1 Risk Apportionment of orders 5 and 6

We de�ne risk apportionment of order 5, RA-5, as follows:

De�nition 3: Assume that outcomes of the lotteries below all have equal probability.

Preferences are said to satisfy risk apportionment of order 5 if, for all initial wealth levels

x and for all k, e"1, e"2 and e"3, the lottery B5 = [0+A3; e"2+B3] is preferred to the lottery
A5 = [0 + B3; e"2 + A3]. Preferences satisfy risk apportionment of order 6 if the lottery
B6 = [0 +A4; e"3 +B4] is preferred to the lottery A6 = [0 +B4; e"3 +A4].

This de�nition does not require risk apportionment of lower orders. But if we have risk

aversion, then we know that 0 < e"2, and if we have prudence, then we know that B3 < A3.
We can thus interpret risk apportionment of order 5 as a preference location for adding

the risk e"2: Given that we must add e"2 to one of the outcomes in the lottery [B3; A3], we
would prefer to add it to the better outcome B3. Similarly, if we have risk aversion, then

we know that 0 < e"3, and if we have temperance, then we know that B4 < A4. We also
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can interpret risk apportionment of order 6 as a preference location for adding the risk

e"3: Given that we must add e"3 to one of the outcomes in the simple lottery [B4; A4], we
would prefer to add it to the better outcome B4. We illustrate A6 and B6 and how they

relate to risk apportionment of order 6 in Figure 1. Risk apportionment of order 5 is easily

illustrated in a similar manner.

INSERT FIG 1 ABOUT HERE

Assuming reduction of compound lotteries, it is trivial to verify that k, e"1 and e"2 are
all interchangeable wherever they appear in lotteries A5 and B5. Likewise, we can replace

�k with e"3 in any formulation of A5 and B5 to obtain A6 and B6 respectively.
2.2 Risk apportionment of order n

Given the de�nitions B1 = B2 = [0], A1 = [�k] and A2 = [e"1] we can iterate on the
de�nitions above to de�ne risk apportionment of order n. First, we de�ne the appropriate

lotteries:

De�nition 4: Assume that the outcomes of all lotteries Ai and Bi as listed here have

equal probabilities. Further assume that k > 0 and that all e"i are mutually independent
with a zero mean. Let Int(y) denote the greatest-integer function, i.e. the greatest integer

not exceeding the real number y. Then for each n � 3 we de�ne the following lotteries:

An = [0 +Bn�2; e"Int(n=2) +An�2]:
Bn = [0 +An�2; e"Int(n=2) +Bn�2].

We now can de�ne risk apportionment for the general case:

De�nition 5: Preferences are said to satisfy risk apportionment order n if, for the
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lotteries An and Bn as de�ned above, the individual always prefers Bn: Bn < An.

For example, consider risk apportionment of order 8. This is a preference of B8 < A8,

where B8 = [0 + A6; e"4 + B6] and A8 = [0 + B6; e"4 + A6]. Suppose we start from the

lottery [0; e"4] and we are told that we must add A6 to one outcome and add B6 to the
other outcome, where A6 and B6 are as illustrated in Figure 1. Risk apportionment of

order 8 would indicate a preference for attaching the more preferred lottery B6 to the less

preferred outcome e"4.
3 Utility Equivalence

In this section, we show how risk apportionment coincides with very particular conditions

on the utility function, u, within an expected-utility framework. We assume that u is

continuously di¤erentiable over the domain of wealth. The approach we use here is quite

a direct use of the utility premium. Lottery B is preferred to lottery A if and only if it

causes less pain when added to any initial wealth level x. Since all of our risks are assumed

to be mutually independent as well as independent of any risks inherent in initial wealth,

it would not matter if we allowed ~x to be random. For the sake of simplicity, we only

consider nonrandom x values below.12

3.1 Some Properties of the Utility Premium

Let f~"ig denote an indexed set of mutually-independent zero-mean random variables. We

assume that each ~"i is a non-degenerate random variable, i.e. ~"i has a non-zero variance.

We de�ne the utility premium for the risk ~"1 at wealth level x as

(1) w1(x) � Eu(x+ ~"1)� u(x).
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Note that we de�ne the utility premium as the gain in expected utility from adding the

zero-mean risk ~"1 to wealth x.13

By our de�nition, the utility premium is negative if and only if preferences are risk

averse,

(2) w1(x) � Eu(x+ ~"1)� u(x) � 0 8x if and only if u00 � 0:

Similarly, it follows trivially from Jensen�s inequality that

(3) w01(x) � Eu0(x+ ~"1)� u0(x) � 0 8x if and only if u000 � 0

and

(4) w001(x) � Eu00(x+ ~"1)� u00(x) � 0 8x if and only if uiv � 0.

Thus we see that w1 as de�ned here is increasing and concave whenever u000 � 0 and

uiv � 0. In other words, w1 exhibits the properties of a risk-averse utility function on its

own. Of course these properties coincide with prudence and temperance in the expected-

utility literature. We next show that they are equivalent to our de�nitions of prudence and

temperance from the previous section.

3.2 Prudence and Utility

Condition (3) is equivalent to our de�nition of prudence, since we can allow our sure

reduction in wealth, �k, to be arbitrarily small. Note that from (1) - (3) above, it follows

that prudence, u000 � 0, is equivalent to each of the following:

(i) Adding ~"1 to a higher wealth level is "less painful" (i.e. the absolute size of
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the utility premium is decreasing in x).

(ii) Adding ~"1 to wealth increases the expected marginal utility.

Kimball (1990) noted both of these properties and used them to model precautionary

savings. In his set-up, an income risk is added in the second of two periods. This induces

the individual to shift some nonrandom wealth to the second period (via more savings in

the �rst period) in order to help mitigate the pain.

From (i) above and inequality (4), if we also have prudence, we can interpret uiv � 0

as implying that the pain from adding ~"1 to wealth decreases as one gets wealthier, but it

decreases at a decreasing rate. We next show that uiv � 0 is equivalent to our de�nition

of temperance.

3.3 Temperance and Utility

Let ~"2 be a zero-mean risk that is independent of ~"1. We iterate on the above procedure

for de�ning the utility premium, and de�ne w2 as the utility premium for w1 (regardless

of whether or not w1 is increasing or concave):

(5) w2(x) � Ew1(x+ ~"2)� w1(x).

If w1 is concave, then w2 will be everywhere negative. From (4), this implies that

(6) w2(x) � Ew1(x+ ~"2)� w1(x) � 0 8x if and only if uiv � 0.

Using only Jensen�s inequality, in a manner similar to w1, we can continue to �nd

(7) w02(x) � Ew01(x+ ~"2)� w01(x) � 0 8x if and only if uv � 0

11



and

(8) w002(x) � Ew001(x+ ~"2)� w001(x) � 0 8x if and only if uvi � 0.

To see that uiv � 0 is equivalent to temperance, use (1) to expand (6). It follows that

uiv � 0 is equivalent to

(9) [Eu(x+ ~"1 + ~"2)� Eu(x+ ~"2)]� [Eu(x+ ~"1)� u(x)] � 0

or equivalently

(10) 1
2 [Eu(x+ ~"1) + Eu(x+ ~"2)] �

1
2 [u(x) + Eu(x+ ~"1 + ~"2)].

Inequality (10) is clearly an expected-utility equivalent to our lottery-preference de�nition

of temperance (De�nition 2).

3.4 Risk Apportionment of Orders 5 and 6

We can use w2 to show that risk apportionment of order 5 (RA-5) is equivalent to uv � 0

by once again noting that our De�nition 3 allows for the sure reduction in wealth �k to

be arbitrarily small. Equivalently, we can write (7) as

(11) [Ew1(x+ ~"2)� w1(x)]� [Ew1(x� k + ~"2)� w1(x� k)] � 0.

Expanding w1 in (??) and rearranging shows that it is equivalent to the lottery-preference

de�nition for RA-5 (De�nition 3).

To show that risk apportionment of order 6 is equivalent to uvi � 0, we need to iterate
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once again on the utility premium and de�ne

(12) w3(x) � Ew2(x+ ~"3)� w2(x),

where ~"3 is a zero-mean risk independent of ~"2 and ~"2. Similar to our analysis above, it

follows from Jensen�s inequality that w3 � 0 if and only if w2 is concave, which we have

already proven is equivalent to uvi � 0. Expanding the inequality w3 � 0 by using (1)

and (5), it is straightforward to show that uvi � 0 is equivalent to our lottery-preference

characterization of RA-6 in De�nition 4.

3.5 Risk Apportionment of Order n

One can continue on in this manner by demonstrating that w03 � 0 is equivalent to uvii � 0,

as well as equivalent to our de�nition of RA-7. To obtain the equivalence of uviii � 0 and

RA-8, we need to de�ne w4 as the utility premium of w3. We can iterate in this manner

for any n � 3:

(i) For n even, we de�ne wn=2(x) � Ew(n=2)�1(x + ~"(n=2)�1) � w(n=2)�1(x). Ex-

panding this expression we can show that u(n) � 0 i¤ wn=2(x) � 0 i¤ RA-n holds.

(ii) For n odd, we use the equivalence of u(n) � 0 and w0(n�1)=2(x) � 0 and

demonstrate how this non-negative derivative is equivalent to the lottery preference for

RA-n.

This leads to the following main result, showing how risk apportionment relates to

derivatives of the utility function.

Theorem: In an expected-utility framework with di¤erentiable u, risk apportionment

of order n is equivalent to the condition sgn u(n) = sgn (�1)n+1.
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4 Related Concepts

Many papers have looked at the implications of signing higher order derivatives of utility in

an expected-utility framework, but very few have pinned down the meaning of these signs

in and of themselves. The advantage of risk apportionment lies mainly in its simplicity.

The fact that it is de�ned over lottery preferences also makes it applicable outside of an

expected-utility framework. Thus, concepts like "prudence" and "temperance" can be

generalized and embedded into other frameworks for choice under risk. In this section, we

examine how our results in this paper relate to some of the extant literature.

4.1 Higher Order E¤ects

Within expected-utility models, growth rates and elasticities are typically second-order

e¤ects because they relate the e¤ect of changes in an exogenous variable on a �rst-order

condition.14 Decreasing absolute risk aversion (DARA) is a third-order property because

it has to do with changes in risk aversion (a second-order property). Prudence is also a

third-order property, since it relates the e¤ect of risk on a �rst-order condition. However,

DARA is a stronger condition than simply assuming prudence, in particular, requiring that

u000 � (u00)2=u0.

In a sense, we can think of prudence itself, u000 > 0, as a pure third-order e¤ect.

A straightforward interpretation of inequality (3) is that the "pain" of adding a risk e"
decreases as one gets wealthier. On the other hand, decreasing risk aversion implies that

one�s willingness to pay to remove a risk is decreasing as one gets wealthier. But this

"willingness to pay" in a sense contains too much information, since it must relate the

changing level of "pain" to the marginal valuation of paying a dollar to remove this "pain."15

We can, take this argument to higher order. Consider the interaction of two risks, e"1 ande"2, which is a fourth-order e¤ect. Many authors have formulations similar to our lottery
14



de�ning prudence, in De�nition 2. For example, Pratt and Richard Zeckhauser (1987)

de�ne preferences as being "proper" if [e"1; e"2] � [0; e"1 + e"2] not for all zero-mean riskse"1 and e"2, but rather risks that are undesirable to the individual: each reduces expected
utility of the individual when added to wealth.16 Gollier and Pratt (1996), in de�ning the

very useful concept of risk vulnerability, essentially look at this same lottery preference,

but where one of the risks, say e"2, is restricted to the set of risks that are undesirable
for all risk-averse individuals, which implies e"2 has a non-positive mean. Kimball, de�nes
standard risk aversion in much the same manner, but where e"2, is restricted to the set of
risks that increase marginal utility. Naturally, temperance is a necessary condition for both

of these formulations, since they both include zero-mean risks e"1 and e"2 as a special case.
By allowing for non-zero means, all of these formulations include e¤ects of other orders,

and do not isolate the pure fourth-order e¤ect of temperance.17

4.2 Stochastic Dominance

One obvious related area is that of stochastic dominance. Stochastic dominance establishes

a partial ordering of probability distributions for which it is well known that wealth distri-

bution F dominates wealth distribution G in the sense of nth-order stochastic dominance

if and only if everyone with a utility function u for which sgn u(j) = sgn (�1)j+1 for

j = 1; 2; :::; n prefers F to G. 18 Such a utility function is said to satisfy stochastic-

dominance preference of order n. Hence, from our Theorem it follows that preferences

satisfy stochastic-dominance preference of order n if and only if they satisfy risk appor-

tionment of order j for all j = 1; 2; :::; n.

Steinar Ekern (1981) limits the distributions F and G to those for which F dominates

G by stochastic dominance of order n, but not for any orders less than n. In this case,

he says that G has more nth degree risk than F . He then shows how this condition is
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equivalent to saying that every individual with sgn u(n) = sgn (�1)n+1 would prefer F to

G. He labels such an individual as "nth degree risk averse." Obviously then, it follows from

our Theorem that Ekern�s nth degree risk aversion is equivalent to preferences satisfying

risk apportionment of order n.

Given the comments above, it is clear that others have already characterized the signs

of the derivatives of the utility function. What makes risk apportionment so appealing is its

simplicity. For instance, consider RA-4 (temperance, or equivalently uiv � 0 ). For those

readers familiar with stochastic dominance, think of describing distributions where there

is stochastic dominance of order 4, but not of orders 1,2 or 3. Of course this is possible,

but it is hardly simple. Compare this to the simplicity of assuming the lottery [e"1; e"2] is
preferred to [0; e"1 + e"2].

This simplicity of our lottery design with equal probabilities, also lends itself well to

experimental design. While framing contexts and situationalism will surely still play a

role, the complexity of understanding the lottery itself is not an issue, especially for RA-n

where n is not too large. Thus, a concept like temperance seems quite plausible. On

the other hand, our de�nition of temperance (n =4) requires that [e"1; e"2] be preferred
to [0; e"1 + e"2] for all independent e"1 and e"2. This must hold not only if e"1 and e"2 are
identically distributed, but even if, say, e"1 has a very large variance and the variance ofe"2 is extremely small. In such a setting, behaviorists might have us believe that many
individuals will be lured by the "certainty" of the �rst outcome in the lottery [0; e"1 +e"2],
and thus prefer it to [e"1; e"2].
4.3 Aversion to Outer Risk

Perhaps the closest approach to our own is that of Menezes and X. Henry Wang (2005),

who relate the property of temperance to the notion of outer risk. In their model, they
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formally show how [e"1; e"2] � [0; e"1 + e"2] implies fourth-order stochastic dominance of
the corresponding lottery distribution functions, thus equating this lottery preference to

uiv � 0.19 We can generalize their notion of outer risk as follows.

In general, we cannot order e"1 and e"2, with respect to preferences. But we can construct
the chain 0 � e"i � e"1 + e"2, where i = 1 or i = 2. To this end, consider fe"1,e"2g as the
"inner risks" and f0;e"1+e"2g as the "outer risks." Our de�nition of temperance (De�nition
2) thus states that a 50-50 gamble between the inner risks is preferred to one between the

outer risks.

We can also use Menezes� and Wang�s concept of inner and outer risks to describe

higher-order risk apportionment. For example, consider the simple lottery [0;e"1;e"2;e"1+e"2],
where all four outcomes have equal probability. If we must attach a sure loss of k > 0 to

either the two inner risks or to the two outer risks, RA-5 is equivalent to always preferring

to attach �k to the two inner risks. RA-6 can be de�ned in a similar manner, where we

replace the sure loss �k with an independent third risk e"3. We can achieve all higher orders
of risk apportionment by simple iteration on these results.

5 Concluding Remarks

For a long time, risk aversion has played a key role in the theory of choice under uncertainty;

not only within expected-utility (EU) models, but also within other decision-theoretic

frameworks. It was recognized quite early on, that the sign of u000 played a key role within

EU, but it was not until Kimball (1990) that this role was formalized into the concept of

"prudence." Since this formalization, models of consumption and savings decisions have

received a new focus and made many advancements. Outside of EU, these advances have

come mostly from trying to mimic either the consequences that follow within EU, or to

mimic some of the parametric nuances of properties such as DARA and prudence. The
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role of signing higher order derivatives, such as assuming "temperance" or "edginess," is

only recently receiving more interest in the literature.

By considering simple lottery preferences, we are able to provide a characterization

of these properties based only on underlying preferences. In particular, we de�ne such

properties by our lottery preference, and then we show how these de�nitions are equivalent

to signing the nth derivative within EU models. Since our de�nitions are not con�ned

to EU, they are applicable within other choice-theoretic frameworks as well. The types

of lotteries we look at are rather simple, especially for fairly low values of n. Indeed the

simplicity of our lotteries seems quite amenable to experiments about individual behavior

towards risk.

18



Notes

1The term "prudence" was coined by Miles Kimball (1990), although the importance

of the third derivative of utility in determining a precautionary savings demand was noted

much earlier by Hayne E. Leland (1968) and Agnar Sandmo (1970).

2One notable exception is the paper by Carmen F. Menezes, C. Geiss and John Tressler

(1980), who describe "aversion to downside risk" and relate it to the sign of u000.

3We use the notations u(4)(x) and uiv(x) interchangeably to denote the fourth derivative

of u, d
4u(x)
dx4

. Similarly, we denote the nth derivative by u(n) as well as by a Roman-numeral

superscript.

4A summary of results relating stochastic dominance, and hence our lottery preference,

to income distribution can be found in Patrick Moyes (1999). The other economic appli-

cations mentioned above are scattered throughout the literature, but a good overview of

many of them can be found in the book by Elmar Wolfstetter (1999).

5This property is labeled "complete properness" by John W. Pratt and Richard Zeck-

hauser (1987). This class of utility functions also was examined independently by Patrick

L. Brocket and Linda L. Golden (1987).

6One notable exception is the paper by D. L. Hanson and Menezes (1971), who more

than 30 years ago had made this exact same observation. To the best of our knowledge,

the �rst direct look at the utility premium was the work of Milton Friedman and Leonard

J. Savage (1948).

7For instance, if preferences are de�ned only over positive levels of �nal wealth, we

assume throughout the paper that all changes to wealth, be it by subtracting a �xed

wealth or adding a random wealth term, are chosen so as to preserve wealth to be positive.

8Strict-preference analogs follow, but require signi�cantly more-complex modelling, with

little extra in the way of economic insight.
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9John P. Bigelow and Menezes (1995) essentially show that our lottery preference as

de�ned below is equivalent to u000 � 0. Our main distinction here is to use this lottery

preference relation as the de�nition of prudence.

10More formally, if Fy and Fc denote the (marginal) distribution functions of random

variables ey and C respectively, then the distribution over the sum of these random variables
ey + C is given by the convolution of these distribution functions, Fy � Fc.
11We do not particularly like introducing new terminology, but one overarching goal is

to have a generalized concept that can be extended to various orders, much along the lines

of stochastic dominance. By apportioning harms within a lottery, we wish to mitigate

their detrimental e¤ects. Hence the terminology "risk apportionment." For orders 1 and

2, this makes less sense, but we include the terminology to have consistency in our general

results. Obviously risk apportionment of order 3 is already well known as "prudence" and

"temperance" in the extant sense is equivalent in our de�nition to risk apportionment of

order 4.

12For a random ex, we can simply replace utility u with the derived utility function
bu(y) = Eu(y + ex), as de�ned by David Nachman (1982). It follows trivially that the signs
of the nth derivatives of u and bu with respect to y will all be the same.
13This is the negative of how the utility premium is often de�ned, in the scant literature

on the topic. However, one very notable exception is Friedman and Savage (1948). De�ning

it in this manner helps to facilitate our discussions that follow.

14For example, absolute risk aversion and relative risk aversion are respectively the de-

cay rate and elasticity of changes in marginal utility with respect to increases in wealth.

Note, however, that if preferences are not required to be "smooth," such as allowing non-

di¤erentiability of u at some wealth levels, risk aversion might also be a �rst-order e¤ect,

as pointed out by Uzi Segal and Avia Spivak (1990).

20



15For example, the reader can easily verify that, under the common assumption of con-

stant absolute risk aversion (CARA), the level of "pain" associated with adding the risk e" is
actually decreasing in wealth, whereas the willingness to pay to remove a unit of "pain" is

increasing in wealth. Of course, under CARA, these two e¤ects exactly o¤set one another.

16Actually, this lottery formulation is not presented by Pratt and Zeckhauser (1997)

themselves, but rather by a reformulation of their result by Kimball (2003).

17These same arguments have been taken up to the �fth-order recently by Fatma Lajeri-

Chaherli (2004), who also provides a nice summary of the fourth-order concepts of proper-

ness, risk vulnerability and standard risk aversion. Her �fth-order e¤ect of "standard

prudence" relates to precautionary savings in the presence of a background risk.

18See, for example, Johnathan E. Ingersoll (1987).

19They show equivalence for their more general formulation of increased outer risk. The

lottery they consider as an illustration is the same as the one we present here, with e"2
being restricted as e"2 = [�1;+1].
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Figure 1: Risk Apportionment of Order 6, B6 < A6
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