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Landscape genetics has emerged as a new research area
that integrates population genetics, landscape ecology and
spatial statistics. Researchers in this field can combine the
high resolution of genetic markers with spatial data and a
variety of statistical methods to evaluate the role that
landscape variables play in shaping genetic diversity and
population structure. While interest in this research area is
growing rapidly, our ability to fully utilize landscape data, test
explicit hypotheses and truly integrate these diverse dis-
ciplines has lagged behind. Part of the current challenge in
the development of the field of landscape genetics is bridging
the communication and knowledge gap between these highly
specific and technical disciplines. The goal of this review is to

help bridge this gap by exposing geneticists to terminology,
sampling methods and analysis techniques widely used in
landscape ecology and spatial statistics but rarely addressed
in the genetics literature. We offer a definition for the term
‘landscape genetics’, provide an overview of the landscape
genetics literature, give guidelines for appropriate sampling
design and useful analysis techniques, and discuss future
directions in the field. We hope, this review will stimulate
increased dialog and enhance interdisciplinary collaborations
advancing this exciting new field.
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Introduction

Technological innovations in spatial analyses coupled
with increased availability of spatial data and hypervari-
able genetic markers have resulted in great advances in
our ability to study the influence of landscape variables,
such as altitude, topography and ground cover, on
genetic variation and structure. As a result, landscape
genetics (Manel et al., 2003) has emerged as a new
research area that integrates landscape ecology, spatial
statistics and population genetics. In contrast to tradi-
tional population genetics studies that were limited in
spatial inference to tests of isolation-by-distance, land-
scape genetics provides a framework for testing the
relative influence of landscape and environmental
features on gene flow, genetic discontinuities (Guillot
et al., 2005a) and genetic population structure (Manel
et al., 2003; Holderegger and Wagner, 2006).
Understanding landscape effects on genetic connectiv-
ity provides insight into fundamental biological pro-
cesses such as: metapopulation dynamics, speciation,
and ultimately the formation of species’ distributions.
Landscape genetic analyses can also have great applied
scientific value, such as identifying specific anthropo-
genic barriers that reduce gene flow or genetic diversity,
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predicting the effects of proposed management alter-
natives on genetic variation and population connectivity,
and identifying potential biological corridors to assist
with reserve design.

Given these diverse research opportunities, landscape
genetics is both challenging and exciting, as it brings
together scientists from the broad disciplines of land-
scape ecology, spatial statistics, geography and popula-
tion genetics. While several types of spatial statistical
analyses have been used in geographical genetics (for
review, see Epperson, 2003), there are many well-
developed methods in landscape ecology and spatial
statistics that have yet to be utilized. The vast array of
spatial analysis techniques that can be applied to
population genetic data make options for designing
and conducting a landscape genetics study extremely
diverse and potentially confusing. Better communication
among landscape ecologists, spatial statisticians, remote-
sensing scientists, geographers and population geneti-
cists is key to integrating analysis methods and empirical
data. To help bridge communication gaps, we have
included a glossary of terminology used in spatial
statistics and landscape ecology (Table 1), with the terms
denoted in italics when first used in the text.

Our goals are to: (a) offer a definition of the term
‘landscape genetics’; (b) review questions commonly
addressed in the landscape genetics literature, (c)
provide guidelines for sampling design, (d) highlight
potentially useful analysis techniques; and (e) discuss
future directions for the field. The most commonly used
molecular tools for landscape genetic studies are neutral,
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Table 1 Glossary of spatial statistics/landscape ecology/geographical genetics terms used in the text
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Term

Definition

Reference(s)

Anisotropic (anisotropy)

Correlogram

Correspondence analysis

CCA

Gradient (analysis)

Interpolation

Kriging

Least-cost path

Moran’s |

Network analysis

Neutral landscape models

Point pattern statistics

Semivariogram

Spatial autocorrelation

Spatial dependence
Spatial generating process

Stationarity

Tessellation

Intensity and range of spatial dependence (autocorrelation) varies with
direction and/or orientation. Directionality in environmental gradients,
wind or water flow may lead to anisotropic patterns

A graph of the correlation coefficient calculated at various distance classes

An ordination technique used to identify associations between variables by
reciprocal averaging. There are several types of correspondence analysis

An extension of reciprocal averaging techniques which combines
regression and ordination techniques requiring that the ordination axes be
linear combinations of the explanatory variables

A continuous change in a variable over distance such as moisture or
elevation. Gradient analysis has been popular in relating species
abundance to continuous changes in environmental variables

Estimating data at unsampled locations using a mathematical model of the
spatial pattern of sampled values. There are many types of interpolation
models (e.g. inverse distance weighting, kriging models, tessellation
models)

A method of interpolation which uses known values at sampled locations
and parameters from the semivariogram to estimate values at unsampled
locations

A line (vector) of ‘least resistance’ is generated between two observation
points. The resistance refers to a resistance surface, or cost grid, generated
according to some understanding of mobility (in landscape genetics,
species mobility). The least-cost distance can be expressed in terms of
geographic distance or total resistance along this path

A weighted correlation coefficient used to detect departures from complete
spatial randomness (positive or negative spatial autocorrelation). The
weighting scheme may be defined by distance between points or
contiguity of polygons

Graph theory is applied to model and analyze linkages and flows in a
network — a system of directional lines (vectors) connecting all of the
observation points (nodes). A classic application of network analysis is
measuring level and direction of traffic flows through road systems

A randomized landscape following some statistical quality of the original
data. Used for permutation testing of hypotheses concerning landscape
pattern or process

A group of statistics used for analysis of observations collected at specific
X, Y coordinates. The statistics can be used to quantify the pattern

(e.g. clustered, uniform, random) of the points themselves or some
response variable associated with the points

A graph of the spatial dependence between observations calculated at
various distance classes. Semivariogram values become larger as
observations become less similar, thereby offering an estimate of the
distance needed between points before they become uncorrelated

Observations are not independent identically distributed (iid), but are
correlated over some distance in space. Positive autocorrelation indicates
that nearby values are similar; negative autocorrelation indicates that
nearby values are dissimilar

The influence of spatial relationships on observation attributes
Process that leads to the variation among observations over space

Indicates that the variable of interest is influenced by a single process
whose properties do not change with location or direction — it has a
constant mean and variance across the study area

A pattern of non-overlapping polygons is used to partition the area leaving
no gaps. In landscape genetics, tessellation is generally used to create
polygons around each point where genotypes are collected

Haining (2003),
Fortin and Dale (2005)

Isaaks and Srivastava
(1989)

terBraak (1995),
Angers et al. (1999)

Jongman et al. (1995)

Isaaks and Srivastava
(1989)

Isaaks and Srivastava
(1989)

Singleton et al. (2002),
Adriaensen et al. (2003)

Moran (1950)

Taaffe et al. (1996)

Gardner ef al. (1987),
Saura and
Martinez-Millan (2001)

Diggle (2003)

Haining (2003),
Fortin and Dale (2005)

Haining (2003)

Haining (2003)
Turner et al. (2001)

Bailey and Gatrell (1995),
Fortin and Dale (2005)

Bailey and Gatrell (1995)
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Table 2 Recent works in landscape genetics, highlighting sampling design, molecular markers used, analytical techniques, and basic conclusions

Citation Species Sampling design ~ Marker(s) Analysis methods Inference
Arnaud (2003) Landsnail (Helix aspersa) Unspecified 4 polymorphic Mantel tests, correlograms, Migration occurs along hedge rows
enzymes Moran’s I
5 microsatellites
Banks et al. (2005) Marsupial (Antechinus Systematic 15 microsatellites ~ Simulated annealing approach, Eucalyptus habitat corridors significantly increased
agilis) mtDNA control partial Mantel, spatial gene flow relative to pine plantations
region autocorrelation, correlograms
Cegelski et al. (2003) Wolverine (Gulo gulo) Opportunistic 10 microsatellites ~ F-statistics, Bayesian assignment =~ Wolverine populations are more genetically structured
(harvest) in fragmented habitat
Funk et al. (2005) Spotted frog Stratified 6 microsatellites AMOVA; (partial) Mantel test; Ridges and elevation are major barriers to gene flow
(Rana luteiventris) Bayesian assignment test
Guillot et al. (2005a) Simulation & wolverine Opportunistic 10 microsatellites ~ Bayesian assignment, Identification of multiple populations, and cryptic
(Gulo gulo) (harvest) Voronoi tessellation barriers, with improved power over aspatial methods
Hirao and Kudo Snowbed herbs Clusters 11 allozymes (partial) Mantel test Flowering time is more influential on genetic
(2004) (Peucedanum multivittatum, variation than isolation-by-distance
Veronica stelleri,
Gentiana nipponica)
Hitchings and common frog Opportunistic 19 allozymes F-statistics, Mantel test Genetic diversity, gene flow, and fitness were lower
Beebee (1997) (Rana temporaria) (within urban in urban versus rural populations
and rural)
Jacquemyn (2004) Forest herb (Primula elatior) Random 3 AFLP Mantel test; AMOVA Herbs found in younger forests had lower genetic
stratified diversity and differentiation than those in older forests
Keyghobadi et al. Alpine butterfly Opportunistic 7 microsatellites (partial) Mantel tests Genetic distances between butterfly populations were
(1999, 2005a, b) (Parnassius smintheus) (within increased through forest relative to meadows
meadows)
Liepelt ef al. (2002)  Silver fir (Abies alba) Opportunistic mtDNA cpDNA  Haplotype maps, Difference in semivariograms suggested wind
variogram model pollinated influence on gene flow between refugia
Manni et al. (2004)  Simulation & human Opportunistic Y chromosome Monmonier’s algorithm Identified significant genetic barriers between
(Homo sapiens) northwestern Africa and Iberian Peninsula
Michels et al. (2001)  Zooplankton (Daphnia Connected 12 allozymes Mantel test Gene flow was best correlated with two models —
ambigua) ponds- clustered flow rate between ponds and dispersal rate
Pfenninger (2002) Terrestrial snail Opportunistic 1 allozyme (partial) Mantel test; spatial Gene flow correlated with ridge distance in two
(Pomatias elegans) (within different autocorrelation populations and, with habitat distance in one population
habitats)
Piertney ef al. (1998) Red grouse (Lagopus Opportunistic 7 microsatellites Mantel test, PCA, kriging Interpolation of PCA scores identified genetic
lagopus scoticus) (harvest) (interpolation) discontinuity, which corresponded to unsuitable habitat
Poissant ef al. (2005) Brook charr Opportunistic 9 microsatellites Neighbor-joining tree; AMOVA;  Gene flow correlated best with a path based

(Salvelinus fontinalis)

Roach ef al. (2001)

Spear et al. (2005)

Vignieri (2005)

Black-tailed prairie dogs
(Cynomys ludovicianus)
Scribner et al. (2005) White tailed deer
(Odocoileus virginianus)
Tiger salamander
(Ambystoma tigrinum)
Pacific jumping mouse
(Zapus trinotatus)

(within both
highland and
lowland areas)
Opportunistic

Opportunistic
by quadrat
Opportunistic

Opportunistic
(within three
different river
areas)

7 microsatellites
3 microsatellites
8 microsatellites

8 microsatellites

t-test; (partial) Mantel

Assignment tests, Mantel tests,
information theoretic approach
Mantel test

Partial Mantel test; Spearman
rank correlation coefficient
Mantel test; Moran’s 1

on historical connectivity, but contemporary
barriers limited gene flow

Dispersal between colonies occurs regularly and

likely along drainages

Greater thermal cover was significantly correlated

with greater gene flow

More of the genetic variability explained by including
landscape variables than with distance alone

Least-cost habitat path that maximized riparian
corridors and minimized elevation gain had the greatest
correlation with genetic distance
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hypervariable markers (e.g. amplified fragment length
polymorphisms and microsatellites), and we generally
assume their use throughout this review.

Defining landscape genetics

In general, landscape genetics seeks to understand the
influence of ecological processes (Turner et al., 2001) on
genetic variation by quantifying the relationship between
landscape variables, population genetic structure and
genetic variation (the latter two hereafter collectively
referred to as ‘genetic variation’). Since Manel et al. (2003)
coined the term ‘landscape genetics,’ a diversity of
published articles have been labeled landscape genetics
because they incorporated geographic coordinates or
landscape features when evaluating the spatial distribu-
tion of genetic variation (Table 2). These studies have
varied extensively in their approach to evaluating
relationships between landscape variables and genetic
variation. We suggest that landscape genetics studies
could benefit substantially by including explicit tests of
the relative influence of landscape variables on genetic
variation by incorporating robust, spatially informed
study designs and spatial analyses. Thus, in this review,
we define landscape genetics as research that explicitly
quantifies the effects of landscape composition, config-
uration and matrix quality on gene flow and spatial
genetic variation. This definition expands on the descrip-
tion of landscape genetics in Holderegger and Wagner
(2006). Phylogeography (Avise, 2000) can also be used to
quantify genetic variation in relation to ecological
processes, but at a larger spatio-temporal scale than
landscape genetics, making it more comparable to
biogeography (Manel et al., 2003).

Major research categories in landscape
genetics

There are a wide variety of basic and applied research
questions that can be addressed using a landscape
genetics approach (see Tables 2 and 3). We group these
questions under five major research categories: (1)
quantifying influence of landscape variables and config-
uration on genetic variation; (2) identifying barriers to
gene flow; (3) identifying source-sink dynamics and
movement corridors; (4) understanding the spatial and
temporal scale of an ecological process; and (5) testing
species-specific ecological hypotheses.

Influence of landscape variables and configuration on
genetic variation

Quantifying the effect of landscape configuration on
gene flow has been a major focus of published landscape
genetics studies (Manel et al., 2003; Scribner et al., 2005;
see Table 2). Statistical analyses of genetic data have been
used to identify the effects of matrix resistance on gene
flow and genetic structure, including: cover type (Key-
ghobadi ef al., 1999; Spear et al., 2005), stream distance
(Roach et al., 2001; Antolin et al., 2006), historic landscape
configuration (Holzhauer et al., 2006), water flow rates
(Michels et al., 2001), ridge distances (Pfenninger, 2002;
Funk et al., 2005), thermal cover (Scribner et al., 2005) and
the effect of landscape configuration on allelic fixation
time (Ezard and Travis, 2006). Recently, Sezen et al. (2005)
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revealed the impact of landscape change and patch type
on genetic variation in Costa Rican canopy palms (Iriartea
deltoidae) by documenting a decrease in genetic diversity
and an increase in the patch diameter of similar
genotypes in second growth forests compared to old
growth patches. This demonstrates that intrinsic scale,
the area encompassed by a population as estimated by a
genetic neighborhood, may change across a landscape
due to the landscape composition and configuration.
As another example, wolverine populations in intact
habitats have a larger intrinsic scale than populations in
fragmented habitats (Cegelski et al., 2003).

Identifying barriers

Identifying potential gene flow barriers is a major focus
of landscape genetics research. While all landscape
features affect gene flow, particular structures such as
roads (Riley ef al., 2006), waterways (Antolin et al., 2006)
or mountain ridges (Funk et al., 2005) are potentially
impenetrable barriers. Genetic data have been used to
identify abrupt breaks in gene flow (Dupanloup et al.,
2002; Manni et al., 2004) as well as more gradual
transitions (Geffen et al., 2004). Barriers may also consist
of microhabitats that prevent gene flow because they
exceed a threshold for moisture, temperature or chemical
tolerance for particular species (Palo et al., 2004). There-
fore, barrier identification has important implications for
ecological (Walker et al., 2003; Kreyer et al., 2004; Funk
et al., 2005), conservation (Bhattacharya et al., 2003; Miller
and Waits, 2003; Dodd et al., 2004) and evolutionary
(Castella et al., 2000; Broderick et al., 2003; Cicero, 2004;
Gee, 2004) investigations.

One distinct benefit of a landscape genetics approach
is that spatially explicit techniques can allow researchers
to identify barriers not detectable by traditional popula-
tion genetic methods (Guillot et al., 2005a; Coulon et al.,
2006). For example, Coulon et al. (2006) found genetic
structuring in roe deer due to highways and rivers
using spatial assignment test methods (in the program
GENELAND, Guillot et al.,, 2005b), whereas a non-
spatial assignment test (STRUCTURE; Pritchard et al.,
2000) was not able to identify any genetic discontinuities.
Landscape genetics can also be used to quantify the
cumulative impact of a particular barrier type distrib-
uted across the landscape. For example, Epps et al. (2005)
evaluated genetic diversity and structure in 27 desert
bighorn sheep populations (Ovis canadensis nelsoni) and
showed that diversity was negatively correlated with
fenced highways, canals and human development. They
also estimated a ‘barrier effect distance’ and suggested
that any one of these barriers would create the same
decrease in gene flow as 40 km of contiguous habitat.

Source-sink dynamics

Understanding source-sink dynamics (Pulliam, 1988;
Dias et al., 1996) and variation in habitat quality can be
useful for identifying corridors and guiding reserve
design. Genetic data have been used to identify source
and sink habitats for populations by identifying asym-
metric gene flow using private alleles (Kennington et al.,
2003), and estimating the number of migrants into a
population using either a coalescent approach (Beerli
and Felsenstein, 2001) or assignment tests (Paetkau ef al.,
1995; Wilson and Rannala, 2003). Theoretical population
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Table 3 Models that can explicitly incorporate landscape data organized by research questions presented in text

Question type Appropriate model types Example models Sampling
Relative influence of ~ Matrix correlation Mantel test, Partial Mantel test All
landscape Autoregressive and CAR, SAR, GWR B,C,D,E, EGH
variables/ecological ~ geostatistical models
hypotheses Dispersal route analysis Least-cost paths, network analysis, flow models All
Ordination RDA, CCA, multidimensional scaling B,C,D,E FEG,H,
Model based

Identify barriers

Source-sink

Reserve design/
corridors

Spatial scale

Temporal scale

Model validation

Landscape metrics

Point pattern
Global autocorrelation
Spatial interpolation

Assignment tests
Algorithmic models

Spatially explicit
metapopulations
Network analysis

Spatial autocorrelation
Path analysis
Spatially explicit
metapopulations
Matrix correlation
Landscape simulation

Regression
Spatial autocorrelation

Variance decomposition

Simulation/permutation
Interpolation

Many metrics calculated at landscape, class, patch
level, and within different window sizes

LISA, Cross-K

Moran’s I, Geary’s C

Inverse distance weighting, kriging

Monmonier’s algorithm, simulating annealing
CART, MARS, RANDOM FORESTS

RAMAS

Flow models

Moran’s I, Geary’s C, LISA

Least-cost paths, network analysis, flow models

RAMAS

Mantel tests
LANDIS, RAMAS GIS

Geographically Weighted Regression
Moran’s I, Geary’s C, LISA
Hierarchical analysis of variance, delineation of

semivariance

Neutral landscapes
Conditional simulation, randomization, Monte Carlo

E, G, H, Model based
B, C, D, F, Model based
B, C, D, Model based
B,C,D,E FG,H,
Model based

B, C
All

All
All
B, C, D, Model based
All
All

All
All

E,G H
B, C, D, Model based
All

All
A, B, C

Letters refer to sampling methods (Figure 1) that are most suited to the model type under most conditions.

models suggest evaluations of linkage disequilibrium
can be used to detect sink habitats because disequili-
brium is predicted to be higher in individuals from sinks
due to immigrants from different sources (Nei and Le,
1973). Dias et al. (1996) empirically tested this theory and
found higher linkage disequilibrium in blue tits (Parus
caeruleys) living in a known sink habitat (evergreen
forest) than that of birds sampled from a known source
habitat (deciduous forest).

Physical locations of corridors have also been identi-
fied using landscape genetic approaches For example,
Banks et al. (2005) used spatial autocorrelation analysis of
genetic structure to demonstrate that riparian strips of
native eucalyptus forest facilitate dispersal in a marsu-
pial carnivore (Antechinus agilis) compared to the matrix
habitat of pine plantations. This study also helped detect
a dispersal threshold for male A. agilis by showing that
fragmented pine plantation habitat significantly reduced
dispersal at distances greater than 750m. Least-cost
analysis also has been valuable in identifying landscape
variables that facilitate gene flow and may function as
corridors (Spear et al., 2005; Vignieri, 2005). For example,
Vignieri (2005) found that least-cost paths that mini-
mized elevation gain and maximized riparian forest
cover were strongly correlated with gene flow in the
Pacific jumping mouse (Zapus trinotatus).

Heredity

Spatial and temporal scales

Genetic variation may respond differently over varying
spatial or temporal scales, which is a critical issue in
defining research questions and subsequent study design
in landscape ecology and spatial statistics (for review, see
Gardner, 2001). The scale at which particular landscape
variables have the greatest influence on gene flow (.e.
process scale) may give insight into species’ biology. For
example, Trapnell and Hamrick (2004) showed that the
contributions of pollen and seed movement to overall
gene flow in the Central American epiphytic orchid,
Laelia rubescens, were scale-dependent. Primary factors
governing gene flow were seed gravity (seed dispersal)
at the finest spatial scale, hummingbird behavior (pollen
dispersal) at the intermediate scale, and wind (occasional
seed dispersal) at the broadest scale.

Temporal scale may also have a significant impact on
landscape genetics. For example, Ramstad et al. (2004)
detected significant genetic structure among sockeye
salmon (Oncorhynchus nerka) populations in Alaska and
used simple and partial Mantel tests to evaluate the
relative influence of different ecological and evolutionary
factors on genetic differentiation. They found that
temporal isolation based on spawning time and founder
effects associated with ongoing glacial retreat and
colonization of new spawning habitats contributed



significantly to genetic population structure, while
geographic distance and spawning habitat differences
did not have significant influence.

Species-specific hypothesis testing

Landscape genetics offers new approaches for testing
hypotheses specifically related to how the ecology of the
study species shapes patterns of genetic variation,
such as identification of bioregions (Sacks et al., 2004),
potential response to climate change (Rehfeldt et al.,
1999), and ecological variables (Jorgensen et al., 2005). For
example, Sacks et al. (2004) tested the hypothesis that
coyotes would exhibit natal-biased dispersal by evaluat-
ing population genetic structure across four contiguous
habitat bioregions in Northern California and found
genetic groupings could best be explained by habitat
bioregions and not habitat barriers. Rehfeldt et al. (1999)
concluded that the ability of western US conifer species
to adapt to climate change may be constrained due to
significant geographic structure in quantitative genetic
traits associated with elevation and latitude. In a study of
herring (Clupea harengus) in the Baltic Sea, Jorgensen et al.
(2005) showed that the ecological variables that best
explained genetic variation were salinity, surface tem-
perature and spawning time.

Study design

Importance of study design

Historically, population genetic studies often relied on
opportunistically collected samples from known local-
ities or in easily accessible areas. Opportunistic sampling
may fail to capture the spatial variation or spatial
dependency of the system, resulting in difficulty detecting
spatial relationships or erroneous model inferences
(Legendre, 2002; Fortin and Dale, 2005). Thus, studies
should be designed to sample the variable(s) of interest
within the scale of spatial dependency (Coulon et al.,
2004). In addition, population genetics studies have been
traditionally designed to collect samples from a mini-
mum of 20-30 individuals per a priori delineated
‘population’ (Nei, 1978). However, a priori delineation
is no longer necessary due to the development of genetic
clustering algorithms, such as assignment tests (Pritch-
ard et al., 2000; Wilson and Rannala, 2003; Manel et al.,
2005). In addition, models of landscape influence on
genetic variation often require more continuously dis-
tributed sampling, which can be analyzed with a wide
variety of spatial analysis techniques reviewed herein
(see Table 3).

Careful consideration of scale in study design is also
critical because arbitrarily defined scales may lead to
erroneous conclusions or fail to capture appropriate
variability in the landscape (King, 1990; Gardner, 2001).
We refer to scale as the appropriate spatial or temporal
dimensions at which processes can be observed and
quantified (for review, see Dungan et al., 2002). Under
this definition, scale has two relevant components:
‘grain’ and ‘extent’ (O’Neill et al., 1988). Grain is the
minimum resolution of the data and extent is the total
area of interest. Accounting for grain and extent in
both the dependent and independent variables ensures
that the appropriate scale for a specific question(s) is
captured (for review, see Marceau, 1999). When design-
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ing a landscape genetics study, researchers can deter-
mine appropriate sampling scale with pilot data (e.g.
movement data of the study organism), or data from
similar organisms in other areas. Ideally, a spatial
sampling scheme should capture the range of spatial
variation in both landscape variables and organismal
genetic variability by collecting observations across a
range of variances (e.g. from low to high local spatial
autocorrelation and from low to high genetic relatedness,
respectively) (Cressie, 1993; Goovaerts, 1997; Fortin and
Dale, 2005).

If pilot data are available, exploration of intrinsic scale
and stationarity can also be executed before sampling or
modeling. Most spatial statistical models assume statio-
narity in the response variable that is implicitly a
function of a spatial generating process (Fortin and Dale,
2005). In other words, the underlying assumption of
most spatial statistical models is that the same ecological
processes (e.g. slope, moisture and topography) influ-
ence the response variable (e.g. genetic variation) in the
same way across the whole study area. However, this
assumption is likely to be violated in complex land-
scapes. Violations of stationarity can be tested with local
indicators of spatial association (LISA) (Anselin, 1995).
Non-stationarity can then be accounted for by incorpor-
ating locally adjusted methods such as geographically
weighted regression or locally coherent spatial regression
(Haining, 2003; Fotheringham et al., 2004).

In landscape genetic studies, it is important to consider
how the effects of temporal scale influence genetic
variation. The theoretical genetics literature has ad-
dressed how temporal heterogeneities in demographic
parameters such as dispersal and density can have large
effects on spatial genetic variation (Whitlock, 1992;
Leblois et al., 2004). However, this complexity is often
overlooked in landscape genetic studies. For species with
overlapping generations and cyclic changes in density,
allele frequency shifts among cohorts and sampling
years are expected (Jorde and Ryman, 1995). If not
accounted for, temporal genetic heterogeneity can be
incorrectly interpreted as true population differentiation,
particularly in cases when genetic differentiation is weak
(Waples, 1998).

Incorporating landscape data

Landscape genetic studies require data from two distinct
sources: landscape data (e.g. remotely sensed data,
digital elevation models, field collections) and multilocus
genetic data. Landscape data are gathered in a number of
ways, including: field surveys, aerial remote sensing
and/or satellite remote sensing. As these methods
contain several potential sources of error that may
obscure relationships with genetic variation (e.g. tem-
poral sampling frequency, data generalization; Burrough
1986), use of data sets with error documentation and
associated metadata is highly desirable (please see the
US Federal Geographic Data Committee website, http://
www.fgdc.gov/standards/standards_publications, ~ for
lists of metadata standards).

Recent advances in fine scale data resolution (<4m)
and analysis methods have greatly improved the spatial
accuracy and precision of detecting, classifying and
delineating landscape habitat characteristics in both
two (Wulder et al., 2004; Greenberg et al., 2005) and
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three dimensions (Lefsky et al., 2002). Such fine scale data
can help create detailed digital elevation models and
spatially explicit vegetation canopy structure products.
At coarser spatial scales (resolution 250 m-1.1 km), image
data are acquired for the entire globe twice per day,
enabling analyses at unprecedented temporal resolution
(Rahman et al., 2004; Running et al., 2004) to compare
vegetation phenology with genetic variation in plants
and animals. However, it is important to note that the
scale at which data are collected should match the scale
of the study questions and hypotheses.

Sampling

When selecting a sampling design, there are several
important considerations. First, what is the research or
management question? For instance, identifying specific
barriers to gene flow will require a different sampling
scheme than identifying source and sink habitats.
Second, is the species continuously distributed across
the landscape or does it have a spatially random or
aggregated distribution? To make inferences about land-
scape influence on genetic variation, the sampling
scheme should capture the variability in the independent
landscape variables of interest (Bueso and Angulo, 1999).
Third, based on the sampling design and data collected,
which types of statistical analysis models are appro-
priate? (see Table 3; Forman, 1997).

Simple sampling designs discussed in this paper
include systematic (uniform, unaligned, random start)
and random (simple random or clustered) (Figure 1).
Systematic sampling designs (Figure la—c) are more
efficient in covering the extent of the study area than
random samples (Harrison and Dunn, 1993). However, a
uniform systematic design (Figure 1a) can be biased
when it coincides in frequency with a regular pattern in
the landscape due to a fixed sampling interval, and may
miss anisotrophic effects (Berry and Baker, 1968; Fortin
and Dale, 2005). Random sampling designs have the
advantage of producing a spatially unbiased sample and
can be applied to continuously distributed species or
a subset of the landscape based on required habitat
conditions (Figure 1d-e). A random sample can be
beneficial because it generates a wide range of distances
among points, helping describe the relationships be-
tween observations across space if sampling is dense
enough such that sample observations cluster appro-
priately to optimize semivariogram estimation. However,
the distribution of samples may not be representative of
the underlying geographic surface, because for most
samples drawn, some areas will be oversampled while
others will remain undersampled (Griffith and Amrhein,
1997).

These general sampling schemes can be implemented
within more complex designs such as spatial hierarchical
sampling (Figure 1f), nested sampling (Figure 1g) and
stratified sampling (Figure 1h). In a hierarchical sam-
pling design, one measurement (e.g. cover type) is
collected more intensively and at a finer spatial scale
than a second variable (e.g. genotypes) (Haining, 1990).
Landscape variables may be less expensive to measure
and change more rapidly in space than genetic variation,
making spatial hierarchical sampling a viable option in
landscape genetic studies. Spatially nested sampling
designs generally work well for populations that are
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Figure 1 Visual representation of discussed sampling approaches.
Diagrams with black backgrounds represent sampling approaches
appropriate for continuously distributed populations, gray back-
grounds represent sampling approaches appropriate for continu-
ously distributed or clustered populations, and the white
background represents a sampling approach most appropriate for
clustered populations. Systematic sampling (a—c) designs assume a
relatively even distribution of potential observations across the
landscape and therefore can be used with continuously distributed
populations. Black dots represent sampling locations for (a) uniform
sampling, (b) unaligned sampling and