Putting Users in Control of their Recommendations

F. Maxwell Harper, Funing Xu, Harmanpreet Kaur,

Kyle Condiff, Shuo Chang, Loren Terveen
GroupLens Research
University of Minnesota
Minneapolis, MN, USA
{harper, xuxx0572, kaurx090, cond0155, schang, terveen}@cs.umn.edu

ABSTRACT

The essence of a recommender system is that it can recom-
mend items personalized to the preferences of an individual
user. But typically users are given no explicit control over
this personalization, and are instead left guessing about how
their actions affect the resulting recommendations. We hy-
pothesize that any recommender algorithm will better fit
some users’ expectations than others, leaving opportunities
for improvement. To address this challenge, we study a rec-
ommender that puts some control in the hands of users.
Specifically, we build and evaluate a system that incorpo-
rates user-tuned popularity and recency modifiers, allowing
users to express concepts like “show more popular items”.
We find that users who are given these controls evaluate
the resulting recommendations much more positively. Fur-
ther, we find that users diverge in their preferred settings,
confirming the importance of giving control to users.

Categories and Subject Descriptors

H.5.3 [Group and Organization Interfaces|: Computer-
supported cooperative work; H.1.2 [User/Machine Sys-
tems|: Human factors; H.3.3 [Information Search and
Retrieval]: Information filtering

Keywords

recommender systems; collaborative filtering; social com-
puting; user control; personalization; user study; simulation
study; MovieLens

1. INTRODUCTION

Recommender systems are usually not user-configurable.
Recommendation algorithms personalize their responses for
users by measuring behaviors (ratings, clicks, purchases, sur-
vey questions, etc.), sometimes matching these with con-
tent attributes (popularity, price, author, etc.) Typically,
users are given no explanation of how their behaviors af-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

RecSys’15, September 16-20, 2015, Vienna, Austria.

@ 2015 ACM. ISBN 978-1-4503-3692-5/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2792838.2800179.

fect their recommendations!; the system is a “black box”.
Therefore, while users may want a recommender to behave
differently (“my recommendations are too obscure”, or “my
recommendations show too many expensive things”), they
are not given any means to tell the system to behave differ-
ently.

In this research, we explore the idea of giving users con-
trol over their recommender. What if the user could tell the
recommender to de-emphasize obscure content, or to priori-
tize affordable content? We hypothesize that such a system
could leave users feeling more satisfied with their recommen-
dations and more in control of the process.

To this end, we evaluate a system that gives users control
over a single variable that is external to (or subsumed by) the
recommendation algorithm. By examining a single variable,
we allow users to control the recommender through simple
actions like “show less expensive items”.

Our recommendation method uses a linear weighted com-
bination of a personalization variable (the output of a rec-
ommender algorithm such as item-item collaborative filter-
ing) and a blending variable (a non-personalized content at-
tribute such as price); we give users control over the weights.
This approach has a number of advantages. It can be incor-
porated into any existing item-ranking recommender sys-
tem by simply re-ranking result lists. It is computationally
cheap, both to recommend items, and to change the recom-
mender’s weights. It is simple to understand, both from a
user perspective and from a data analytics perspective.

We structure this work around the following research ques-
tions:

e RQI1: Do users like having control over their recom-
mendations?

e RQ2: Given control, how different are users’ tuned rec-
ommendations from their original recommendations?

e RQ3: Do users converge to a common “best tuning”
setting?

We focus our analysis on two attributes available in most
recommender systems: item popularity, and item age. Item
popularity — the number of users who have interacted with
the item — may be operationalized by measuring data such
as clicks, ratings, and mentions. Item age may be oper-
ationalized by the time when the item was added to the
system, or when the item was created/released.

!Some users will try to reverse engineer the algorithm [12]

To deepen our understanding of the impact of using pop-
ularity and age in item recommendations, we conduct an of-
fline simulation study and an online user study in MovieLens
(http://movielens.org), a movie recommendation web site
with several thousand active monthly users. MovieLens
members rate movies on a 5 star scale (with half-star in-
crements). They expect that rating more movies will help
the system deliver better recommendations.

We make several research contributions. We describe a
functional, computationally efficient recommendation method
that can add user-configurability into any existing item rec-
ommendation framework. Through a simulation study, we
develop several insights concerning popularity and age —
two widely-available, easily understood variables for user
manipulation. We determine, via a user study, that users
who are given control over their recommender evaluate the
resulting recommendations more positively.

2. RELATED WORK

There has been substantial research effort on optimiz-
ing recommender algorithms for system-determined outcome
measures such as prediction accuracy, click-through rate,
purchase dollars, and return visits. Some of the best-known
approaches are based on nearest-neighbor (e.g., item-item
collaborative filtering [19]) or matrix factorization approaches
(e.g., SVD++ [14]).

Recently, there has been an emphasis on learning to rank
[15], a family of machine learning techniques that are trained
on a ranking-oriented loss function. There are several related
approaches to this idea that seek to maximize ranking out-
comes while remaining computationally feasible (e.g., [6, 4]).
Learning to rank has the potential for optimizing recommen-
dation lists by examining many sources of behavioral input,
including implicit feedback such as clicks and purchases [18].
Algorithms will continue to improve in their ability to opti-
mize system-determined outcomes. We build on this fact by
seeking a method that lets users decide their own outcomes.
Our recommendation method can extend any algorithm that
scores or ranks items.

In this work, we develop a hybrid recommender — an
ensemble of multiple recommender algorithms. Hybrid rec-
ommenders have been widely applied to improve prediction
and recommendation accuracy [3, 13, 23, 21]. Weighted en-
sembles — linear combinations of multiple recommendation
algorithms — are one of the most popular methods in this
area [3]. For example, [1] describes introducing a simple lin-
ear ensemble model in Netflix, incorporating predicted rat-
ings with many other features. We build on this literature by
allowing the user to vary the weights, and by conducting a
user study to measure user perceptions of different weights.

We are interested in more than just offline optimizations;
we want happy users. Statistical accuracy metrics (e.g., ac-
curacy, recall, and fallout) are not necessarily a good approx-
imation of the recommendation quality perceived by users
[8]. Other factors, such as transparency [22] and user control
[16, 5] also affect the user experience [9)].

Especially relevant to this work are systems that give users
more control over their recommended items. Critiquing rec-
ommender systems [7, 17] allow users to quickly build a
highly-customized, task-specific, transparent taste profile.
These systems rely on content attributes and are task-specific;
in this work we aim to provide users with control over longer-
lived, general-purpose, content-agnostic recommendation al-

gorithms. Research on Tasteweights [2], an interactive rec-
ommender system that allows users to directly manipulate
many attributes, found that users were more satisfied when
they were given control. We extend this idea by evaluat-
ing a recommendation method that works on top of existing
recommendation methods, and that allows simple user ma-
nipulation.

3. RECOMMENDATION METHOD

To build a top-N recommendation list for each user, we
build a personalized blending score (s4,;) for each item, then
sort by that score. The mechanism for computing these
scores is kept simple so that we can learn from the results,
and flexible so that we can experiment with different blend-
ing strategies.

Equation 1 shows the general form of our method — a
weighted linear combination of input variables. r,; is the

recommender’s score of item i for user u; f,..., f are nu-

meric representations of item features, and w?,..w" are
weights that determine the relative importance of the fea-

tures.
0 1 1 n n
Su,i:wu'qu,i+wu'fi ++wufz (1)

We operationalize this general method as shown in Equa-
tion 2.

Su,i = WY - predy,; + wy, - pop; + ws - age; (2)
The specific variables used are:

e pred,,;: a prediction of the rating that user v will as-
sign item i, as generated by an item-item collaborative
filtering algorithm. We use Lenskit [10], configured to
use cosine similarity scoring and a neighborhood size
of 20. We clamp the output values to the range of 0.5-5
to match the values used in the live system.

e pop;: the number of times item ¢ was rated in the past
2

year.

e age;: 50 minus the number of years since item i was
released, clamped to the range of 0-50. We subtract
from 50 so that newer items have higher values, which
is more consistent with typical user preferences.

Weights {w?, w", w?} may take any value; we experiment
with weights in the range of 0-1. In addition, we examine
only one of {w',w?} at a time, which we accomplish by
setting the other variable’s weight to zero.

We scale pred., i, popi, and age; to the range of 0-1 by
computing their percentile rank before combining them, in
order to make their weights comparable. For example, to
scale pred,;, we first compute the user’s predicted rating
for each item on a 0.5-5 scale, then calculate the percentile
of each of those scores. In this way, we flatten the distri-
butions in a consistent manner (as compared with simple
normalization, which would preserve the existing shape of
the distribution). This flattening step is critical for ratings
data, such as those found in MovieLens, where the normal-
shaped distribution of rating values (@ = 3.53,0 = 1.05)
causes many closely-clustered predicted rating values, thus
dramatically over-weighting differences in other parameters

2In our offline analysis, we varied the popularity window
across 3, 6, 12, and 24 months, and found no major differ-
ences in outcomes.

http://movielens.org

2 1.0 === — - D 10 9 e
g0847 €08 o
O 0.6 Lo 006 L mmm=m==== -
204 2 04
g 0.2 o 0.2 -
()]

& 00 , , < 00 , ,

4.2 0.70 — .
240 _o===-=~- = 065 :
= 3.8 1 0.60
® 36 4 Loss LT !
933.4 """"""""""""" o 050 - "___—
Z 32 0.45 '

3.0 , , 0.40 , ,

1.0/0.0 0.5/0.5 0.0/1.0 1.0/00 0.5/05 0.0/1.0

in wishlist

nDCG

..... age
10 o _ 0.30 _.
- . '
067 - S 015 4,
04 -, 2 010 1
0.2 —p . vvverimrrrenrerer # 005 ..
0.0 , | 0.00 MALLLIEEET |
0.95 @ 16000
001 Fmmnz- -~ 210
0.93 " Y S 10000
092 Vo3 8000 b
091 - 8 0000 1%,
S,
0.90 S 3000 S
0.89 : . 0 o3 : N
10000 0505 0.0/1.0 10000 0505 0.0/1.0

Figure 1: Simulated effects from the offline experiments that blend predicted rating with one of two non-
personalized blending variables: popularity and age. The x-axis shows the algorithm weights; values range
from (1.0 * predicted rating 4+ 0.0 * blending variable) on the left to (0.0 * predicted rating + 1.0 * blending
variable) on the right. That is, the leftmost point represents the unadjusted behavior of the item-item CF
algorithm; as the line travels right, it shows the effect of diminishing the importance of CF while increasing
the importance of the blending variable. The outcome variables (on the y-axis) are discussed in the text.

for movies in this prediction range. We note that percentile-
adjusted distributions are not perfectly flat, since percentiles
may have ties.

4. OFFLINE ANALYSIS

To establish the feasibility of our recommendation method,
and to guide the design of our user-facing experiment, we
use an offline simulation study to understand the impact of
different weighting values.

4.1 Methods

This study is based on a dataset of user ratings and movie
rating statistics drawn from the MovieLens database on April
2, 2015. We sample users who joined MovieLens in the six
months preceding that date. We include users with at least
40 ratings, to ensure that all users could have at least 20
ratings in both their training and test sets. The resulting
sample consists of 4,976 users; these users had visited Movie-
Lens a median of 35 times and had rated a median of 253
movies.

We conduct an offline simulation study using a rating-
holdout methodology [11] to simulate users’ top-N recom-

mendation lists. Specifically, we conduct 5-fold cross-validation

experiments, using the LensKit evaluation framework [10],
which partitions by user. In each fold, we use four groups
of users to train the item-item similarity model; we measure
outcomes for the remaining group. For users in that group,
we choose 20 ratings at random as their training data (their
simulated ratings profile), while their remaining ratings are
treated as their test data.

We run two groups of simulations, one to measure the
impact of each of the two blending variables: popularity
(“pop”) and age. For both pop and age, we test simu-
lated outcomes with differently configured recommenders
that span the range of weighting. The recommenders’ weights
span the following values, where the first number in the tu-
ple is the weight assigned to predicted rating, and the second
number is the weight assigned to the blending variable (pop

or age):
(1.00,0.00), (0.95,0.05), ..., (0.00, 1.00)

We only experiment with one blending variable at a time
(the other blending variable is held constant at 0) to isolate
its effect.

For each configuration, and for each user, we simulate
generating a top-20 list of recommendations. Using the test
data for that user, we can then evaluate their ability to in-
teract with those recommendations (e.g., to add the item
to their wishlist). All reported metrics only concern these
top-20 recommendations (e.g., RMSE is measured on rated
items in users’ top-20 simulated recommendations).

4.2 Results

See Figure 1 for a visualization of the results of this sim-
ulation. Each plot in this figure shows the simulated results
in both experiments — popularity and age — on a single
outcome variable, averaged across users. The x-axis repre-
sents the full range of relative weighting: the far-left point is
the result of sorting by predicted rating, while the far-right
point is the result of sorting by the blending variable (pop
or age). The intermediate points on the x-axis span the
range of weighting values as discussed above. Though the
far-right point represents a recommendation algorithm that
is 0% predicted rating, it is still semi-personalized because
we assume in this experiment, as we do in the live system,
that we do not display already-rated movies to users.

Manipulation checks. Blending a small amount of popu-
larity strongly increases the average pop percentile of top-
N lists; blending a small amount of age strongly increases
the average age percentile. These effects are expected,
and are included mostly as sanity checks. However, these
charts also show that even small weights on the blending
variable will have a dramatic influence on the resulting rec-
ommendations.

Actionable items. MovieLens users add items to a “wish-
list” to express interest, and “hide” items to express a lack of
interest. We simulate the presence of these items in users’
top-20 lists with # in wishlist and # hidden. We find,

interestingly, that increasing popularity simultaneously in-
creases both actions, though they express opposite responses
to the content. Possibly, this is due to increased familiar-
ity with the items in the list — a user may have stronger
preferences for items they have heard of. Increasing the
weighting of age has the property of increasing the num-
ber of wishlisted items and decreasing the number of hidden
items, though the effect is more subtle than with popularity.

Item quality. Average rating is a non-personalized proxy
for item quality, which we measure on a 0-5 star scale.
Adding a small amount of popularity dramatically increases
the average rating, while adding age slightly lowers the av-
erage rating of items in users’ top-20 lists.

Recommender quality. RMSE is a prediction accuracy met-
ric; nDCG is a rank quality metric [20]. We find that both
pop and age have worsening effects on both metrics, though
the effects are minimal at low blending values.

Impact on personalization. By blending non-personalized
factors into a recommender algorithm, we expect the system
to become less personalized. We quantify this cost using
global unique, which shows the number of unique movies
recommended across all users in our sample. We find that
even small weights cause a large decline in this metric —
even blending in 5% popularity drops the number of unique
top-20 movies from 14.5k to 6.8k, while blending 5% age
drops the number to 7.7k.

S. USER EXPERIMENT

Offline analysis gives us some general understanding of
the effects of blending on top-N recommendations, but does
not tell us how users perceive these effects and what amount
of popularity or age (if any) they choose to blend in. We
therefore conduct a user experiment in which users are able
to control the blending themselves.

Our user experiment has two main parts. First, we ask
users to “tune” a list of recommendations using a small set
of controls. Then, we ask users to complete two surveys (in
random order): one about their original list of recommen-
dations, and another (with the same questions) about their
adjusted list.

5.1 Methods

We invited 2,023 existing MovieLens users to participate
in the user study between March 26 and April 16, 2015.
This set of users was chosen randomly among a larger set of
users who (a) had logged in during the previous six months,
(b) had rated at least 15 movies, and (c¢) had consented to
receive emails from MovieLens.

Our study has a 2x2 design with random assignment. The
first variable, condition, determines if the user will be given
control over the popularity (“pop”) variable or the age vari-
able in their recommendations. The second variable, order,
determines the order of the surveys shown, to test and con-
trol for order effects.

Subjects first see the recommender tuner interface — a
top-24 list of movies and several buttons for changing the
contents of the list (see Figure 2). The instructions read:

Your task is to find your favorite list of recom-
mendations by picking a position in a spectrum
of values. Use the left and right buttons to ad-
just your position one direction or the other. Use
the reset button to return to the neutral posi-

personalize your recommendations

Your task is to find your favorite list of dations by picking a f ion in a spectrum of values,
Use the left and right buttons to adjust your position one direction or the other. Use the reset button to
return to the neutral position. When you are satisfied with your rec tons, click I'm done! You
can exit 1 Moviel.ens a1 any time,

& left right

what changed

we removed these movies and replaced them with these

The Wirgin b= Touthof BT nrarstallar Eilte
Spring = oA i) Squad: The
o Yl Enemy
(=
- ‘within
W Amhoman The Thin
- Man
1 b, el

your new recommendations

Enran; The
Smartect
Guysin

the Room

Figure 2: A screenshot of the experimental recom-
mender tuner interface. Users click left or right to
explore different recommender configurations. Each
click changes the list by four movies — these are em-
phasized visually in the “what changed” section.

tion. When you are satisfied with your recom-
mendations, click I’'m done!

These instructions intentionally do not reveal how their ac-
tions control the recommendations in order to remove any
cognitive bias. E.g., a user who believes “I want to watch
new releases” may use the feature differently if the controls
are labelled “older” and “newer” rather than the more neutral
“left” and “right”. Note that the offline analysis above eval-
uates top-20 lists; we choose 24 for this experiment because
it matches the system interface.

By clicking the left, right, and reset buttons, the user is
able to change the movies shown in the list. At the time
the page is loaded (i.e., the origin), the top-24 list is the
result of 100% predicted rating from MovieLens’s item-item
CF algorithm. Each subsequent click “farther” from the ori-
gin increases the weight of the blending variable (pop or
age) relative to the personalization variable. Values to the
“right” of the origin represent positive weights on the blend-
ing variable. As in the offline analysis, moving farther from
the origin simultaneously increases the weight on the blend-
ing variable and decreases the weight on the personalization
variable (to a maximum of 1.0 blending, 0.0 personalization).
Values to the left of the origin represent negative weights (to
a maximum of -1.0 blending, 0.0 personalization). Note that
the offline analysis above does not model negative weights;
we include these so that users can express “more obscure” or
“older” if they wish.

Each step — a right or left click — changes four items in
the user’s top-24 list. This means that the specific amount

Referring to your adjusted top Your adjusted top picks:

picks, please answer the Following

E Kung Fi In Ameri
questions: ke nAmere
1. The movies in my adjusted top picks are...
Too Old Just Right Too New
B Stardust suPERMAN Superman
S - = " & vs. The
2. The movies in my adjusted top picks are... Elite

Too Popular

Too Obscure Just Right

3. This list would help me find movies I
waould eniov watchine.

| — m e
Figure 3: A screenshot of the survey that asks users
to evaluate their top-24 list. Subjects take this sur-
vey twice in random order — once for their origi-
nal recommendations, and once for their hand-tuned
recommendations.

by which the weights change per step varies by user. Early
testing of the interface revealed that it was difficult to set an
increment that worked well for all users (a given change in
weights may affect half of the items in the recommendation
list for one user, and not change the list for another user).
Thus, we pre-computed a set of weights for each subject that
would correspond to replacing four items — enough to feel
the list changing, but not enough to be overwhelming. We
locate a value for each step using a binary search algorithm.

To assist users in determining whether the list is better
before or after the change, we show two boxes, one showing
the movies that were just removed, and one showing the
movies that were just added. We also call attention to the
new items in the top-24 list by highlighting them.

After clicking I'm done!, we ask survey questions about
the subject’s original and tuned recommendations (see Fig-
ure 3). These questions are designed to assess their per-
ceptions of the differences between the two lists. Several of
these questions are derived from [5]. We conclude the survey
with several questions concerning the general feasibility of
this interface as a permanent feature in MovieLens.

5.2 Results

We consider two groups for analysis. First, for examining
use of the recommender tuner interface, we look at users who
(a) used both the left and the right buttons, (b) took three
or more actions, and (c) clicked I'm done! (N=168, 8.3%
of those emailed). Second, for examining survey results, we
look at users from the first group who also completed the
survey (N=148, 7.3% of those emailed). Both groups come
from a pool of 381 users (19% of those emailed) who clicked
on the email link and were assigned to an experimental con-
dition. These samples skew towards highly-active users (e.g.,
users who finished the survey have a median of 186 logins
and 626 ratings vs. the broader sample of emailed users who
have a median of 48 logins and 254 ratings).

Overall, subjects used a median of 10 actions in tuning
their list of recommendations (pop condition: median=12;
age condition: median=10). 15% of subjects chose the orig-
inal recommender as their favorite configuration, while the
remaining 85% chose a configuration one or more steps from
the initial setting. See Figure 4 for a histogram of these

o
a

fraction of users
o
3

o
=)
o

o
=)
S

llllll ™ =
0 5 10 15 20 25

final steps (pop)

-5

fraction of users

0

5 10 15 20 25
final steps (age)

Figure 4: A histogram with a smoothed density
overlay (red line) of users’ final recommender se-
lections, represented in the number of steps (i.e.,
clicks) away from the origin of 100% item-item CF.
Each step represents a change of four movies out of
the 24 shown. Negative values represent final se-
lections with negative weights for the variable (i.e.,
biasing the list towards obscure or old content).

subjects’ final choices (measured in number of clicks left or
right from the initial configuration) and Table 1 for descrip-
tive statistics of three outcome measures.

See Table 2 for an overview of how the top-24 movies
themselves changed in terms of popularity, age, and average
rating. Subjects in the pop condition tuned their recommen-
dations to become more popular (average ratings, last year:
22 = 100), newer (average release date: 1993 = 1998), and
more highly-rated (average rating: 3.58 = 3.85). Subjects
in the age condition tuned their recommendations to become
newer (average release date: 1995 = 2002); there were not
statistically significant differences in the other metrics.

Of the 148 subjects who completed the survey, 85 are in
the pop condition, 63 are in the age condition. 72 users took
the original list survey first, while 76 users took the tuned
list survey first. We found no order effects in any of the
statistical tests described below.

Subjects in both the pop condition and the age condi-
tion responded more favorably concerning the properties of
the tuned list, as compared with the original list. These
results are summarized in Figure 5 and Figure 6. All differ-
ences shown in those figures concerning the distributions of
responses between original and tuned are statistically sig-
nificant (p<0.001) using a Wilcoxon rank sum test.

Subjects responded that the tuned list contained more
movies they had heard of, and more movies they wanted to
watch (Wilcoxon test, p<0.001). See Table 3 for descrip-
tive statistics. These differences remain statistically signif-
icant when looking only at subjects in the pop condition
(p<0.001) and the age condition (p<0.001).

6. DISCUSSION

RQ1: Do users like having control over their recommenda-
tions? Subjects strongly preferred their top-24 recommen-

Table 1: Descriptive statistics of users’ tuned list
of recommendations, by condition. Mowvies changed
from original indicates how many of the original 24
movies were not present in the tuned list. Final step
indicates the number of clicks from the origin of the
final choice (negative numbers are “left” of the ori-
gin). Final coefficient indicates the user’s preferred
blending weight (this number was not exposed to
users).

pop age
min 0 0

. 25% 5 4
3?;§21Changed from median 12 7
75% 20 14.5

max 24 24

min -4 -4

25% 0 0

final step median 3 1
75% 6 4

max 16 25

min -0.052 | -0.012

25% 0.000 | 0.000

final coefficient median 0.021 | 0.002
75% 0.193 | 0.014

max 0.990 | 1.000

dation lists after using the experimental controls to adjust
the popularity or age. Subjects in the popularity condition
were more likely to say that their recommendations were
“Just right” in terms of popularity; subjects in the age con-
dition were more likely to say that their recommendations
were “just right” in terms of recency. Across both conditions,
subjects reported that their adjusted lists better represent
their preferences, and would better help them find movies
to watch.

Subjects responded positively to a survey question asking
if they would use a feature like this if it were a permanent
part of the system (median “agree” on a likert scale). How-
ever, subjects responded negatively to a survey question ask-
ing if they found the interface easy to use (median “disagree”
on a likert scale). Based on user feedback, we attribute a
large part of this usability problem to our decision to obfus-
cate the experimental controls (e.g., labeling a button with
“right” instead of “newer”; asking them to pick “a position
in a spectrum of values” instead of “a popularity setting”).
Given the strongly positive feedback towards the tuned lists
of recommendations, we feel it is worth investing effort in

Table 2: Average statistics of subjects’ original and
tuned top-24 recommendation lists by condition.
* denotes a statistically significant difference (p <
0.001) using a paired t-test.

condition | metric original | tuned

pop pop. percentile | 0.80 0.91%*
age percentile | 0.51 0.57*
avg. rating 3.58 3.85%

age pop. percentile | 0.77 0.79
age percentile | 0.53 0.65*
avg. rating 3.49 3.47

The movies in my top picks are..

original | s3% 31% 16%
tuned | 26% I 49% I 26%
100 50 0 50 100
Percentage

.Too obscureDSIightly too obscure DJust righ!DShgmly too popular.Too popular

This list would help me find movies | would enjoy watching

original | 46% 26%
tuned | 19% 61%
100 50 0 50 100
Percentage

.Strong\y disagree. Disagree. Neu(ralDAgreeD Strongly agree

The movies in this list accurately represent my preferences

original | 53% 21%
tuned 22% 50%
100 50 0 50 100
Percentage

.Strong\y disagree. Disagree. Neu1ral|:|Agree[] Strongly agree

Figure 5: User survey responses from the popularity
condition. Note that the first plot uses a custom
scale where the best values are in the middle (“just
right”), while the other two plots use a conventional
agree/disagree scale. All differences between origi-
nal and tuned are statistically significant (Wilcoxon
test, p<0.001).

building usable interfaces for recommender tuning, but this
remains future work.

RQ2: Ghiven control, how different are users’ tuned recom-
mendations from their original recommendations? Different
users used the controls in different ways. The median user
in the pop condition changed out 12 (50%) of their origi-
nal top-24 recommendations, while the median user in the
age condition changed out 7 (29%). There were some users
who changed out all of their movies (N=13, 7.7%), and some
users who did not change any movies (N=13, 7.7%).

Offline simulation predicts several effects of our recom-
mendation method on resulting lists. We are able to measure
several of these same effects using data from the user study
— popularity percentile, age percentile, and average rating
— and find that subjects’ recommendation lists moved in the
predicted direction. These results show some striking differ-
ences in the tuned recommendation. For example, users in

Table 3: User responses concerning their familiarity
with and desire to watch the movies in the original
and tuned top-24 lists. The difference between orig-
inal and tuned is statistically significant (Wilcoxon
test, p<0.001).

original | tuned

heard of 25% 3 7
median 7 13

75% 12 18

want to watch | 25% 2 5
median 5 9

75% 10 15

The movies in my top picks are..

ongma\ 59% 37% 4%

tuned | 31% l 63% :I 7%

100 50 0 50 100
Percentage

.Too oIdDSIigmly too oIdDJus! rightDSligh!ly too new.Too new

This list would help me find movies | would enjoy watching

original | 35% 35%
tuned = 20% 51%
100 50 0 50 100
Percentage

.Slrongly disagree. Disagree. Neutral DAgree szrongly agree

The movies in this list accurately represent my preferences

original | 45% 24%
tuned | 29% 35%
100 50 0 50 100
Percentage

.S1rongly disagree. Disagree. Neutral DAgree Dstrongly agree

Figure 6: User survey responses from the age con-
dition. Note that the first plot uses a custom
scale where the best values are in the middle (“just
right”), while the other two plots use a conventional
agree/disagree scale. All differences between origi-
nal and tuned are statistically significant (Wilcoxon
test, p<0.001).

the popularity condition tuned their lists to contain movies
that were rated nearly five times as often in the past year
(100 vs. 22), on average.

RQ3: Do users converge to a common “best tuning” set-
ting? There does not appear to be a “one size fits all” tun-
ing value where users converge in their preferences, in ei-
ther condition. In fact, 15% of users in the pop condition
chose weights below 0.0 (to the “left” of the origin, in the
interface) to encourage less popular items to appear; 17% of
users in the age condition chose negative weights to encour-
age older items to appear. Given that the majority of user
feedback in MovieLens (outside this experiment, in day-to-
day operation) indicates recommendations that skew too old
or too obscure, the number of users who chose negative value
weights is surprising, which underscores the importance of
giving the users control.

6.1 Limitations

Our algorithm uses item-item collaborative filtering as the
baseline personalization algorithm. This algorithm, opti-
mized for accuracy in the prediction task, may behave ex-
tremely differently from other algorithms [9], content-based
or machine-learning algorithms in particular. It is possible
that user controls would have a more subtle effect in the con-
text of a recommender that was on average better oriented
with user goals (e.g., optimized to predict movies that will
be added to the wishlist).

Our experiments examine just two attributes — popular-
ity and age — in a single context — movie recommenda-
tions. Therefore, our findings may or may not generalize
to a broader pool of entity attributes in different domains;
different systems will probably need to experiment to find

the most useful attributes for providing users with control.
In addition, our method lends itself most naturally to at-
tributes that may be linearly scaled; categorical variables
(e.g., movie genre) do not fit naturally into this framework.

Our user study was taken by power users of MovieLens.
These users may have responded more favorably to our ex-
perimental interface than more typical users would have,
but we cannot know. We must consider the possibility that
a typical user would not be nearly as sensitive to the differ-
ences in top-24 recommended items.

Our experimental interface was poorly rated for its usabil-
ity, and we received several comments about the difficulty
of the task. Again, this biases the experimental sample to-
wards users who have a higher tolerance for complexity or
navigating unclear tasks.

6.2 Future Work

In this research, we address only item-level recommenda-
tions. Our method does not naturally generalize to different
types of recommendation tasks, such as recommending cate-
gories (“top dark comedies”) or recommending similar items
(“more movies like this”). Developing and evaluating the fea-
sibility of user-tuned recommenders for these tasks is future
work.

We make the assumption that users have relatively static
preferences, but in reality, a user’s context is always chang-
ing (e.g., changing moods, social contexts, or physical lo-
cations). A recommender tuning that works one day may
be less appropriate the next day. Understanding the rela-
tionship between context-sensitive recommenders and user-
tuned recommenders — and developing interfaces that merge
the two — is an interesting next step.

7. CONCLUSION

In this paper, we build and evaluate a recommender sys-
tem that incorporates user-tuned popularity and recency
modifiers. We find that users who are given these controls
evaluate the resulting recommendations much more posi-
tively than their original recommendations: they rated the
tuned recommendations to be more personalized, and iden-
tified more movies that they hoped to watch. Further, we
find that there is no globally optimal setting that works for
all users. Some used the experimental controls to change
out every movie in their recommendation list, while others
responded that their original list was optimal.

These results underscore the importance of user control
— based on these data, any globally-optimized hybrid rec-
ommender we deploy will not match the desires of a large
fraction of our users. Recommender systems traditionally
offer no explicit control to users, and leave users guessing
about the relationship between their actions and the result-
ing recommendations. Based on the results of this study,
we want this to change — users will be happier if they are
given control.

8. ACKNOWLEDGMENTS

We would like to thank Joseph Konstan and Daniel Kluver
for their contributions, and MovieLens users for their par-
ticipation. This material is based on work supported by the
National Science Foundation under grants I1S-0808692, I1S-
0964695, 11S-0968483, and IIS-1111201. This project was

supported by the University of Minnesota’s Undergraduate

Research Opportunities Program.

9.
1]

2]

[10]

[12]

[13]

REFERENCES

X. Amatriain. Mining Large Streams of User Data for
Personalized Recommendations. SIGKDD Ezxplor.
Newsl., 14(2):37-48, Apr. 2013.

S. Bostandjiev, J. O’Donovan, and T. HAfillerer.
TasteWeights: A Visual Interactive Hybrid
Recommender System. In Proceedings of the Sixth
ACM Conference on Recommender Systems, RecSys
’12, pages 35-42, New York, NY, USA, 2012. ACM.
R. Burke. Hybrid Web Recommender Systems. In

P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The
Adaptive Web, number 4321 in Lecture Notes in
Computer Science, pages 377—408. Springer Berlin
Heidelberg, 2007.

Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to Rank: From Pairwise Approach to
Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning, ICML
'07, pages 129-136, New York, NY, USA, 2007. ACM.
S. Chang, F. M. Harper, and L. Terveen. Using
Groups of Items for Preference Elicitation in
Recommender Systems. In Proceedings of the 18th
ACM Conference on Computer Supported Cooperative
Work and Social Computing, CSCW ’15, pages
1258-1269, New York, NY, USA, 2015. ACM.

O. Chapelle and S. S. Keerthi. Efficient algorithms for
ranking with SVMs. Information Retrieval,
13(3):201-215, Sept. 2009.

L. Chen and P. Pu. Critiquing-based recommenders:
survey and emerging trends. User Modeling and
User-Adapted Interaction, 22(1-2):125-150, Oct. 2011.
P. Cremonesi, F. Garzotto, S. Negro, A. V.
Papadopoulos, and R. Turrin. Looking for "Good”
Recommendations: A Comparative Evaluation of
Recommender Systems. In P. Campos, N. Graham,

J. Jorge, N. Nunes, P. Palanque, and M. Winckler,
editors, Human-Computer Interaction - INTERACT
2011, number 6948 in Lecture Notes in Computer
Science, pages 152-168. Springer Berlin Heidelberg,
2011.

M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and
J. A. Konstan. User Perception of Differences in
Recommender Algorithms. In Proceedings of the 8th
ACM Conference on Recommender Systems, RecSys
'14, pages 161-168, New York, NY, USA, 2014. ACM.
M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T.
Riedl. Rethinking the Recommender Research
Ecosystem: Reproducibility, Openness, and LensKit.
In Proceedings of the Fifth ACM Conference on
Recommender Systems, RecSys '11, pages 133-140,
New York, NY, USA, 2011. ACM.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and

J. T. Riedl. Evaluating Collaborative Filtering
Recommender Systems. ACM Trans. Inf. Syst.,
22(1):5-53, Jan. 2004.

M. Honan. I Liked Everything I Saw on Facebook for
Two Days. Here’s What It Did to Me, Aug. 2014.

M. Jahrer, A. Toscher, and R. Legenstein. Combining
Predictions for Accurate Recommender Systems. In

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD 10, pages 693-702, New York, NY, USA, 2010.
ACM.

Y. Koren. Factorization Meets the Neighborhood: A
Multifaceted Collaborative Filtering Model. In
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’08, pages 426-434, New York, NY, USA, 2008.
ACM.

T.-Y. Liu. Learning to Rank for Information Retrieval.
Found. Trends Inf. Retr., 3(3):225-331, Mar. 2009.

S. M. McNee, S. K. Lam, J. A. Konstan, and J. Riedl.
Interfaces for Eliciting New User Preferences in
Recommender Systems. In P. Brusilovsky, A. Corbett,
and F. d. Rosis, editors, User Modeling 2003, number
2702 in Lecture Notes in Computer Science, pages
178-187. Springer Berlin Heidelberg, 2003.

P. Pu and L. Chen. User-Involved Preference
Elicitation for Product Search and Recommender
Systems. Ai Magazine, 29(4):93-103, 2008.

S. Rendle, C. Freudenthaler, Z. Gantner, and

L. Schmidt-Thieme. BPR: Bayesian Personalized
Ranking from Implicit Feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI ’09, pages 452-461, Arlington,
Virginia, United States, 2009. AUAI Press.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based Collaborative Filtering Recommendation
Algorithms. In Proceedings of the 10th International
Conference on World Wide Web, WWW 01, pages
285-295, New York, NY, USA, 2001. ACM.

G. Shani and A. Gunawardana. Evaluating
Recommendation Systems. In F. Ricci, L. Rokach,

B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, pages 257-297. Springer US, 2011.
J. Sill, G. Takacs, L. Mackey, and D. Lin.
Feature-Weighted Linear Stacking. arXiv:0911.0460
[es], Nov. 2009. arXiv: 0911.0460.

R. Sinha and K. Swearingen. The Role of
Transparency in Recommender Systems. In CHI 02
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’02, pages 830-831, New York, NY,
USA, 2002. ACM.

L. Tang, Y. Jiang, L. Li, and T. Li. Ensemble
Contextual Bandits for Personalized
Recommendation. In Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys 14,
pages 73-80, New York, NY, USA, 2014. ACM.

	Introduction
	Related Work
	Recommendation Method
	Offline Analysis
	Methods
	Results

	User Experiment
	Methods
	Results

	Discussion
	Limitations
	Future Work

	Conclusion
	Acknowledgments
	References

