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Abstract
The actual occurrence of Squalus megalops in the Mediterranean Sea has recently been questioned. Several research works 
which sought to assess available morphological and meristic features that differentiate S. megalops from other Squalus species in 
the Mediterranean Sea, revealed poor discriminatory power and high variability of the assessed characters, especially when 
comparing S. megalops and S. blainville. The application of molecular tools does not support the presence of S. megalops.

In the present study, we screened spurdog species from the Strait of Sicily using a molecular taxonomy approach based 
on two mitochondrial DNA markers and we report the occurrence of two Squalus lineages characterizing specimens 
collected from the stretch of sea between Tunisia, southern Sicily, Malta and Libya. The results support the hypothesis 
that a common species, S. blainville, currently inhabits the Mediterranean Sea, while a second and rare species is probably 
an occasional visitor with high morphological similarity to the S. megalops and S. blainville but is genetically distinct from 
both. Within this perspective, the occurrence of S. megalops in the Mediterranean Sea is not confirmed and our study 
highlights the taxonomic uncertainties in relation to the occurrence and distribution of Squalus species in this region. We 
encourage the establishment of a coordinated international effort to implement a comprehensive and integrated taxonomic 
assessment on this genus which represents an irreplaceable component of the biodiversity of the area.

Keywords: Mediterranean Sea, conservation, cryptic species, mitochondrial DNA, shark misidentification

Introduction

The intrinsic low variation of morphological charac-
ters specific to elasmobranchs hinders their taxo-
nomic identification at the species level and 
consequently undermines their conservation at dif-
ferent geographical scales (McEachran & Dunn 
1998; Quattro et al. 2006; Aschliman et al. 2012). 
The lack of well-preserved holotypes for many shark 
species (e.g. Centrophorus spp.), misidentifications in 
databases and in the literature, and challenges in 
retrieving representative series of specimens for 
comparison are top-down impediments to the 

proper taxonomic identification and the potential 
revision of genera (Veríssimo et al. 2014).

In particular, the genus Squalus Linnaeus, 1758 is 
distributed worldwide (Ebert & Stehmann 2013) 
and includes about 26 different species of long- 
lived sharks (Viana et al. 2016) inhabiting the waters 
of the continental shelf and upper slope, between 
300–700 m of depth (Whitehead et al. 1984; 
Cannizzaro et al. 1995; Serena et al. 2009), as well 
as some seamounts and the waters around oceanic 
islands (Compagno 1984; Veríssimo et al. 2017). 
The genus is highly represented in bycatch and sev-
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eral studies have focused on the mitigation of the 
fishery impact on this group (Mandelman & 
Farrington 2007; Stoner & Kaimmer 2008; Tallack 
& Mandelman 2009). In addition, most spurdog 
shark species are included in the IUCN Red List of 
Threatened Species and are currently classified in 
categories from Data Deficient to Endangered (i.e. 
the Greeneye spurdog S. chloroculus Last et al. 2007; 
IUCN 2019). For this reason, highlighting the need 
to increase our knowledge about taxonomy, biology 
and ecology of these species appears now essential. 
Difficulties due to the problems of distinguishing 
between morphologically similar species and to the 
lack of effective and user-friendly identification field 
guides have been commented upon by many authors 
(Garrick 1960; Compagno 1984; Munoz-Chapuli & 
Ramos 1989; Veríssimo et al. 2017). With the pro-
gressive expansion of molecular taxonomy (i.e. 
DNA barcoding) and its integration with morpholo-
gical approaches, unravelling the taxonomy of con-
founding groups of sharks has become a priority for 
their conservation (Ebert et al. 2010; Veríssimo 
et al. 2014; Pfleger et al. 2018). In more recent 
times, the well-established DNA barcoding techni-
que based on the mitochondrial DNA (mtDNA) 
cytochrome c oxidase subunit I (COI) has been 
coupled with analysis of faster-evolving mitochon-
drial genes or long ribosomal DNA to improve the 
resolution and support of inferred phylogenetic rela-
tionship, up to the description of the evolutionary 
history of species (Avise 2004; Naylor et al. 2012; 
Krehenwinkel et al. 2019).

Recently, Veríssimo et al. (2017) reported uncer-
tainties in the identification of Squalus specimens 
caught along the eastern Atlantic Ocean and in the 
Mediterranean Sea. In the latter area, Squalus 
acanthias Linnaeus, 1758 and Squalus blainville 
(Risso, 1827) are considered as resident species, 
while the presence of S. megalops (MacLeay, 1881) 
has been reported from Tunisia (Marouani et al. 
2012). From the latter region, several specimens 
were analysed with a multidisciplinary approach and 
significant differences were reported for the two iden-
tified groups defined respectively as S. blainville and 
S. megalops (Marouani et al. 2012). Sequence data 
from both identified species were included later in the 
comprehensive assessment of the Squalus genus car-
ried out in Veríssimo et al. (2017). Using two 
mtDNA markers, three main groups and four main 
Clades corresponding to S. acanthias (Clade A), 
S. blainville/S. megalops (Clade B), S. megalops 
(Clade C) and Squalus mitsukurii Jordan & Snyder, 
1903 (Clade D) were identified in the Eastern 
Atlantic and the Mediterranean Sea (Veríssimo 

et al. 2017). Individuals classified under Clade C, 
which is highly divergent from both S. megalops 
from Australian waters and Clade B, originates from 
tropical West African coasts, with the exception of 
the single specimen from Tunisia, previously identi-
fied as S. blainville by Marouani et al. (2012). The 
sequence data associated with the individual from 
Tunisian waters described as S. megalops in 
Marouani et al. (2012) fitted in Clade B. Given the 
above described results and since specimens classi-
fied as potential S. megalops are included in both 
Clade B and Clade C, these findings further support 
current inconsistencies in species identification 
within the genus Squalus and the need for an accurate 
redescription of Squalus species, especially in the 
Mediterranean Sea, to stabilize the systematic and 
facilitate specimens identification.

Extensive studies conducted in other areas of the 
Mediterranean Sea considering both morphological 
(chondrocranium and other body traits) and genetic 
(COI sequences) analyses, revealed the presence of 
only one spurdog species, S. blainville, in the Ionian, 
Lybian, Aegean Seas and in the Sardinian waters 
(Kousteni et al. 2016; Bellodi et al. 2018). These 
findings spotlighted the stretch of sea between 
Tunisia, southern Sicily, Malta and Libya, known as 
the Strait of Sicily, as a more interesting area for spur-
dog species. Differently from Marouani et al. (2012), 
Bonello et al. (2016) did not identify diagnostic fea-
tures (e.g. dermal denticles) which could effectively 
discriminate between S. blainville and S. megalops. 
The presence of S. blainville in the Maltese waters 
was assessed through the use of the DNA barcoding 
approach (Bonello et al. 2016). In the same region, 
Vella et al. (2017) collected and analysed individuals 
belonging to the nominal S. blainville and genetically 
clustering within Clade B (sensu Veríssimo et al. 
2017), while three individuals were classified as 
Squalus sp. by the authors as clustering in the genetic 
Clade C (sensu Veríssimo et al. 2017).

In the present study, we screened all spurdogs 
caught in the Strait of Sicily between 2016 and 
2017 to investigate the species composition in this 
stretch of sea. Comparing new and publicly available 
mtDNA gene sequences (COI and NADH dehydro-
genase subunit 2; NADH2) we investigated the pos-
sible co-occurrence of two or more species of 
spurdog within the study area. Furthermore, since 
previous studies revealed that nominal species char-
acterized by a wide geographical distribution share 
mitochondrial lineages, we evaluated the relation-
ship between the genetic lineages retrieved in the 
Strait of Sicily and other Clades previously identified 
within the genus Squalus.
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Materials and methods

Sample collection and DNA extraction

A total of 160 individuals of Squalus where caught off 
the southern coast of Sicily (General Fisheries 
Commission for the Mediterranean Geographical 
Subarea, GFCM-GSA 16) between July 2016 and 
May 2017 at depths between 83 m and 452 m, in the 
framework of the International Bottom Trawl Survey 
in the Mediterranean programme (MEDITS, 
Spedicato et al. 2019) and the Campionamento 
Biologico (CAMP-BIOL) monitoring programme of 
commercial catch (Milisenda et al. 2017). Twelve 
additional samples of Squalus blainville caught around 
the Maltese Islands (GFCM-GSA 15) in 2012 (COI 
analyses included in Bonello et al. 2016) and ten speci-
mens collected off the Tuscany coasts (GFCM-GSA 
9) in 2017 were included in this study. All specimens 
were preserved at −20°C until the collection of main 
biological data and tissues samples for genetic ana-
lyses. In particular, individual muscle tissue or fin 
clips were preserved in 96% ethanol for laboratory 
analyses (see Table S1 for details on the field species 
assignment and geographical origin of specimens).

Total genomic DNA (gDNA) was extracted from 
approximately 20 mg of tissue using the Wizard® 
SV Genomic DNA Purification System by Promega, 
according to the manufacturer’s instructions. The 
quality of the extracted gDNA was assessed on 
a 0.8% agarose gel electrophoresis.

mtDNA amplification and sequencing

A fragment of the mitochondrial gene COI (~650 
bp) was obtained from each specimen by PCR using 
the FishF2 and FishR2 primers (Ward et al. 2005). 
PCR reactions were performed in 25 μl total volume 
containing 2.5 μl gDNA template, 10 μl nuclease- 
free water, 5 μl 1x PCR buffer, 1.5 μl of MgCl2 

(50 mM), 2 μl dNTPs (10 mM), 1.5 μl of each pri-
mer (10 μM) and 0.25 U GoTaq G2 Flexi DNA 
polymerase (Promega). Amplifications were per-
formed in a T-gradient thermocycler (Biometra) 
with an initial denaturation of 2 min at 95°C, fol-
lowed by 35 cycles of 30 s at 94°C, 30 s at 54°C and 
60 s at 72°C and a final extension step for 7 min at 
72°C.

Similarly, a fragment of the NADH2 (~1100 bp) 
gene was amplified for all individuals using the Met- 
F and Trp-R primers (Vella et al. 2017). PCR con-
ditions consisted of an initial denaturation of 2 min 
at 95°C, followed by 28 cycles of 45 s at 95°C, 45 s 
at 54°C and 60 s at 72°C and a final extension step 
for 7 min at 72°C. PCR outcomes were evaluated on 

a 2% agarose gel and preserved at 4°C until purifi-
cation. All PCR products were purified using the 
ExoSAP-IT™ Express PCR Product Cleanup 
Reagent (ThermoFisher Scientific) following the 
manufacturer’s protocol. All amplicons were then 
sequenced with the same primers used for the ampli-
fication by the external provider Macrogen Europe 
(Amsterdam, the Netherlands).

Data analysis

The mtDNA COI and NADH2 sequences electro-
pherograms were imported in MEGA v.X (10.1; 
Kumar et al. 2018), and carefully assessed and edi-
ted. All the sequences for each marker were aligned 
with the CLUSTAL W algorithm (Thompson et al. 
1994) as implemented in MEGA and the correct 
amino acidic translation was verified to exclude 
nuclear mitochondrial pseudogenes (Song et al. 
2008).

The software DnaSP v.6 (Rozas et al. 2017) has 
been used to compute the number of haplotypes, the 
number of polymorphic and parsimony-informative 
sites, the haplotype (Hd) and nucleotide diversity 
(Pi) were estimated for each of the newly obtained 
COI and NADH2 datasets.

Available COI and NADH2 sequences were 
retrieved for S. acanthias, Squalus albifrons Last 
et al. 2007, S. blainville, Squalus brevirostris Tanaka, 
1917, Squalus chloroculus Last et al. 2007, Squalus 
clarkae Pfleger et al. 2018, Squalus crassispinus Last, 
Edmunds & Yearsley, 2007, Squalus cubensis Howell 
Rivero, 1936, Squalus edmundsi White, Last & 
Stevens, 2007, Squalus formosus White and Iglesias 
(2011), Squalus grahami White, Last & Stevens, 
2007, Squalus griffini Phyllipps, 1931, Squalus hemi-
pinnis White, Last & Yearsley, 2007, Squalus japoni-
cus Ishikawa, 1908, S. megalops, S. mitsukurii, 
Squalus montalbani Whiteley, 1931, Squalus nasutus 
Last, Marshall & White, 2007, Squalus raoulensis 
Duffy & Last, 2007 and Squalus suckleyi (Girard, 
1855) from both BOLDsystems v.4 (Ratnasingham 
& Hebert 2007; http://www.boldsystems.org) and 
NCBI databases (https://www.ncbi.nlm.nih.gov) 
and added to the original dataset (see Table S2). 
In both datasets, when possible, retrieved data had 
different geographic origin to properly assess intras-
pecific variability.

For each mtDNA marker, a Neighbour-joining 
(NJ) tree (Saitou & Nei 1987) was computed with 
MEGA using p-distance (Collins & Cruickshank 
2013) and, although no nucleotide gap was detected 
across both datasets, the ‘pairwise deletion’ option 
for the treatment of gaps and missing data was 
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selected. A bootstrap test (BS) with 10,000 repli-
cates (Felsenstein 1985) was performed to evaluate 
the robustness of reconstructions. The average intra 
and interspecific genetic distances among the clades 
observed were calculated with MEGA.

In order to obtain more robust and comparable 
results in relation to previous studies (Marouani 
et al. 2012; Bonello et al. 2016; Vella et al. 2017; 
Veríssimo et al. 2017), a concatenated dataset was 
created merging the newly obtained COI and 
NADH2 individual sequences with those published 
by Veríssimo et al. (2017) and Vella et al. (2017). 
The two mtDNA genes were concatenated in 
a congruent dataset (see Table S2), using 
Phyutility v.2.2 (Smith & Dunn 2008). A second 
NJ tree was computed on the concatenated dataset 
as reported above.

The software IQ-TREE v.1.6.12 (Nguyen et al. 
2015) was firstly used to identify the best substitu-
tion model to be applied to the concatenated dataset 
and then to compute the Maximum-Likelihood 
(ML) reconstruction using the TN+F+ G4 model 
and an ultrafast BS (Hoang et al. 2018) with 10,000 
replicates.

The Bayesian Inference (BI) reconstruction was 
unravelled with MrBayes v.3.2.7 (Ronquist et al. 
2012) using two independent runs of 1,000,000 
generations and a 25% burn-in cut-off. Run conver-
gence was assessed considering a mean standard 
deviation of split frequencies of <0.01 between runs.

For all the topology reconstruction methods, 
Cirrhigaleus asper (Merrett, 1973) (COI and 
NADH2 Accession numbers MN982926 and 
JQ518974, respectively) and Cirrhigaleus australis 
White, Last & Stevens, 2007 (NC_024059) were 
chosen as outgroups for the analyses. The acquired 
trees were summarised in one congruent topology 
and edited using FigTree v.1.4.2 (Rambaut & 
Drummond 2012). BS values for NJ and ML trees 
were reported near nodes, as well as the posterior 
probability (P) obtained for the BI reconstruction.

The phylogeographic relationship of species haplo-
types was inferred with the Median Joining Tree clus-
tering algorithm (Bandelt et al. 1999) implemented in 
the software PopART (Leigh & Bryant 2015). The 
network was obtained considering all the Squalus spp. 
nominal species and lineages detected across the con-
catenated dataset, represented by S. acanthias, 
S. blainville, S. griffini, Squalus cf. megalops 
(Mauritius), Squalus cf. mitsukurii (Uruguay and 
Hawaii), Squalus sp. Clade B (sensu Veríssimo et al. 
2017), Squalus sp. Clade C (sensu Veríssimo et al. 
2017) and Squalus sp. Clade D (sensu Veríssimo et al. 
2017).

Results

DNA was successfully extracted from all tissue sam-
ples, although PCR amplification and sequencing 
were successful for 121 and 107 individuals for 
COI and NADH2, respectively. These newly 
obtained sequences of Squalus specimens collected 
in the Strait of Sicily and Tuscany coasts, have been 
deposited in GenBank under the Accession 
Numbers (COI Accession Numbers MW537886- 
MW537998; NADH2 Accession Numbers 
MW557187-MW557293).

The new COI sequences counted a total of 51 
polymorphic and 33 parsimony informative sites, 54 
mutations and 33 haplotypes (Hd = 0.781 ± 0.034; 
Pi = 0.005 ± 0.027), while a total of 54 polymorphic 
and 33 parsimony informative sites, 56 mutations 
and 39 haplotypes (Hd = 0.874 ± 0.022; 
Pi = 0.006 ± 0.022) were detected among new 
NADH2 sequences.

After retrieving additional sequences from public 
data repositories, the final dataset for COI included 
735 sequences (499 bp long) representing 18 nom-
inal species, while the NADH2 dataset included 352 
sequences (523 bp long) representing 20 nominal 
species. The concatenated dataset consisted of 222 
sequences (1022 bp long).

Considering the congruence among the NJ, ML 
and BI tree topologies obtained using the concate-
nated dataset (Table S2), all reconstructions were 
summarised in one topology (Figure 1), which 
assigned most of the individuals collected off the 
southern coast of Sicily, Malta and Tuscany to 
a bigger cluster including S. blainville from the 
Mediterranean Sea and Squalus sp. Clade B (sensu 
Veríssimo et al. 2017) from South Africa, Angola, 
Namibia, Morocco, Portugal and the Mediterranean 
Sea (BS = 100% for both NJ and ML and posterior 
probability, P = 1 for BI). Conversely, two speci-
mens of Squalus (S7 and S9) are included within the 
bigger group composed by individuals of Squalus sp. 
collected in Gabon and Guinea, representing the 
genetic Clade C (sensu Veríssimo et al. 2017; 
BS = 100% for both NJ and ML and P = 1 for 
BI). Furthermore, the three Squalus sp. collected 
around Malta by Vella et al. (2017) were grouped 
within Clade C (Figure 1).

The NJ tree topologies reconstructed consider-
ing a large number of nominal species charac-
terised by a wide geographic distribution (e.g. 
Australia, China, Indonesia, New Zealand, Japan, 
Taiwan, UK, USA) have consistently highlighted 
the existence of three distinct and well-supported 
groups (Figure S1, for COI; Figure S2, for 
NADH2). A first group (group I; Table S2) 
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included the two main Clades of S. acanthias and 
S. suckleyi with high BS values in both COI and 
NADH2 reconstructions (100% and 99%, respec-
tively), a second one (group II; Table S2) included 
the nominal S. blainville, S. brevirostris, S. megalops 
and S. raoulensis (BS = 100% in COI tree topology 
and BS = 99% in NADH2), and a last one (group 
III in Table S2) included all the other species 
considered with BS = 99% in COI.

Considering the COI mitochondrial gene, the 
genetic distance within groups was generally low, 
ranging from 0% (Squalus albifrons, S. grahami, 
S. griffini, Squalus cf. megalops, Squalus cf. mitsukurii 
from Hawaii) to 1.47% (S. nasutus) and 1.49% 
(S. megalops; Table S3). This was also confirmed 
by the NADH2 data, for which the genetic distance 
measured in S. mitsukurii complex sp. D and 
S. raoulensis was also 0%, while in S. brevirostris the 
genetic distance reached 3.02% (Table S4).

COI genetic distances between groups ranged 
from 0.10% (S. clarkae vs S. cubensis) to 7.90% 
(S. acanthias vs S. megalops or S. acanthias vs 
S. raoulensis; Table S3, for COI), while they ran-
ged from 0% (S. mitsukurii complex sp. D vs 
Squalus sp. Clade D) and 8.78% (S. edmundsi vs 
S. suckleyi) for NADH2 (Table S4). COI genetic 
distances increased when comparing Squalus indi-
viduals caught in the Strait of Sicily with 
S. megalops from Australia (1.40%), with Squalus 
cf. megalops from Mauritius (6.50%) and with 
Squalus sp. Clade C (sensu Veríssimo et al. 
2017), which included individuals S7 and S9 col-
lected in the Strait (6.60%; Table S3). NADH2 
genetic distances showed similar results. In parti-
cular, distances increased when comparing Squalus 
sp. caught in the Strait of Sicily with S. blainville 
(0.52%), with Squalus sp. Clade B (sensu 
Veríssimo et al. 2017; 0.56%), with Squalus cf. 

Figure 1. Tree topology based on concatenated mitochondrial sequences (COI and NADH2) summarising NJ, ML and BI reconstruc-
tions of the genus Squalus. BS values of NJ and ML and Bayesian posterior probability P are respectively reported top-down near nodes. 
BS values are reported when ≥70%. P is reported when ≥0.95. Non-supported nodes are indicated as a double dash. Clades including 
samples of Squalus collected in the Strait of Sicily are highlighted in grey.
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megalops from Mauritius (4.95%) and with Squalus 
sp. Clade C (sensu Veríssimo et al. 2017), which 
included S7 and S9 individuals (5%; Table S4).

The haplotype network in Figure S3 showed the 
presence of two most frequent haplotypes shared by 
almost all the samples ascribable to S. blainville. 
Clusters of fewer individuals sharing the same hap-
lotype, down to one individual displaying only 
a different variant, are separated from one to five 
mutational steps. The S. blainville haplogroups were 
separated from Squalus samples collected in Sicily 
and Malta and shared haplotypes with Squalus sp. 
Clade C from Gabon and Guinea, by at least 68 
mutations. Furthermore, 59 mutational steps sepa-
rated the S. blainville haplogroups from Squalus cf. 
megalops (Mauritius), while the latter was separated 
from Squalus sp. Clade C by 24 mutations.

Discussion

The use of molecular taxonomy is largely considered 
a powerful tool for the correct assessment of speci-
mens identification, the discovery of new species 
and, in some cases, also the identification of cryptic 
(Duncan et al. 2006; Corrigan et al. 2008; Liu et al. 
2013) and/or intricate complexes of species (Ward 
et al. 2008; Arlyza et al. 2013). Indeed, among 
sharks and batoids, new species have been described 
(De Astarloa et al. 2008; Smith et al. 2008; White & 
Iglesias 2011; Daly-Engel et al. 2018; Pfleger et al. 
2018), old species resurrected (Ebert et al. 2010; 
Viana & de Carvalho 2018), and identification 
issues have been resolved with DNA barcoding 
when the morphological methods gave misleading 
results (Bonello et al. 2016; Cariani et al. 2017).

The lack of robust data from original descriptions 
compromises the correct identification of specimens 
with implications for species conservation and man-
agement purposes. This is particularly true for many 
genera, Squalus included (Veríssimo et al. 2017). 
The integration of morphological and molecular tax-
onomy techniques has been proved helpful 
(Henderson et al. 2016). In the last years, few stu-
dies in the context of integrative taxonomy were 
successfully performed on the genus Squalus aiming 
at the integration of new molecular taxonomy tech-
niques to more classical morphological analyses with 
the aim to clarify taxonomic ambiguities between 
some of the species (Marouani et al. 2012; Bonello 
et al. 2016).

The evidence obtained in the present study, which 
followed in the footsteps of previous case studies in 
terms of genetic methodologies and analytical 
approach (Ward et al. 2007; Naylor et al. 2012; 

Vella et al. 2017; Veríssimo et al. 2017; Bellodi 
et al. 2018), confirmed the branching of the genus 
Squalus into three main lineages as referring to 
Squalus acanthias/S. suckleyi (group I), S. blainville/ 
S. megalops/S. raoulensis/S. brevirostris (group II) and 
a heterogeneous group of species mainly represented 
by the S. mitsukurii species complex (group III). At 
a finer resolution, the assignment of public data of 
Squalus individuals to Clades A-D (sensu Veríssimo 
et al. 2017) was confirmed by robust tree topologies. 
Almost all the individuals sampled in the Strait of 
Sicily and classified as Squalus sp. clustered in Clade 
B (sensu Veríssimo et al. 2017) and thus we suggest 
that they could be assigned to the nominal species 
S. blainville. On the other hand, two individuals 
sampled in the Strait of Sicily and classified as 
Squalus sp. fell in Clade C, together with four 
more specimens collected in the adjacent Tunisia 
(BOLD: FOAI329-09) and Malta waters (data 
from Vella et al. 2017) and showed a genetic dis-
tance from the former Clade B as high as the one 
existing between well-distinguished nominal species 
(e.g. S. mitsukurii and S. raoulensis from group III 
and II, respectively). Similar distances between 
genetic lineages were described in Veríssimo et al. 
(2017).

Therefore, here we confirm the hypothesis that 
specimens of Clade C are not related to the 
Australian S. megalops, since these lineages are sepa-
rated by a distance of 6.20%. In fact, individuals of 
Squalus sp. from Clade C are closer to S. megalops 
from Mauritius (2.30% according to the COI gene). 
This was confirmed by the species-haplotype net-
work, where at least 68 mutational steps separated 
Squalus sp. clustering in Clade B (ascribable to 
S. blainville) from Squalus sp. clustering in Clade 
C from tropical Western Africa. Similar haplotype 
differentiation between these same lineages was 
observed by Vella et al. (2017), who reported 83 
mutations across a concatenated dataset 1600 bp 
long.

Hence, here we support previous studies that sug-
gest that S. megalops does not occur in the eastern 
Atlantic and Mediterranean waters and that indivi-
duals composing Clade C should be considered 
a new species that needs formal description and 
proper taxonomic assessment (Last & Stevens 
2009; Veríssimo et al. 2017). As a matter of fact, 
the occurrence of S. megalops appears more likely 
limited to the Australian waters, since the tree topol-
ogies obtained herein showed Squalus blainville from 
the Strait of Sicily (this study) clustering with long-
nose spurdog S. blainville from Sardinian coasts 
(Bellodi et al. 2018), Malta (Bonello et al. 2016; 
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Vella et al. 2017), Tuscany (this study), Spain, 
Libyan and Ionian Seas, Greece (Kousteni et al. 
2016) along with Squalus sp. Clade B (Veríssimo 
et al. 2017). Unfortunately, the sequence data 
from Marouani et al. (2012) are not publicly avail-
able and thus a direct comparison was not possible.

The results discussed here, reinforced by both the 
genetic distances measured between groups and 
clades and the haplotype network, support the 
hypothesis that a common species, S. blainville, is 
currently inhabiting the Mediterranean Sea, while 
a second and extremely rare one, which has not yet 
been extensively described, is probably an occa-
sional visitor of the Strait. This second species 
shows a strikingly high morphological similarity to 
S. blainville, but it is genetically distinct from both 
S. blainville and S. megalops. Within this perspective, 
the absence of records of S. megalops in the Atlantic 
Ocean and Mediterranean Sea (Straube et al. 2013; 
Veríssimo et al. 2017; Viana & de Carvalho 2018) 
can be confirmed. As previously mentioned, cryptic 
speciation among elasmobranchs is very common 
(Borsa et al. 2016, 2018) and the number of new 
descriptions, re-descriptions and resurrections of 
species is growing with the increasing application 
of molecular tools and integrated taxonomic meth-
odologies. Starting from the accurate morphological 
data registered in Marouani et al. (2012) a dedicated 
effort is needed to identify and assess diagnostic 
features that characterize the individuals ascribed 
to Clade C exhibiting high morphological similarity 
with both species (S. megalops and S. blainville). 
What is more, a comparative approach involving 
both mtDNA markers and highly polymorphic 
nuclear DNA loci, besides morphology, is recom-
mended to enhance the power of analyses aiming at 
unravelling the gene flow and migratory patterns of 
such a rare and geographically limited species.

To conclude, current inconsistencies in species 
identification within the genus Squalus need to be 
resolved and an accurate redescription of Squalus 
species is advised, especially in the Mediterranean 
where, along with commercial fishery, the bycatch 
of sharks may lead to the erosion of local biodiver-
sity including genetic diversity. For all these rea-
sons, the growing concern about the vulnerability 
of sharks to fishing pressure (Dulvy et al. 2014) and 
overexploitation (Simpfendorfer & Kyne 2009) 
now requires strong measures for species protec-
tion and management, especially in this exploited 
stretch of Sea.

To continue the acquisition of new information 
and the resolution of old problems, the establish-
ment and strengthening of an international network 

of collaborations and the maximisation of sampling 
effort would go a long way towards filling the gaps 
in our knowledge of these shark species, which 
represent an irreplaceable component of biodiver-
sity, in terms of both species and genetic richness, 
to be protected and conserved before they are “Lost 
Before Found” (White et al. 2019).
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