
Puzzling the 120–Cell
Saul Schleimer and Henry Segerman

Figure 1. The Dc30 Ring, one of the simpler

puzzles in Quintessence.

A
burr puzzle is a collection of notched

wooden sticks [2, page xi] that fit to-
gether to form a highly symmetric
design, often based on one of the
Platonic solids. The assembled puzzle

may have zero, one, or more internal voids; it may
also have multiple solutions. Ideally, no force is
required. Of course, a puzzle may violate these
rules in various ways and still be called a burr.

The best known, and certainly largest, family
of burr puzzles comprises what are collectively

Saul Schleimer is professor of mathematics at the University

of Warwick. His email address is s.schleimer@warwick.

ac.uk.

Henry Segerman is professor of mathematics at Oklahoma

State University. His email address is segerman@math.

okstate.edu.

All artwork is provided courtesy of the authors.

This article is in the public domain.

DOI: http://dx.doi.org/10.1090/noti1297

called the 6-piece burrs [5]. Another well-known
burr, the star burr, is more closely related to our
work. Unlike the 6-piece burrs, the six sticks of
the star burr are all identical, as shown in Figure
2A. The solution is unique, and, once solved, the
star burr has no internal voids. The solved puzzle
is a copy of the first stellation of the rhombic
dodecahedron; see Figure 2B.

The goal of this paper is to describe Quintessence:
a new family of burr puzzles based on the 120-cell,
a regular four-dimensional polytope. The puzzles
are built from collections of six kinds of sticks,
shown in Figure 3; we call these ribs, as they are
gently curving chains of distorted dodecahedra.

In the following sections we review regular
polytopes in low dimensions, sketch a construction
of the dodecahedron, and discuss the three-sphere,

(A) (B)

Figure 2. The star burr.
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Figure 3. The six rib types.
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Figure 4. Flag for cube and corresponding

spherical flag triangle.

quaternions, and stereographic projection. Viewing

the binary dodecahedral group as a subgroup of the

quaternions, we construct and then investigate the

combinatorics of the 120-cell, focusing on how it

decomposes into spheres and rings of dodecahedra.

Finally, we lay out our choice of ribs, as influenced

by the cell-centered stereographic projection. We

use this to give a basic combinatorial restriction

on the possible burr puzzles in Quintessence. One

of the completed puzzles, the Dc30 Ring, is shown

in Figure 1. The connection between the star burr

and Quintessence is left as a final exercise for the

intrigued reader.

Polytopes

We refer to [16] for an in-depth discussion of

polytopes.

Regular Polytopes

Suppose that P is a k-dimensional polytope. An

ascending chain of faces Q0 ⊂ Q1 ⊂ · · · ⊂ Qk−1 ⊂
Qk = P is called a flag of P if Qℓ has dimension

ℓ. See Figure 4 (top) for a picture of one of the

forty-eight flags of the cube.

Let Sym(P) be the group of rigid motions (and

reflections) preserving P setwise. We call elements

of Sym(P) the symmetries of P .

Definition 1. A polytope P is regular if for any

pair of its flags, F and G, there is a symmetry φ ∈
Sym(P) with φ(F) = G.

It follows that all facets of a regular polytope

are congruent and are themselves regular.

Figure 5. The regular polygons.

Suppose P is regular. Define p = center(P) to
be the average of the vertices of P . Since Sym(P)
permutes the vertices of P , it fixes p. Since Sym(P)
sends any flag to any other, the same is true
of the vertices. So the vertices are all the same
distance from p. Thus p is a circumcenter : P is
circumscribed by the sphere SP centered at p and
running through the vertices of P . If we project ∂P
from p outwards to SP , we obtain a symmetrical
spherical tiling TP .

Conversely, when we are constructing an n-
dimensional regular polytope P , our first move is
to build a spherical tiling TP on Sn−1.

Definition 2. Suppose that P is regular and F =
{Qi} is a flag in P . Then the flag polytope QF is the
convex hull of the centers of the Qi . The spherical
flag polytope is the radial projection of QF − p to
SP . See Figure 4 (bottom).

If P is regular, then all of its spherical flag
polytopes are congruent.

Constructions

There are four infinite families of regular poly-
topes; each family is associated with a topological
operation. The regular polygons live within the unit
disk in the plane and are associated to covering
maps of the circle by itself. See Figure 5.

Next, there are three families of regular poly-
topes that exist in all dimensions. Each member
of a family is obtained from the previous member
by a geometric operation. The simplices are cones,
the cubes are products (with an interval), and
the cross-polytopes are suspensions, that is, a
double-cone.

Figure 6 shows the first several members of
each family. In dimension two these are the trian-
gle, square, and diamond, respectively. The fifth

Figure 6. The first five simplices, cubes, and

cross-polytopes.
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Figure 7. Left: The continuity argument. Middle: Dividing the pentagon into five right-handed

spherical flags (in black) and five left-handed ones. Right: The tiling TTT .

column shows the stereographic projections of the
spherical tilings for the four-dimensional members
of each family. These cannot be drawn in three-
dimensional spaces so we instead radially project
their boundaries to S3 and then stereographically
project to R3. This technique is explained in [10].
For the convenience of the reader, we repeat the
definition of stereographic projection below.

The four families give almost all of the regular
polytopes; see [8, p. 143] for proofs of the following.

Lemma 3. The simplex, cube, and cross-polytope
are regular. The cube and the cross-polytope are
dual; the simplex is self-dual. In dimensions three
and higher these three polytopes are distinct. �

Theorem 4. There are exactly five regular poly-
topes not in one of the four families. These are,
in dimension three, the dodecahedron and icosa-
hedron (dual) and, in dimension four, the 24-cell
(self-dual), and the 120-cell and 600-cell (dual). �

Dodecahedron

The dodecahedron exists for more subtle reasons
than those for the existence of the polygons,
simplices, cubes, or cross-polytopes. As such it
has many constructions; the earliest seems to be
Proposition 17 in Book 13 of Euclid’s Elements [7].
See [15] for one historical account of the five
Platonic solids.

We sketch an indirect construction of the
dodecahedron D that has two advantages. The
argument finds the symmetry group Sym(D) along
the way. It also generalizes to all other regular
tessellations of the sphere, the Euclidean plane,
and hyperbolic plane.

By continuity, for any angle θ ∈ (3π/5,7π/5)
there is a regular spherical pentagon P ⊂ S2 with
all angles equal to θ. See Figure 7 (middle). Thus
we may take θ equal to 2π/3.

Adding a vertex at the center and at the
midpoints of the edges, we divide P into ten
spherical flag triangles. These alternate between
being right- and left-handed ; all have internal
angles (π/2, π/3, π/5). See Figure 7 (middle).
These three angles appear at the edge, vertex, and

center of P . Let TR (TL) be one of the right-handed
(left-handed) spherical flag triangles. Note that
there are rotations of S2 matching the edges of TR
and TL in pairs.

The celebrated Poincaré polygon theorem [6,
Theorem 4.14] now implies that copies of TR and
TL give a tiling T of S2, shown in Figure 7 (right).
Poincaré’s theorem also implies that Sym(T ) is
transitive on the triangles of T and that any local
symmetry extends to give an element of Sym(T ).

By Girard’s formula [4, Equation 2.11], the area
of a spherical triangle with interior angles A, B, C
is A+ B + C −π . Thus the area of TR is

π · (1/2+ 1/3+ 1/5)−π = π/30.

Since the area of S2 is 4π , we deduce that the tiling
T contains 120 triangles.

Definition 5. We partition T into copies of P to
obtain the tiling TD ; this has 12 pentagonal faces,
12 · 5/2 = 30 edges, and 12 · 5/3 = 20 vertices. We
take the convex hull (in R3) of the vertices of TD
(in S2) to obtain D, the dodecahedron.

We end this section by examining the symmetries
of T .

Lemma 6. The group Sym(T ) has order 120; the
orientation-preserving subgroup D = Sym+(T )
has order 60. The tiling T is invariant under the
antipodal map. �

Corollary 7. The group D contains

• the identity,
• 12 face rotations through angle 2π/5,
• 20 vertex rotations through angle 2π/3,
• 12 face rotations through angle 4π/5, and
• 15 edge rotations through angle π .

Proof. For any vertex p ofT of degree 2d we obtain
a cyclic subgroup Z/dZ inD. By the second part of
Lemma 6 the vertex p and its antipode q give rise to
the same subgroup. Thus we may count elements of
D by always restricting to those rotations through
an angle of π or less. Counting the symmetries
obtained this way gives 60; by the first part of
Lemma 6 there are no others. �
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Four-Space and Quaternions

In this section we recall the quaternions, the
three-sphere, and stereographic projection. See
also [4, Chapter 6], [14, Section 2.7], or [3, Part II].
The quaternions bridge the gap between the
algebra of certain groups and the geometry of
four-dimensional space. The three-sphere is the
natural home of the spherical 120-cell.

Figure 8. Rotational

symmetries of the

dodecahedron.

Due to the
physiology of the
human eye, we
only ever see two-
dimensional images.
The brain instinc-
tively interprets
some of these as
representing three-
dimensional objects
but is not equipped
to deal with higher
dimensions. Hence
we do not attempt
to draw any native

pictures of four-dimensional objects. Instead, we
use stereographic projection to transport objects
from the three-sphere into three-dimensional space,
where they can be seen with human eyes [10].

The Quaternions

The real numbers R, being one-dimensional, can
be augmented by adding i = √−1 to obtain the
two-dimensional complex numbers C. In very
similar fashion Hamilton augmented C to obtain
the quaternions H. Let 〈1, i, j, k〉 be the usual
orthonormal basis for R4. We take H = R ⊕ I,
where I = iR⊕ jR⊕ kR is the subspace of purely
imaginary quaternions. Following Hamilton we
endow H with the relations

i2 = j2 = k2 = ijk = −1.

Since H is identical to R4 as a real vector
space, there is a copy of the three-sphere inside
the quaternions, namely, S3 = {q ∈ H : |q| = 1}
equipped with the induced metric. The function
from S3 to itself taking p to −p is called the
antipodal map. When L ⊂ H is a linear subspace
of dimension one, two, or three, the intersection
L∩S3 is a pair of antipodal points, a great circle, or
a great sphere, respectively. We call the antipodal
points 1 and −1, as they lie in S3, the south

and north poles, respectively. We call S2
I = S3 ∩ I

the equatorial great sphere. See Figure 10 for
a depiction of how several great circles among
1, i, j, k lie inside S3.

The Unit Quaternions

The points of the three-sphere, the unit quaternions,
form a group under quaternionic multiplication.
Again, we see how the group structure and geometry
of S3 are tightly intertwined, as follows.

I
u

−u

1－1

q = euα

α

ρ(q)

Figure 9. Stereographic projection from

S1 − {−1}S1 − {−1}S1 − {−1} to III.

Lemma 8. The left and right actions of S3 on H
are via orientation-preserving isometries. The same
holds for the three-sphere’s action on itself. �

We can now parameterize great circles in

S3 through the identity. For any u ∈ S2
I define

Lu = 〈1, u〉 to be the corresponding plane in H.
The intersection Lu ∪ S3 is thus a great circle Cu.
We parameterize Cu by sending α ∈ R to the point

euα = cosα+ u · sinα.

Lemma 9. For any pure imaginary u ∈ S2
I and

for any α,β ∈ R we have euαeuβ = eu(α+β). Thus
{euα} is a one-parameter subgroup of S3. Also, the
spherical distance between 1 and euα is α, for α ∈
[0, π]. �

This gives a parameterization of S3, as follows.

Lemma 10. For any q ∈ S3−{±1} there is a unique

u ∈ S2
I and a uniqueα ∈ (0, π) so that q = euα. �

Stereographic Projection

We define stereographic projection ρ : S3−{−1} → I

by

ρ(q) = sin(α)

1+ cos(α)
· u

with q = euα as in Lemma 10. See Figure 9 for a
cross-sectional view. Note that ρ sends the south

pole to the origin, fixes the equatorial sphere S2
I

pointwise, and sends the north pole to “infinity.”

The one-parameter subgroup euθ is sent to the
straight line in the direction of u. Figure 10 shows
the result of applying stereographic projection to
various great circles connecting 1, i, j, k inside S3.

Mapping to SO(3)

Recall that SO(3) is the group of three-by-three
orthogonal matrices with determinant one. Taking
〈i, j, k〉 as a basis for I, we identify SO(3) with
Isom+

0 (I), the group of orientation-preserving
isometries of I fixing the origin.
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Figure 10. Several great circles connecting

1, i, j, k1, i, j, k1, i, j, k, shown after stereographic projection

to R3R3
R3.

In Lemma 8 we discussed the left and right

actions of S3 on H. We combine these to obtain

the twisted action: for q ∈ S3 define φq : H → H

by φq(p) = qpq−1. The twisted action is again via

isometries. Note that the action preserves R ⊂ H
pointwise. Thus it preserves I ⊂ H setwise. We

define ψq : I → I by ψq = φq|I and deduce the

following.

Lemma 11. The map ψq is an element of SO(3).
The induced map ψ : S3 → SO(3) is a group homo-

morphism. �

We need an explicit form of ψ, discovered

independently by Gauss, Rodrigues, Cayley, and

Hamilton [12, p. 21].

Lemma 12. For q = ±euα the isometry ψq is a

rotation of I about the direction u through angle

2α. Thus ψ : S3 → SO(3) is a double cover. �

Definition 13. If G ⊂ SO(3) is a group, then we

call G∗ = ψ−1(G) the binary group corresponding

to G.

The 120-Cell

It is time to construct the 120-cell. We could

use a continuity argument to build a spherical

dodecahedron in S3 with all dihedral angles equal

to 2π/3. The Poincaré polyhedron theorem would

then produce a tiling of S3; regularity of the

tile implies regularity of the tiling. Taking the

convex hull of the vertices would give the 120-cell.

However, computing the number of cells would

require computing the volume of the spherical flag

polytope, a highly nontrivial task. Also, it is crucial

for us to see how the binary dodecahedral group

D∗ lies inside the symmetry group of the 120-cell.

Thus we give a more explicit construction. We refer

to [1, 12, 13] as very useful commentaries on the

120-cell.

Figure 11. Three dodecahedral cells of the tiling

T120T120T120, each chopped in half. The purple triangle

meeting the orange cell has vertices at qqq, q′q′q′, and

q′′q′′q′′; it bisects the geodesic connecting 111 and ppp.

Voronoi Cells

Suppose V is a finite set of points in a metric space
X. The Voronoi cell about a point q ∈ V is the set

Vor(q)={r∈S3 |for all p∈V , dX(q, r)≤dX(p, r)}.
Let D ⊂ SO(3) be the group of orientation-
preserving symmetries of the dodecahedron D,
as listed in Corollary 7. Let D∗ ⊂ S3 be the cor-
responding binary dodecahedral group of 120
elements. Let T120 be the tiling of the three-sphere
by the cells {Vor(q) | q ∈ D∗}.
Lemma 14. The left action of D∗ on T120 is tran-
sitive on the three-cells. The twisted action of D∗

fixes Vor(1) setwise. �

Lemma 15. Each cell Vor(q) is a regular spherical
dodecahedron with dihedral angle 2π/3.

Proof. Figure 11 shows five points of D∗: namely,
the identity 1, a vertex rotation p, and the three
face rotations q, q′, and q′′ about the faces immedi-
ately incident on the vertex. We also see three of the
corresponding Voronoi cells, cut in half. Some del-
icate spherical trigonometry proves that Vor(1) is
disjoint from Vor(p). Similar computations prove
that Vor(1) meets only Vor(q) and its translates
under the twisted action. Finally, the purple trian-
gle in Figure 11 is equiangular, so Vor(q) (and thus
Vor(1)) has the correct dihedral angle. �

Remark 16. Applying the above construction to the
cube does not give rise to a regular spherical cube;
the vertex rotations are too close to the identity in
S3. The Voronoi cells are instead truncated cubes.

For the regular tetrahedron the vertex and face
rotations are the same distance from the iden-
tity. Thus the Voronoi cells are regular spherical
octahedra which tile the 24-cell.

Definition 17. The 120-Cell is the convex hull,
taken in H, of the vertices of T120.
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Figure 12. The southern half of the one-skeleton

of T120, after cell-centered stereographic

projection to R3R3
R3. See also [13, color plate].

Theorem 18. The 120-cell is a regular polytope.

Proof. We must show that the group Sym(T120)
acts transitively on the 14,400 spherical flag tetra-

hedra of T120. Using the left action of D∗ we may

move any such into Vor(1). Using the twisted ac-

tion we can move any right-handed spherical flag

tetrahedron inside Vor(1) to any other. Now, since

T is invariant under the antipodal map (Lemma 6)

we deduce thatD∗ is fixed setwise by quaternionic

conjugation. Since this conjugation is the product

of three reflections in H, it is orientation reversing

in S3. �

See Figure 12 for a picture of the stereographic

projection of the southern half of the one-skeleton

of the spherical 120-cell.

Combinatorics of the 120-cell

With the 120-cell in hand, we turn to the combina-

torics of the spherical tiling T120.

(A) 0 (B) π/5 (C) π/3 (D) 2π/5 (E) π/2

Figure 13. The five layers in the southern

hemisphere, ordered by their spherical distance

from the south pole. The colors of the cells

follow the convention of Figure 8.

Layers of Dodecahedra

The cells of T120 divide into spherical layers,
ordered by their distance from the identity element
in S3. Following our conventions, the identity lies
at the south pole of S3. Figure 13 displays the
stereographic projections of the first five layers,
expanding from the south pole out to the equatorial
great sphere. The next four layers, nesting down to
the north pole, are not shown. See Proposition 19
for more details.

Rings of Dodecahedra

Suppose that q ∈ D∗ is the lift of a face rotation
A ∈ D of angle 2π/5. Let R = 〈q〉 < D∗ be the
resulting cyclic group of order ten. Note that R has
twelve right cosets in D∗. We call the cosets rings
because each corresponding union of spherical
dodecahedra forms a solid torus in S3(see Figure
14). We give the rings the following names: R is
the spinal ring, Req is the equatorial ring (having
all elements at distance π/2 from the south pole),

Rin
0 to Rin

4 are the inner rings (each incident to the

spine), and Rout
0 to Rout

4 are the outer rings (each
incident to the equator).

Proposition 19. The rings meet the spherical layers
of T120 as follows.

distance rotation type # cells spinal equatorial inner outer

0 identity 1 1 0 0 0
π/5 face 12 2 0 2 0
π/3 vertex 20 0 0 2 2
2π/5 face 12 2 0 0 2
π/2 edge 30 0 10 2 2
3π/5 face 12 2 0 0 2
2π/3 vertex 20 0 0 2 2
4π/5 face 12 2 0 2 0
π identity 1 1 0 0 0

The column titled “# cells” counts the number of
cells in the named spherical layer. �

See also [11].

Remark 20. The Hopf fibration is the partition
of S3 into cosets of the one-parameter subgroup
{exp(iα)}. After a rotation, we see that the cosets
of R give a combinatorial Hopf fibration: they di-
vide the 120-cell into twelve rings of ten dodecahe-
dra each. The centers of the rings lie on twelve great
circles of the Hopf fibration. Note also that the quo-
tient space of the Hopf fibration is homeomorphic
to S2. In similar fashion there is a kind of combina-
torial map from the 120-cell to the dodecahedron,
sending rings to faces.

Rings to Ribs

In this section we describe the ribs of Quintessence:
a collection of physical pieces that combine in
various ways to produce burr puzzles. The ribs
are shown in Figure 2; they are constructed via
stereographic projection as applied to (parts of)
the rings of spherical dodecahedra.

1314 Notices of the AMS Volume 62, Number 11



(A) (B) (C) (D) (E) (F)

Figure 14. Rings of dodecahedra. (A) shows the equatorial ring. Figures (B) through (F) show the outer

rings wrapping around it.

Following our notation above we have:

dρ

dα
= 1

1+ cos(α)
· u.

Note that if euα is near the south pole, then α is
close to zero and stereographic projection shrinks
objects by a factor of approximately two. If euα is
near the equatorial sphere, then α is close to π/2.
In this case stereographic projection leaves sizes
essentially unchanged. However, if euα approaches
the north pole, then α approaches π and sizes
blow up.

All of the calculations so far have been dimen-
sionless. Now we wish to physically construct, say
by 3D printing, our puzzle pieces. So we must
choose a scale λ, say in millimeters, corresponding
to a unit distance in R3. Several issues influence
the choice of λ, but two are paramount. Large
features are expensive; small features are fragile.

These two issues are in tension and lead to the
general principle that features that are identical
in S3 should have sizes in reasonable ratio in
R3 after projection. Here the features of the ribs
are the dodecahedra. The principle tells us that
we should not be using dodecahedra close to the
north pole. On the other hand, sizes at the equator
and at the south pole have an acceptable ratio of
approximately two.

Accordingly, we remove from our rings any
dodecahedra that lie strictly in the northern
hemisphere, giving us the spine, the inner six ribs,
and the outer six ribs. Experimentation shows
that many interesting constructions require even
shorter ribs; hence we also make the inner four
ribs and the outer four ribs. These are the result
of removing the two equatorial dodecahedra from
the inner six and outer six. The equatorial ring can
be printed as is, but again experimentation shows
that more puzzles are possible if we break the
equatorial ring into two ribs of five dodecahedra
each. See Figure 3 as well as Figure 15.

With the spine and short ribs in hand, we
can build, in R3, the stereographic projection
of (almost) one-half of the 120-cell. We call the
resulting puzzle the Dc45 Meteor ; its construction
is shown in Figure 16. The spine and ribs are
arranged according to the combinatorial Hopf
fibration (Remark 20). Since all dodecahedra near
the south pole are retained and all dodecahedra

(A) Spine (B) Inner six (C) Outer six (D) Equator

Figure 15. The coloring of the cells is by layer

and is consistent with Figure 13. We obtain the

inner four and outer four ribs by deleting the

equatorial cells.

near the north pole are discarded, the result looks
very much like Figure 12.

It is not at all obvious that the puzzle can
be constructed in Euclidean space using physical
objects. However, when printed in plastic the
Meteor is possible to assemble. When complete it
holds together with no other support. Apparently
a small amount of flex in the ribs is necessary; we
have not been able to solve a similar puzzle when
printed in a steel/bronze composite (the Dc30
Ring, shown in Figure 1).

It came as a surprise to us that there are numer-
ous other burr puzzles using these ribs; most are
not based on the combinatorial Hopf fibration [9].
However, there are significant combinatorial re-
strictions on the ribs that can be used in any burr
puzzle. The following theorem is sharp, as shown
by examples [9].

Theorem 21.

(1) At most six inner ribs are used in any puzzle.
(2) At most six outer ribs are used in any puzzle.
(3) At most ten inner and outer ribs are used in

any puzzle.

Proof. The stereographic projection map ρ is equi-
variant: ρ transports the twisted action on S3 to
the SO(3) action on R3. That is, ρ respects the S2

symmetry about the south pole in S3. Thus any
two cells in a given layer (at fixed distance from
the south pole) are congruent in R3. Also, any pair
of cells in different layers are different due to the
growth of dρ/dα.
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(A) (B) (C) (D) (E) (F)

(G) (H) (I) (J) (K)

Figure 16. Building the Dc45 Meteor: Start with just the spine, in (A). One at a time add five copies of

the inner four rib in (B) through (F). Then add five copies of the outer four rib, as in (G) through (K).

From the table in Proposition 19 we learn that

each inner rib contains exactly two cells adjacent

to the south pole. Next, column “# cells” tells us

there are exactly twelve such. Part (21) follows. We

prove part (21) by examining the layer at distance

2π/5, and we prove part (21) using the layer at

distance π/3. A color-coded guide is provided in

Figures 13 and Figure 15. �
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