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PV degradation curves: non-linearities and failure

modes

Dirk C. Jordan*, Timothy J. Silverman, Bill Sekulic and Sarah R. Kurtz

National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO 80401, USA

ABSTRACT

Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily

reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance.

The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially

for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and ap-

pear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific

time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually, in service life

prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear

degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration)

while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder

bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may

be seen in other systems. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
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1. INTRODUCTION

Photovoltaic (PV) durability and reliability questions have

attracted increased interest in recent years because of their

technological and economic significance. Reliability is the

ability to perform a required function for a given time in-

terval and is often measured in terms of failure rate or as

a probability for failure [1]. In contrast, durability relates

to the time interval a system is performing its desired task

and is in PV commonly measured as the degradation rate,

the slow gradual loss of performance. Literature degrada-

tion rates were summarized and analyzed by some of the

authors and were recently updated [2,3]. However, the fal-

lacy lies in the word “rate” because of the intrinsic linearity

assumption. While the linearity assumption may be a pre-

liminarily appropriate choice, it is often violated in the in-

fant or wear-out phase of a system’s life cycle. This can

have significant economic consequences, as illustrated in

Figure 1. Four different degradation curves, each of them

observed (approximately) in field performance, are used

in Monte Carlo simulation to quantify the effect on

levelized cost of energy (LCOE) [4]. The spider graphs of

Figure 1(b) constitute the sensitivity analysis of the simula-

tions. The most significant factors (for the ranges explored)

on LCOE are the discount rate and initial cost indicated by

the greatest range on the ordinate for each of the graph

compartments. The curve characteristic of all the input var-

iables does not change for the different input degradation

curves. However, the mean of the graph shifts for the dif-

ferent degradation curves. The impact of the different deg-

radation curves is ~1.1 c/kWh, making it the third most

important factor after the discount rate and the initial cost.

Therefore, measuring and including linear degradation

rates in models may not be sufficiently accurate.

Besides the illustrated economic motivation, the techni-

cally compelling reason to determine degradation non-

linearities is the development of lifetime prediction

models. One pitfall of accelerated testing is that it may

over-accelerate a specific failure mode while another fail-

ure mode may be masked that could turn out to be domi-

nating in the field under potentially different use

conditions [5]. To guard against this apparent danger, the
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underlying failure mechanism, the physical and or chemical

cause, must be understood. Therefore, understanding spe-

cific failure or degradation modes and their function with

time is a crucial step in synchronizing accelerated tests and

field test observations. Non-linearities are typically more

easily observed in accelerated tests than in field observa-

tions because the faster changes are easier to detect. Perhaps

because of the variety of conditions that modules are ex-

posed to in field tests or because of the synergistic nature

of some degradation modes, fielded modules often display

a variety of degradation modes making it difficult to corre-

late a specific failure mode with a specific time series

behavior.

In this paper, we aim to provide some examples of deg-

radation modes and their different behavior as a function of

time, although in some cases the exact function remains to

be determined. We will start with the infant phase of a PV

system’s life cycle and then discuss examples in the wear-

out phase.

2. METHOD AND OVERVIEW

Data were collected for a variety of modules and small

systems deployed at the Outdoor Test Facility at the

National Renewable Energy Laboratory in Golden,

Colorado. The data collection and analysis methodologies

were described in References [6,7]. The soiling observed

in this test field is typically 1–2%. In order to reduce the

effects of the soiling on the degradation rate data, the ir-

radiance sensors were cleaned only when the PV modules

were also cleaned, typically by rainfall or at the time of I-

V measurements.

A high-level summary of the results is shown in Table I.

Although only one data set is shown for each line in the ta-

ble, these observations are consistent with other observa-

tions either in the literature or in our own experience.

Table I differentiates some of the changes seen immedi-

ately after deployment (infant phase) from those that may

be seen after years in the field (wear-out phase). The one

degradation mechanism we have seen to be mostly linear

over the years is noted in the “Phase” column as “consis-

tent” because we have observed this degradation to be con-

stant over many years, although there is some evidence that

after more than a decade the degradation rate may slow

slightly.

3. INFANT PHASE

Many PV technologies, especially thin-film technologies,

exhibit non-linearities at the beginning of their useful life.

Figure 1. Monte Carlo simulation of various photovoltaic degradation curves′ impact on levelized cost of energy (LCOE) after 25 years.

Four different input degradation curves encountered in field measurements (a) and sensitivity analysis impact on LCOE (b). Discount

rate is the rate at which future cash flows are discounted to present day values. Operational and maintenance (O&M) escalation takes

into account increased O&M expenses with increasing age, and residual value is the value of the project after 25 years. [Colour figure

can be viewed at wileyonlinelibrary.com]

Table I. Summary of degradation types, time scales and how they tend to appear for some technologies in specific phases.

Phase (direction) Technology Time scale Degradation type

Infant (decrease) a-Si Months LID, Staebler-Wronski

Infant (decrease) CdTe 1–3 years Metastability

Infant (decrease) x-Si Hours LID, O-B complex

Infant (increase) CIGS Days, months Metastability

Consistent All Years Discoloration

Wear-out All Months, years Series resistance

Wear-out All Months, years Cracked cells, solder bond failure

a-Si, amorphous silicon; CdTe, cadmium telluride; x-Si, crystalline silicon; LID, light-induced degradation.
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The initial rapid decline for amorphous silicon (a-Si) has

been well documented [8]. The initial rapid decline occurs

during several months before the onset of the long-term

trend, as shown in Figure 2. Cadmium telluride (CdTe)

— inverted blue triangles — may also pass through a tran-

sient regime that can range from 1 to 3 years before stabi-

lization and normal performance commences [9,10].

Light-induced degradation can also affect crystalline sili-

con (x-Si) systems, particularly those fabricated with

Czochralski-based wafers [11,12]. Yet, the time scale is

typically much shorter than thin-film systems making it

in generally difficult to detect in outdoor data. In contrast,

some modern multi-crystalline cell designs may also lead

to extended non-linearities in the infant phase [13]. The

time series behavior can be modeled exponentially or

separated into two distinct phases, the initial decline

followed by a more stable phase. The former approach

may be more accurate, yet the latter is often more conve-

nient despite the subjectivity to determine the exact start

of the more stable period. In contrast, the CIGS system

shown here, which does not represent all CIGS technolo-

gies, shows a distinctly different behavior; an initial

increase during the first several months of light exposure

is followed by the onset of the long-term degradation. It

is evident from these examples that the initial trend can

be significantly different from the long-term behavior.

In addition, if the initial phase is included in the evalua-

tion, the long-term prediction would include a substantial,

yet unintended bias. In this case, a sensible choice may

be to exclude the initial phase that commences with light

exposure to determine the ultimate long-term behavior.

This choice may also be viable for known start-up issues

such as incomplete connectivity of all strings in a system,

for example.

4. WEAR-OUT PHASE

In the wear-out phase of a product, the failure rate in-

creases as a function of time. The increasing number of

failures may display a single mode or several; in addition,

the failure modes may not be completely independent of

each other. For example, delamination may initially only

lead to extra current-dominated power loss because of the

formation of an extra optical interface. As the delamination

becomes more severe, the probability increases for mois-

ture ingress. The moisture ingress may lead to internal cir-

cuitry corrosion and eventually even lead to internal

circuitry failure. Each of these failure modes may exhibit

a different power decline as a function of time, yet isolat-

ing these different functional forms is problematic. During

the block buy program of the Jet Propulsion Laboratory in

California, USA, the interdependency between different

durability performance and failure modes was already rec-

ognized; however, the module design changed consider-

ably in the subsequent decades [14]. Furthermore,

observing non-linear trends in larger systems that may be

dominated primarily by modules exhibiting approximately

linear decline can be challenging even if the non-linear

trend for a single module is fairly significant. More re-

cently, the International Energy Agency PV Power Sys-

tems Program — Task 13 — published a detailed review

of failures of PV modules based on literature and site visits

[15]. The treatise discusses at length inspection tools, ob-

served failures, and test methods. Different failure modes

are classified by safety and their different time series be-

havior, for example, linear versus non-linear, although cor-

roborating time series data were not provided. Several

studies from different continents have emerged that inves-

tigated an ensemble of modules at different times of their

life cycle [16–19]. Of these ensembles, the better

performing modules and the central tendency of the mod-

ules appear to decline fairly linearly; however, the worst

performing modules show non-linear behavior [3].

5. DISCOLORATION

The most commonly reported degradation mode is

encapsulant discoloration, which may be aided by the fact

that discoloration is also the most noticeable mode by vi-

sual inspection [20]. We refer to this as “degradation”

rather than “failure,” as discoloration leads typically to

lower performance but not necessarily to failure, even

when considering soft failure limits such as a typical power

warranty. Figure 3(a) shows a typical example of a linear

degradation curve for a mono-crystalline (mono-Si) mod-

ule that was fielded for 14 years. The module was installed

at the National Renewable Energy Laboratory’s perfor-

mance and energy rating testbed with current-voltage mea-

surements taken every 15min. The maximum power

(Pmax) decline of (0.33 ± 0.02)%/year is dominated by

short-circuit current (Isc) decline (0.31 ± 0.01)%/year.

The fill factor (FF) and the open circuit voltage (Voc)

Figure 2. Initial non-linearities for thin-film technologies upon

first light exposure. Nameplate ratings are often adjusted to

align with the more stable performance. [Colour figure can be

viewed at wileyonlinelibrary.com]
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display relative stability: (0.01 ± 0.01)%/year and (0.02

± 0.01)%/year, respectively, within the statistical uncer-

tainty. The Pmax loss totals to less than 5% over the life-

time of the module; the transmission loss from the

discoloration in the center of the cells is shown in

Figure 3(b) with some bleaching at the cell edges corrobo-

rating the Isc dominated decline. The degradation appears

to be approximately linear although a subtle non-linear

trend that is masked by latent seasonality and measurement

uncertainty cannot be completely excluded.

6. SOLDER BOND FATIGUE

In contrast, the x-Si module of Figure 4 that was exposed

next to the module of Figure 3 shows initially a fairly

stable behavior that appears to be followed by a concave

decline. Pmax data were corrected to 45 °C module

temperature, as it was a more typical value than 25 °C

during the lifetime of the module at this particular loca-

tion. Data acquisition problems led to ~1 year gap during

which the module was exposed outside and continued to

degrade. A second interruption starting at month 71 was

caused when the module was stored inside while the data

collection system was upgraded. During this time, no ad-

ditional degradation was observed; for clarity, this sec-

tion was removed from Figure 4. It is interesting to

note that a power fit provides a better fit to the data than

a linear fit. The I-V characteristics that are taken at the

beginning and almost exactly after 10 years display clear

signs of series resistance increase. Series resistance

increase has been associated with thermal mechanical

fatigue of solder joints, solder corrosion or ribbon fatigue

[15,21–23].

This module exhibited many cracks in the cell and

string interconnect ribbons, an example of which is shown

in Figure 5(a). The cracks appear to have not caused a

complete failure; however, they affirm the increased series

resistance and the hot spots in the infrared image that occur

along the cell interconnect ribbons (Figure 5(b)). The

interconnect connections could be improved by applying

pressure to the front side of the module. The electrolumi-

nescence images of Figure 6 demonstrate the change in

connection pointed out by the arrows.

Figure 4. Time series behavior for series resistance impacted x-Si module over 10 years (a). Initial and end-of-life I-V shows clear signs

of series resistance increase (b). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3. Mono-Si module I-V performance over 20 years of field exposure (a). The vertical axis shows the I-V parameter as a percent-

age of the nameplate rating. Discoloration in the center of the cells is shown (b) and some bleaching at the cell edges. Photo credit:

Dirk Jordan, NREL PIX 36886. [Colour figure can be viewed at wileyonlinelibrary.com]
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7. SOLDER BOND FAILURE

Hot spots are important because of safety considerations.

In side-by-side comparisons, modules affected by hot spots

displayed greater power loss compared with unaffected

modules [19,24,25]. Hot spots as a failure mode can have

different causes, such as solder bond failures or cracked

cells, as we will discuss in this section.

Thermal cycling can eventually lead to solder bond fail-

ures. Figure 7(a) shows I-V parameters of a single string

over nearly 22 years of field exposure that was recently af-

fected by a hot spot. The hot spot was caused by solder-bond

failure between the ribbon and the cell busbar. A character-

istic burn mark was observable on the front and the

backsheet of the module (b). The hot spot was first detected

in 2014 but the temperature was measured to be in the 50–

60 °C range. After an additional 1½ years of field exposure,

the hot spot had significantly increased in temperature to

110–130 °C. I-V parameter analysis of the affected string

shows a fairly linear decline during 20 years that was corre-

lated equally to FF and Isc losses. However, the more recent

evaluation concluded that the power loss is now following a

different path that is more significantly correlated to FF loss.

8. CRACKS

Cracked cells can be another mechanism for hot spots, as

illustrated in this section in a mono-Si module after more

than 10 years of field exposure. The I-V parameters for this

particular module are presented in Figure 8(a), which were

measured by four different methods. Initially, a drop of

several percent can be seen that appears to be dominated

by current loss and could be associated with light-induced

degradation. For the subsequent 5 years, very little change

in all parameters can be discerned until the appearance of

the crack-induced hot spot. The degradation slope changes

and the power loss becomes FF-dominated. More frequent

data points are needed to ascertain the exact functional

form, as it could follow a two-step or possibly a more

gradual power decline. The overlay from the large area

continuous solar simulator (LACSS) shows the increased

series resistance in the module, Figure 8(b).

The infrared image indicates a moderate hot spot

(ca. 60°C), Figure 9; electroluminescence image, not

shown here, exhibited cracks in several cells, but only the

crack in one cell resulted in a hot spot. The loss in power

is related to the loss of current flow and is a complex func-

tion of the direction of the cracks as well as the integrity of

the metallization (grid lines and busbars). It appears that

some cracks have a more deleterious impact on the module

power performance than others [26].

More frequent data are necessary; however, the best an-

alytical practices are also required to accurately determine

the functional form and ascribe them to specific failure

modes, as is illustrated in the next example.

I-V parameters that were taken quarterly (a) and contin-

uous data (b) for a Shell E80 CIS system are shown in

Figure 5. Visual image of one of the cracks in the cell interconnect ribbon (a). Infrared image showing hot spots along interconnect

ribbons (b). Photo credit: Dirk Jordan, NREL PIX 38042 and 38044. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 6. Electroluminescence images before (a) and while applying (b) pressure to the front side. The arrows point out changes in the

luminescence because of improved conductivity through bridging of the gaps. Photo credit: Tim Silverman, NREL PIX 38045 and 38046.

[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 10 [27]. The measurements were made without

washing the system and therefore display some noise. De-

spite this noise in the data, the curve for Pmax appears to

consist of two distinct sections. In the first 6 years, the sys-

tem appears without any significant degradation. In the 6th

to 7th year, a downward trend begins to emerge that is

mostly caused by FF losses. During that period, visible

cracks in three modules were observed from the front

(Figure 11). Isc and Voc appear to be stable over the entire

10 years field exposure.

Figure 7. Solder bond failure-induced hot spot and its time series effect (a) and visual front and back-side images (b). This particular

module was part of a 20-year-old system. The I-V traces may show increased degradation. Photo credit: Dirk Jordan, NREL PIX

36887. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8. I-V parameters of the hot-spot module for more than 10 years exposure, as measured by four different methods (a). Large

area solar simulator measurements (b) show series resistance increase. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 9. Infrared image of a mono-Si module that has been fielded for more than 10 years with a hot spot caused by a cell crack.

Photo credit Dirk Jordan, NREL PIX 36888. [Colour figure can be viewed at wileyonlinelibrary.com]

PV degradation curves: non-linearities and failure modes D. C. Jordan et al.

588 Prog. Photovolt: Res. Appl. 2017; 25:583–591

Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

DOI: 10.1002/pip

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


The temperature-corrected array responsivity (blue cir-

cles) shows the two distinct degradation sections clearly;

this technique provides reduced uncertainty relative to the

more commonly used performance ratio [7]. Furthermore,

a third section becomes clear with the temperature-

corrected array responsivity that is indicated by a dashed

oval. This time preceded our implementation of daily, au-

tomated data quality checks and was caused by a drifting

current transducer. It was not reflective of the system

performance but indicated data collection problems. After

replacement of the transducer, the system returned to near

zero degradation before the cracking of the modules. At

first, the severity of the decline is surprising, as the cracks

appear not very severe, yet the cracks are not located in the

front glass but the active cell area. Photoluminescence

corroborates the significant decline dominated by FF

losses, as the cracks extended far more into the module

than is visible to the naked eye.

It is conceivable that more two-step profile curves will

become observable in the future, not as a result of different

underlying degradation mechanisms but as a result of sys-

tem design choices. Systems with high DC-to-AC ratios, as

it is becoming more common, may exhibit a two-step

profile regardless of the functional form of the underlying

degradation mechanism. As module prices have fallen,

the balance-of-system components have become a larger

percentage of the overall project cost. As a result, project

costs can be reduced if the inverter is undersized, limiting

the input to the inverter’s capability during the highest pro-

ducing periods of the year. The effect of this so-called in-

verter clipping is that such a system may not exhibit

easily detectable degradation until many years of field ex-

posure depending on used metrics and analytical methods.

9. CONCLUSION

Degradation rates are important for financial projections

and may be indicative of different degradation modes.

However, as modeling of PV performance becomes more

sophisticated, degradation rates based on the assumption

of linearity may not be sufficiently accurate. Non-linear

trends at the beginning of life or during the wear-out phase

are important to detect and understand economically and

technically. Monte Carlo simulation of LCOE showed the

significant effect of the shapes of degradation curves.

Figure 10. Outdoor measured I-V parameters for a Shell CIS system for a 10-year period (a). Continuous data for the system analyzed

the temperature-corrected array responsivity (blue circles). The dashed oval indicates the time period of a drifting current transducer

and the dashed arrow identifies when cracks first were observed. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 11. Two modules of a Shell E80 CIGS system after 10 years of field exposure. Visual image (a) is close up of the

photoluminescence image (b) indicated by a red dashed rectangle. Photo credit Tim Silverman, NREL PIX 36890. [Colour figure can

be viewed at wileyonlinelibrary.com]
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Technically, accurately identifying non-linearities in deg-

radation paths is essential for service lifetime predictions.

The most commonly reported degradation mode,

encapsulant discoloration, appears to be associated with

an approximately linear decline that is correlated to Isc

losses. However, a subtle non-linear decline that may be

difficult to detect over common variations in outdoor mea-

surements cannot be excluded. In contrast, series resistance

increases caused by thermal mechanical solder bond

fatigue appears to follow a delayed concave degradation

trajectory. Cracked cells or complete solder bond failure

show a more significant decline after the failure

occurrence. In general, more frequent acquisition of data

needs to be coupled with optimized analytical methods to

delineate subtle trends that are often masked by measure-

ment noise.
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