
Electronic Communications of the EASST

Volume 69 (2013)

Proceedings of the

5th International Workshop on

Formal Methods for Interactive Systems

(FMIS 2013)

PVSio-web: a tool for rapid prototyping

device user interfaces in PVS

Patrick Oladimeji, Paolo Masci, Paul Curzon and Harold Thimbleby

8 pages

Guest Editors: Judy Bowen, Steve Reeves

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

PVSio-web: a tool for rapid prototyping

device user interfaces in PVS

Patrick Oladimeji1, Paolo Masci2, Paul Curzon2 and Harold Thimbleby1

1 p.oladimeji, h.thimbleby@swansea.ac.uk,

http://fitlab.eu/

Future Interaction Technology Lab,

Swansea University, Wales

2 paolo.masci,paul.curzon@eecs.qmul.ac.uk

Queen Mary University of London, United Kingdom

Abstract: We present PVSio-web which extends the simulation component of the

PVS proof system with functionalities for rapid prototyping device user interfaces.

The tool presents itself as a classic image-editing environment with functionalities

such as area selection and hyperlink creation, thus reducing the barriers that prevent

non-experts in formal methods from using PVS. Designers load a picture of the lay-

out of the device user interface under development, specify interactive areas over the

layout, and link them to a PVS specification. They can then explore the behaviour

of the formal user interface specification through point-and-click interactions. The

architecture of the tool is general, and can be used as the basis for extending other

verification tools. A demonstration of the capabilities of PVSio-web is presented

through an example based on a commercial medical device user interface. Our ul-

timate aim is to promote and facilitate the use of formal verification tools when

developing device user interfaces.

Keywords: Prototyping tool; Interactive devices; User interfaces; PVS.

1 Introduction and motivation

Safety-critical systems must be verified against safety requirements before being marketed. This

is required by law in many countries to reduce the risk of failures to be as low as reasonably

practical. For interactive systems, the verification includes the analysis of user interface designs,

with the aim of reducing software defects and use errors.

The utility of formal methods to help in identifying issues in user interface designs has been

demonstrated several times since the early 1980s, e.g., see the work of Degani [Deg04] and

Thimbleby [Thi90, Thi10] on state machines. To date, however, the use of formal methods for

developing user interfaces has been largely neglected by manufacturers. This is mainly due to

barriers (some perceived, some real) created by verification tools, which have front-ends that

are inaccessible to engineers and domain experts. For instance, consider the state-of-the-art the-

orem proving system PVS [ORR+96]. One component of PVS, PVSio [Muñ03], provides a

prototyping environment that allows one to explore the behaviour of a PVS specification. This

is useful, e.g., for debugging purposes and for discussing the specification with engineers and

1 / 8 Volume 69 (2013)

mailto:p.oladimeji, h.thimbleby@swansea.ac.uk
http://fitlab.eu/
mailto:paolo.masci,paul.curzon@eecs.qmul.ac.uk


PVSio-web: a tool for rapid prototyping device user interfaces in PVS

domain experts before verifying it in the PVS theorem prover. The core of PVSio is a transla-

tor that compiles PVS expressions into Common Lisp code. It presents itself as an interactive

command prompt with a read-eval-print loop that allows developers to enter commands and ex-

ecute PVS specifications on-demand. For instance, the behaviour of a function defined in a PVS

specification can be executed within PVSio by writing the name of the function in the PVSio

command prompt: PVSio evaluates the function and returns a result. However, PVSio is hard to

use and apply when prototyping interactive systems: a list of nested commands must be provided

for evaluating functions, and the results are displayed in textual format as a (possibly long) list

of fields. A more natural way of exploring the behaviour of a user interface is by means of in-

teractions with buttons and keys on a user interface layout that visually resembles the one under

development. In this work, we develop a prototyping environment that enables this interaction

style using PVSio.

Contribution. The main contribution of this paper is to present a novel graphical environment,

PVSio-web [pvs], for rapid prototyping of device user interfaces in PVS [ORR+96]. Specif-

ically, the tool extends the PVSio [Muñ03] component of PVS with functionalities that allow

designers to execute the formal specification of an interactive system by interacting with a pic-

ture that represents the layout of the system user interface. The designer creates interactive areas

over the picture. Interactions on the defined areas are translated into commands for PVSio, and

the returned result is rendered on the same picture of the layout. The second contribution, in

Section 3, is that we demonstrate the capabilities of PVSio-web through an example where the

layout of a commercial medical device user interface is prototyped with functionalities defined

in a PVS specification.

2 PVSio-web

PVSio-web extends the PVSio [Muñ03] component of PVS [ORR+96] with a graphical environ-

ment that allows rapid prototyping of device user interfaces based on formal PVS specifications.

Designers can load a picture of the layout of a user interface and define interactive areas over it:

regions of the picture that should react to user clicks or presses, and visible text areas that should

render information fed back to users such as displays. The behaviour of these interactive areas is

defined in a PVS specification given by the designer. The designer can use point-and-click inter-

actions on user interface buttons for exploring the user interface behaviour and visually observe

the effect of the interactions in real-time.

Architecture. PVSio-web has a distributed architecture based on a lightweight client and a web-

server (see Figure 1). The client presents the graphical front-end of the tool as an interactive

webpage within a web-browser. A web-server encapsulates the tool back-end. A process in

the web-server is dedicated to PVSio for executing the PVS specification on-demand. Other

processes are executed on the web-server for additional functionalities, such as type-checking

the PVS specification. The server and client may be run on the same computer or on separate

computers. An illustration of the functionalities of the client front-end and server back-end of

PVSio-web follows.

The client front-end is shown in Figure 3. It is entirely written in JavaScript, and provides a

user interface (UI) builder and a simulator. The UI builder allows designers to load a picture

Proc. FMIS 2013 2 / 8



ECEASST

Figure 1: Architecture of PVSio-web

(e.g., sketch, rendered image, or photograph) of the user interface layout, and bind interactive

areas of the layout to function calls in a PVS specification. Two types of interactive areas can

be defined: button areas, which are input elements whose behaviour is specified by functions in

the PVS specification; display areas, which are output elements whose value is specified in the

state of the user interface defined in the PVS specification. The PVS specification is visualised,

edited and type-checked from the UI builder environment. The UI simulator allows designers to

explore the behaviour of the user interface through point-and-click interactions with the defined

interactive areas. User interactions with button areas are translated into commands specifying

name and arguments of functions in the PVS specification. These functions will be executed

on the web-server back-end through PVSio. Replies returned from the web-server provide the

result of the execution. They are parsed by the UI simulator using regular expressions. The value

of state variables associated to display areas are extracted and rendered on the corresponding

display areas defined on the user interface layout. More details about the capabilities of the

client front-end are provided in Section 3 while illustrating an example based on a commercial

drug infusion pump.

The server back-end is a web-server hosting processes executing PVS and PVSio on-demand:

the former is used for type-checking the PVS specification of the device user interface; the lat-

ter is used for executing the same PVS specification according to the commands sent by the

UI simulator of the client front-end. The server code is written entirely in JavaScript and runs

in Node.js1, which is an environment built on Google’s V8 JavaScript engine shipped with the

Chrome web-browser. Node.js allows developers to easily build fast and scalable network ap-

plications written in JavaScript. The execution model of the platform is event driven with asyn-

chronous, non-blocking function calls. The platform provides a seamless interface to spawn

processes and access their input, output and error streams through JavaScript programs. This

mechanism is used in PVSio-web for creating a PVS and PVSio process for type-checking and

executing the PVS specification on-demand. Once initialised, the server back-end listens for

connections from prospective clients. WebSockets2 are used for exchanging messages between

the client front-end and the server back-end. WebSocket is a standardised protocol intended for

use on the web to enable bidirectional low-latency communication between two endpoints over

a TCP connection. The payload of exchanged messages is specified in the JavaScript Object

Notation (JSON) format.

The server side exposes a generic interface for communicating with a PVSio process using

websockets. The client initiates a websocket connection with the server and can send messages to

1 http://nodejs.org
2 http://www.websocket.org

3 / 8 Volume 69 (2013)

http://nodejs.org
http://www.websocket.org


PVSio-web: a tool for rapid prototyping device user interfaces in PVS

start or close a process on the server using the websocket connection. It can also send commands

to be executed by a running process it started. The server sends responses from the process back

to the client through the same websocket connection.

3 Example: prototyping the data entry system of infusion pump

user interfaces

We now demonstrate the capabilities of PVSio-web through two examples based on medical

infusion pumps. Medical infusion pumps are used in healthcare to deliver drugs and nutrients

to patients at controlled rates. Clinicians enter infusion parameters in the infusion pump by

interacting with buttons and keys on the device user interface.

A broad class of data entry system typically used in the current generation of drug infusion

pumps is the incremental [CCE+11] data entry. This layout is gradually replacing number pads

because it can help reduce the likelihood of undetected key slip errors — the attention of the user

is mostly on the display rather than on the keys [UK 10]. A first validation of this hypothesis has

been demonstrated recently within a lab experiment [OTC11]. Different variants exist of incre-

mental number entry systems: they are currently not standardised, and different manufacturers

can implement the data entry system in different ways. A layout used in several medical infusion

pumps is based on chevron keys. That is users enter a number by incrementing or decrement-

ing the displayed value with a minimum of two dedicated keys. PVSio-web is now used for

prototyping the chevron keys of a commercial drug infusion pump.

A picture of the layout of a commercial infusion pump [Car12] with chevron keys is shown in

Figure 2. It is an exemplar of chevron keys user interface, where up and down arrows are used for

incrementing and decrementing the value of numeric infusion parameters — typically, volume

to be infused (VTBI), infusion rate and infusion duration. The device provides buttons for fast

(double chevron keys) and slow (single chevron keys) value edit, and they support press & hold

interaction styles. That is, when a chevron key is pressed and held down, the value being set is

iteratively incremented (with the up keys) or decremented (with the down keys). The value of the

infusion parameter being set is always shown on the left display section just above the chevron

keys.

For prototyping the device user interface described above, the designer performs the following

steps in the UI builder of PVSio-web. A picture of the device user interface (e.g., a photograph

of the infusion pump as shown in Figure 3) is uploaded in the PVSio-web front-end, and the

associated PVS specification defining the interactive behaviour of the user interface is typed in

or loaded in the UI specification editor of PVSio-web (in this case, we use the PVS specification

illustrated in [MRO+11]). The designer then defines interactive areas over the loaded picture.

For each interactive area: (1.) a rectangle that surrounds a desired area of the picture is selected

by clicking and dragging the mouse pointer; (2.) the intended type of area (either button or

display) is specified; (3a.) buttons areas are bound to functions defined in the PVS specification;

interactions with these areas (e.g., button clicks) are translated into commands for the PVSio-web

back-end; PVSio is thus used on the server back-end for executing those functions; (3b.) display

areas are bound to terms in the PVS specification that model the state of visible elements on

the user interface; regular expressions are used for extracting the value of these variables from

Proc. FMIS 2013 4 / 8



ECEASST

Figure 2: A picture of a commercial medical infusion pump with chevron keys.

the messages returned by the PVSio-web back-end that encapsulate the result of expressions

evaluated with PVSio. In the following, these steps are exemplified for the left display element

and the fast up key of the user interface layout shown in Figure 3.

For the display element, the term in the PVS specification modelling this element is a field

display of type real in a record type. In order to bind the display element to field display,

the designer creates an area around the display element by clicking and dragging the mouse

pointer. By doing so, a contextual menu for setting the binding options of the area is displayed

by PVSio-web after the dragging ends: the area type is display in this case, the area identifier

is display, and the value type is Number (a pre-defined type template in PVSio-web). PVSio-

web uses these parameters for generating a regular expression, which is shown at the bottom of

the contextual menu (display left := [0-9.]+, in this case), for parsing messages returned by the

PVSio-web back-end. In this case, PVSio-web will search for a field display in the message,

extract the value (a real number in this case) of the field, and render the value in the display area.

For the fast up key, an area is created around the button edges, and the following parameters

are set through the contextual menu displayed by PVSio-web: the area type (button), the area

identifier (UP), and the interaction style (press & hold). Given these parameters, PVSio-web

binds press & hold interactions with this button to a function in the PVS specification. A naming

convention and a PVS specification style is used to ease the automation of this binding procedure.

For instance, for press & hold interactions, a pair of functions press X and release X (where X

is the button identifier) are used in the PVS specification for modelling press & hold interactions

— the press X function is iteratively executed while X is pressed, and the release X function is

executed once only when the button is released. By default, the iterative execution of press X is

performed every 250ms, as this reflects the typical response time of several device user interfaces.

For the UP button, therefore, the script will create a command for the PVSio-web back-end

that triggers the iterative execution of function press UP in PVSio while the button is pressed

and held down, and of function release UP when the button is released. The new state of

5 / 8 Volume 69 (2013)



PVSio-web: a tool for rapid prototyping device user interfaces in PVS

Figure 3: The graphical environment of PVSio-web.

the user interface generated after any execution is returned to the PVSio-web front-end. The

same procedure is used for associating the other keys to the corresponding functions in the PVS

specification. The naming convention and the default values can be overridden by the designer.

After defining interactive areas with the UI builder, the UI simulator of PVSio-web is used

for exploring the behaviour of the device user interface. Starting from an initial user interface

state, which is set through a init function defined in the PVS specification, the designer can

interact with button areas and observe changes in display areas. With the considered device user

interface, the initial value shown in the display area is 0, and if the designer clicks once the UP

button then a new value is displayed in real time in the display area (in this case, it becomes

1). This new value is obtained by executing in sequence the press UP and release UP

functions in the PVS specification. If the UP button is pressed and held down, the value is

iteratively incremented according to the PVS specification, and each new value is rendered on

the display element in real time (every 250ms in this case).

4 Related work and conclusion

We have presented PVSio-web, a new graphical tool for rapid prototyping device user interfaces

in PVS. PVSio-web extends PVSio with a graphical environment that allows designers to bind a

picture of a device user interface to a PVS specification and explore the user interface behaviour

through point-and-click interactions over the picture of the user interface.

Several verification tools include front-ends for animating specifications. For instance, Up-

paal [BLL+96] and IVY [CH09] provides graphical user interfaces that render models specified

in the respective specification languages as state machines. The user can interact with the state

machine to explore the behaviours of the specification, e.g., by triggering state transitions. The

functionalities provided by PVSio-web are significantly different from those provided by the

above tools. PVSio-web renders the behaviour of a specification directly onto a realistic picture

of the final product. This allows users to interact with the specification by pressing buttons on a

realistic picture of the product, and view the effect of actions directly on the same picture of the

Proc. FMIS 2013 6 / 8



ECEASST

product. This helps formal methods experts to illustrate verification results to domain experts,

such as engineers and human factors experts, which may be not familiar with formal methods.

Other tools have been created to support users that are non-experts of formal methods. For

instance, in [SS12], a tool is developed that can support programmers when writing software

code for low-level data structure manipulation, such as insertion or deletion of elements in a list.

In [BBC+12], a graphical front-end is developed to facilitate usage of formal tools for biologists

that have no previous knowledge in programming or formal methods. PVSio-web has a similar

aim, in that has the potential to open the functionalities of a complex verification such as PVS

to non-experts of the system. Differently from all the above works, PVSio-web is specifically

designed to support prototyping of widget-based interactive device user interfaces.

With PVSio-web, the PVS verification system can be used as-it-is, without any modification

that might compromise its correctness. The client-server architecture of PVSio-web can be used

as the basis to extend other verification tools that provide simulation functionalities through an

interactive command prompt. We have demonstrated the capabilities of PVSio-web with an

example based on a commercial medical infusion device.

Acknowledgements: Funded as part of CHI+MED: Multidisciplinary Computer- Human In-

teraction research for design and safe use of interactive medical devices project EPSRC Grant

Number EP/G059063/1.

Bibliography

[BBC+12] D. Benque, S. Bourton, C. Cockerton, B. Cook, J. Fisher, S. Ishtiaq, N. Piterman,

A. Taylor, V. M. Bio Model Analyzer: Visual Tool for Modeling and Analysis of

Biological Networks. In Proceedings of the 24th international conference on Com-

puter Aided Verification. CAV’12. Springer-Verlag, Berlin, Heidelberg, 2012.

[BCE+12] R. Bloomfield, N. Chozos, D. Embrey, J. Henderson, T. Kelley, F. Koornneef,

A. Pasquini, S. Pozzi, M. Sujan, G. Cleland, I. Habli, J. Medhurst. Using safety

cases in industry and healthcare. 2012.

[BLL+96] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi. UPPAALa tool suite for

automatic verification of real-time systems. Springer, 1996.

[Car12] CareFusion. Alaris GH Syringe Pump. 2012. http://www.carefusion.co.uk.

[CCE+11] A. Cauchi, P. Curzon, P. Eslambolchilar, A. Gimblett, H. Huang, P. Lee, Y. Li,

P. Masci, P. Oladimeji, R. Rukšėnas, H. Thimbleby. Towards Dependable Number

Entry for Medical Devices. In Eics4Med, the 1st International Workshop on Engi-

neering Interactive Computing Systems for Medicine and Health Care. ACM Digital

Library, 2011.

[CH09] J. C. Campos, M. D. Harrison. Interaction engineering using the IVY tool. In Pro-

ceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing

Systems. Pp. 35–44. ACM, 2009.

7 / 8 Volume 69 (2013)

http://www.carefusion.co.uk


PVSio-web: a tool for rapid prototyping device user interfaces in PVS

[Deg04] A. Degani. Taming HAL: Designing Interfaces Beyond 2001. Palgrave, 2004.

[MRO+11] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon,

H. Thimbleby. On formalising interactive number entry on infusion pumps. ECE-

ASST 45, 2011.

[MRO+12] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon,

H. Thimbleby. The benefits of formalising design guidelines: A case study on the

predictability of drug infusion pumps. Under review, 2012. Draft available at http:

//tinyurl.com/masci-QMpreprints.

[Muñ03] C. Muñoz. Rapid prototyping in PVS. Technical report NIA Report No. 2003-03,

NASA/CR-2003-212418, National Institute of Aerospace, 2003.

[ORR+96] S. Owre, S. Rajan, J. Rushby, N. Shankar, M. Srivas. PVS: Combining Specifica-

tion, Proof Checking, and Model Checking. In CAV96. LNCS 1102. Springer Berlin

Heidelberg, 1996.

[OTC11] P. Oladimeji, H. Thimbleby, A. Cox. Number entry interfaces and their effects on

error detection. In INTERACT’11. Springer-Verlag, Berlin, Heidelberg, 2011.

http://dl.acm.org/citation.cfm?id=2042283.2042302

[pvs] PVSio-web. http://thehogfather.github.io/pvsio-web/.

[SS12] R. Singh, A. Solar-Lezama. SPT: storyboard programming tool. In Proceedings

of the 24th international conference on Computer Aided Verification. CAV’12,

pp. 738–743. Springer-Verlag, Berlin, Heidelberg, 2012.

[Thi90] H. Thimbleby. User Interface Design. Addison-Wesley, 1990.

[Thi10] H. Thimbleby. Press On: Principles of Interaction Programming. MIT Press, 2010.

[UK 10] UK National Patient Safety Agency. Design for patient safety: A guide to the design

of electronic infusion devices. 2010.

Proc. FMIS 2013 8 / 8

http://tinyurl.com/masci-QMpreprints
http://tinyurl.com/masci-QMpreprints
http://dl.acm.org/citation.cfm?id=2042283.2042302
http://thehogfather.github.io/pvsio-web/

	Introduction and motivation
	PVSio-web
	Example: prototyping the data entry system of infusion pump user interfaces
	Related work and conclusion

