
Sadhana, Vol. 19, Part 6, December 1994, pp 1027-1054. (~) Printed in India 

P V U  and wave-particle splitting schemes 

for Euler equations of gas dynamics 
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A b s t r a c t .  A new way of flux-splitting, termed as the wave-particle 

splitting is presented for developing upwind methods for solving Euler 

equations of gas dynamics. Based on this splitting, two new upwind 

methods termed as Acoustic Flux Vector Splitting (AFVS) and Acous- 

tic Flux Difference Splitting (AFDS) methods are developed. A new 

Boltzmann scheme, which closely resembles the wave-particle splitting, 

is developed using the kinetic theory of gases. This method, termed as 

Peculiar Velocity based Upwind (PVU) method, uses the concept of pe- 

culiar velocity for upwinding. A special feature of all these methods is 

that the unidirectional and multidirectional parts of the flux vector are 

treated separately. Extensive computations done using these schemes 

demonstrate the soundness of the ideas. 

K e y w o r d s .  Upwind methods for Euler equations; wave-particle split- 

ting; Boltzmann schemes; peculiar velocity based upwinding. 

1. I n t r o d u c t i o n  

Comtmtational Fluid Dynamics (CFD) a new revolutionary tool in aerodynamic 

design and analysis, is progressing at a very fast pace and enormous developments 

in algorithm development, grid generation and postprocessing have taken palce in 

the last twenty years. CFD aims at solving numerically the partiM differential equa- 

tions of fluid dynamics and hence requires the use of digital computers which have 

progressed over years at a breathtaking pace. The ultimate aim is to obtain the di- 

rect numerical simulation of unsteady Navier-Stokes equation for an arbitrarily large 

Reynolds number for practical geometrical configurations such as aircraft, missile, 

launch vehicle, helicopters, ships or submarines. This aim has not been realised as 

yet in spite of the development of massively parallel computers and numerical so- 

hltion of only some simple flow problems such as flow through a channel, flow past 

a flat plate, flow around a cylinder have been attempted using Direct Numerical 

Simulation of Turbulence (DNS). Even though it is true that the numerical solution 

of Navier-Stokes equation must be sought for every flow problem, there are many 
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problems for which aerodynamic analysis and design can be done using lower level 

approximations which include potential flows governed by Laplace's or full potential  

equation, at tached flows for which Euler equations are a valid approximation,  thin 

layer Navier-Stokes equation (TLNS) and so on. In this paper we are going to con- 

centrate on numerical methods for the solution of Euler equations of gas dynamics. 

Many problems arising in the aerodynamic design and analysis of the aerospace ve- 

hicles require the solution of Euler equations. Some notable examples are flow past 

delta wings, flow through ramjet  type intakes, external supersonic flow past launch 

vehicles, hypersonic rentry flows. These eqautions also need to be solved in cases of 

flow problems where viscous effects are approximately taken into account by solving 

the well-known boundary layer equations which again require the inviscid solutions 

as the input. Further a good Euler solver is a prerequisite to the development of 

a good Navier-Stokes solver. Therefore constructing numerical schemes for solving 

the Euler equations has been one of the principal subjects of research among the 

CFD community  for the last decade. 

An ideal numerical scheme, none exists at all as of now, is the one which satisfies 

several requirements: 

(1) It must be robust, that  is, it should work for a wide variety of flow conditions 

covering all geometrical shapes encountered in practice with Mach number and angle 

of attack varying over a large range and various boundary conditions. Further, the 

code based on this method must work over different type of grids such as unstruc- 

tured tetrahedral,  structured hexahedral, clustered/unclustered and hybrid grids 

with the grid ~spect ratio and the skewness varying widely. 

(2) The numerical schemes must be accurate enough to capture shocks, contact sur- 

faces, shear layers with acceptable accuracy and resolution. (3) The scheme must 

be easy to code and be computat ionally inexpensive and must rapidly converge to 

the steady state whenever necessary. 

(4) It must be adaptable to computer  architecture in the sense that  it should be 

vectorisable and should admit massive parallelism. 

In summary,  an ideal numerical method must be robust, efficient, accurate, rapidly 

converging and adaptable to new emerging computer architecture. Unfortunately, in 

spite of several years of research in algorithm development, such an ideal scheme 

does not exist till date. The search for the elusive best scheme is on. 

Several interesting characteristics have emerged about  numerical schemes after 

several years of intensive research. First, it has been found that  even if a numerical 

scheme is consistent and stable in the yon Neumann sense it need not converge to 

the solution. Lax-Wendroff scheme and MacCormack scheme do require Total  Vari- 

ation Diminishing (TVD) fixes in order to supress pre-shock and post-shock wiggles 

encountered in capturing discontinuities. Without  the TVD fix these and many 

other second order accurate schemes can cause violent oscillations in the flow vari- 

ables leading to negative values of pressure and density. The mathematical  theory 

of stability of numerical schemes for nonlinear partial  differential equations together 

with a boundary condition t reatment  is just  not available today to designers of nu- 

merical schemes to serve as guidelines for algorithm development. Secondly many 

first-order schemes possessing TVD property do not have solution reliability. For ex- 

ample Roe's method (Roe 1981) based on the approximate Riemann solver can admit  

unphysical shocks (called carbuncle shocks), may fail in capturing large rarefaction 

waves (Quirk 1992) and is known to converge to rotationally asymmetric  solutions 
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in case of supersonic flow past a hemisphere (P K Sinha, private communication). A 

lack of robustness has also been reported for the Osher method (Osher gz Solomon 

1982) in capturing strong detached shock. Many fixes have been proposed to cure 

some of these failures, but these fixes are not universal and are known to destroy so- 

lution accuracy. Harten's entropy fix is known to spoil the high resolution property 

of Roe's scheme (Quirk 1992). Flux Vector Splitting methods on the other hand do 

possess solution reliability and capture shocks and large rarefaction waves without 

any problem but they are notorious for smearing the contact discontinuity (van Leer 

1990). They also cause unacceptably large smearing of boundary layer (van Leer 

1990). Central differencing schemes with artificial dissipation (Jameson et al. 1981) 

have their own problems. These schemes contain many tuning parameters which 

must be adjusted for robustness, accuracy and convergence. It has now become clear 

that having the correct amount of dissipation is the key to the design of an ideal 

numerical scheme. MacCormack (1990) has rightly observed it is all dissipation. 

Lastly, it has been found that a numerical scheme that solves a discrete mathemat- 

ical model, which is an approximation to the partial differential equation purported 

to be solved, has adequate robustness if the discrete mathematical model mimics the 

physics of the flow as closely as possible. As an example to illustrate this principle 

we may cite the case of upwind methods which take into account the signal propoga- 

tion property of the Euler equations by appropriately choosing the stencil of grid 

points. The Flux Vector Splitting schemes as noted above are very robust. One of 

the Flux Vector Splitting Schemes due to Deshpande & Mandal (Deshpande 1986c, 

Mandal 1989, Mandal & Deshpande 1993) called the Kinetic Flux Vector Split- 

ting scheme (KFVS) has resulted in an extremely robust code BHEEMA routinely 

used at DRDL, Hyderabad for computing low speed, high speed and hypersonic 

flows around a variety of practical configurations. In the absence of clearcut and 

complete set of guiding principles to be used while constructing an ideal numerical 

method, we follow the following methodology while searching for new algorithms, 

(1) New directions and lines of research leading to novel algorithm development 

must be constantly explored. (2) Once these ideas take a concrete shape in the form 

of a scheme then it should be tested for robustness, accuracy, solution reliabillity, 

covergence property and adaptability by trying it on the largest set of fluid flow 

problems possible. (3) Suitable modifications in the algorithm should be progres- 

sively introduced for slowly but steadily marching towards the best scheme. We 

study in detail a new line of research called wave-particle splitting which is closely 

related to an allied idea termed Peculiar Velocity based Upwind (PVU) methods at 

the Boltzmann level. 

2. W a v e - p a r t i c l e  s p l i t t i n g  

2.1 Acoustic flux vector splitting 

The Euler equations of gas dynamics can be written in the differential form of the 

conservation law as, 

OU OF OG OH 
+ ~ +  uy~ + ~ z  = 0 '  (1) O--t- 
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where U = Conserved variable vector, Q = i.F + iuG + izH = flux vector and are 

defined by the relations, 

U = 

P 
pu 
pv ; F =  

p w  

e 

I pu P + f lu  2 

f l t tv  

f lu  w 

(e + p)u 

; G =  

pvu 
p + pv 2 ; H =  

pvw 
(e + p)v 

p w  

f lg  w 

f lv  w 

P + p w  2 

(e + p)w 

(2) 

Here p = mass density, u,v,w are the components  of velocity along the x,y,z 
directions, p = pressure and e = specific total energy per unit volume and is given 

by, 

½ v 2 
e - (7 - 1) + p(u~ + + w~)" (3) 

Even though in (2) F,G,H are expressed as functions of the primit ive variables 

p,u,v,w,p they can also be expressed as functions of the conserved variables U. 

Equations (1) are nonlinear hyperbolic partial  differential equations for the unknown 

U and mas t  be solved with suitable boundary  conditions. Because of hyperbolici ty 

these vector conservation laws involve propagat ion of waves which are the well- 

known exarnples of nonlinear waves. Any numerical scheme if it. claims to mimic the 

physics of the flow, must  take into account the appropriate  directions of inibrmation 

propagation.  Currently there are two different ways of incorporat ing hyperbohci ty  

into numerical  schemes. The first one is the flux difference splitting where Riemann ' s  

inilial value problen~ is solved approximately.  Two impor tan t  flux difference spli t t ing 

schemes are currently available, one by Roe (t981) and the other by Osher (Osher & 

Solomon 1982). The underlying physical model in these approaches is the interaction 

among cells through wave propagation.  The variables are assumed to be constant 

within a cell and therefore fluid variables undergo j umps  when we cross a cell face. 

These j umps  are broken into waves using the Riemann solver and thus the cells 

interact with one another through waves. The second approach involves spli t t ing 

of the flux vector into two parts F +, F -  (for the x-component  of Q) such tha t  the 

Jacobian OF+/OU has all positive eigenvalues and the Jacobian OF-/OU has all 

negative eigenvalues. The flux vector splitting of Steger & Warming (1981), van 

Leer (1982) fall urlder this class. The underlying physical model here is the particle 

model. The  flux vector split t ing schemes can be regarded as a generalisation of the 

Courant-Isacson-P~ees scheme or as a Beam scheme (Sanders & Prendergast  1974) 

wherein it is tacitly assumed tha t  there are in case of a 1-D problem two bem'ns of 

particles moving in opposite directions. For this reason the FVS is also somet imes  

referred to as pseudo-particle method.  The particle nature of FVS is even more 

obvious when we consider the KFVS method which is derived from the Bol tzmann 

equation of kinetic theory of gases using the moment  method s t rategy (Deshpande 

1986c). An interesting question arises here as to whether we can construct new 

schemes using both the particle model and the wave model of fluid flow. There is 

a strong physical basis for seeking such a wave-particle model. For, consider 1-D 
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Euler equations in primitive variables, 

o__Po__[ ozo__£ ou } 8' .  + " + - o 

o---( + u ~ + - o . 
Op Op P OuOz 

+ u -z-- + 7p Oz - 0 
(4) 

We have the famous convective derivative appearing in all the three equations and 

its appearance  is due to the mot ion of fluid elements along particle paths.  In order 

to demonst ra te  the wave nature let us write (4) in the mat r ix  form. 

0V ~t 0V ~a 0V 

0-i- + a~ + 7 x  = ° '  (5) 

where, [u00] 0] 
V =  u ; = 0 u 0 ; J ] ~ =  0 0 1/p . 

p 0 0 u 0 7P 0 

The eigenvalues of .~a can be easily shown to be 

(6) 

where a -- (Tp/p) 1/2 = sonic speed. Thus tile third te rm in (5) can be considered 

to represent propagat ion of acoustic waves in both directions in case of 1-D and 

all directions in case of multidimensional flows. We therefore take the view tha t  

the mot ion of fluid is a mixture  of particle behaviour (the basis of Lagrangian 

description) and wave behaviour.  This view is also supported by tile fact that  

tile rate of change of a conserved quanti ty ( m o m e n t u m  or energy) in a control 

vohnne is due to the change caused by the t ransport  of fluid (particle like) and the 

change caused by the pressure acting on the control volume. We can also regard the 

dynamics of fluid as consisting of the advection of the fluid element along particle 

paths and further these fluid elements are subjected to dilatation or contraction 

thus sending pressure waves into the domain. It  is therefore physically meaningful 

to regard the fluid mot ion as par t ly  particle-like and part ly  wave-like. 

~% have therefore a m~tural splitting of the flux vector into t ranspor t  par t  and 

acoustic par t  and hence we write the 1-D Euler equation in the form, 

where, 

OU OF t OF a 

0-7 + ~  + Ox = 0 '  (8) 

[ pu ] F t = pu 2 ; F a = 

Ctt 

The corresponding flux Jacobians A t = Ot;'t/OU 

I A ¢ = - u  2 2u 
eu c 

P P 

[0] 
p (9) 
pu 

and A a = OFa/Ou are given by, 

° 1 
0 , (10)" 

tt 

A(~ ~) = 0, +a  (7) 



1032 S M Deshpande  et  al 

0 0 0 
(7 - 1) 

A ~ = ~ u 2  , - ( 7  - 1)u (7 - 1) (11) 

+ (--7-~ u3 P-(7-1) u2 (7-1)u 
p z p 

The eigenvalues of the matrices are given by 

A(A*) = u, u, u; A(A a) = 0, +[(7 - 1)/7] ½ a. (12) 

Observe that  the corresponding matrices At and .~a in the primitive variable rep- 

resentation have the eigenvalues A(A t) = u, u, u and A(.4 a) = 0, :ka. Thus there 

is difference between A(A a) and A(A a) because of the transformation from V- 

representation to U-representation. 

Now let us look at the construction of an upwind scheme for the Euler equations 

based on the wave-particle splitting idea. The term involving the flux F t does not 

pose any problem as far as implementing the upwinding is concerned. Based on 

whether U is positive or negative OFt~cOx can be backward or forward differenced 

for enforcing upwinding. The task of enforcing upwinding for the term cOFa/cOx is 

slightly more complex due to the mixed eigenvalues of A a, that  is eigenvalues are 

of mixed sign. Many variations of similar flux splitting exist but  they are different 

from our wave-particle splitting. The Convective Upwind and Split Pressure (CUSP) 

schemes of Jameson (1993) split the flux as, 

F c = pu S ; F  v = , (13) 

H u  

where, H = e + p. These are different from F* and F a given by (9). Since the 

eigenvalues of cOFc/cOU are u, u and 7u while those of cOFV/COU are 0,0 and - ( 7 - 1 ) u ,  

a splitting with, 

F + = F c , F -  = F v, (14) 

leads to stable scheme as done by Denton (1983). As remarked by Jameson this 

scheme does not reflect the true zone of dependence in supersonic flow. He then 

modifies the scheme by an appropriate choice of diffusive flux. Again the Advective 

Upstream Splitting Method [AUSM] of Liou ~: Steffen (1991) as different from the 

present wave-particle splitting in the sense that  F t and FV chosen by them are not 

the same as the transport  and acoustic fluxes given by (9). Conceptually we are 

using a physically meaningful basis for splitting F into F t and F a. 

We (Balakrishnan • Deshpande 1991,1992a,1994a,1994b, Balakrishnan and Raghu- 

rama Rao 1992b) have further split A ~ following a method similar to that  of Steger 

&: Warming (1981). Here we apply this method to F a as against Steger & Warm- 

ing (1981) who considered .the total flux F instead. Towards this end we require the 

canonical form 

A ~ = R~A~(R~)-~I, (15) 

where R ~ = matr ix  of right eigenvectors of A ~ and A ~ = diagonal matr ix  and these 

are given by 

R a = 

0 1 0 "1 

1 u 1 

a U 2 a ' 

[7(7-1)]½ 2 

(16) 
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r 
A ~ = [( 'r-  1)/'r]½ / 

I .  

We now split A ~ into A ~+ and A ~- given by 

--a 0 0 ] 

0 0 0 J . 

0 0 a 
(17) 

for u >  Oand, 

U ;  '+~ U~ , ~ _U~,) ~ + l . ~  ,~ - Ak(Uk+t ~k ~'~k -- Uk- , )  
+ + + 

At Ax ~- Ax~ , (25) 
Ak (Uk+~-  U~) = 0 

Ax 

The above expression for ¢ are obtained by using a curve-fit for the stability plot. 

The linear stability analysis applied to the equation 

O A~ OU A,~+ OU + AaJDU 
cgt---: + ~x + Ox Ox - O, (22) 

is somewhat complex because the matrices A t ,A ~i do not commute and hence 

do not admit  simultaneous diagonalisation. Following the von Neumann stability 

analysis which assumes that,  

= f l)'*({)e2<e~'d~. (23) U'~(x) 

We substi tute for Un(x) in the upwind scheme, 

_ n Ak(gk - -  ~ k - - l )  - ( U k  - -  U k - 1 )  
+ + + 

At Ax Ax , (24) 
.A~- (U~+ 1 -- V ~ )  : 0 

Ax 

M < 0.234355, 

0.234355 < M < 10.373218, 

M > 10.373218. 

(21) 

[000] [a 0 0] 
A~+ = [(7 - 1)/7] ½ 0 Ca 0 ;A a- = [(~' - 1)/7]{ 0 - C a  0 (18) 

0 0 a 0 0 0 

and then obtain the acoustic fluxes F ~i defined by 

F °± = R°A°~(R°)  - ' ,  (19) 

when mathematical  manipulat ion in (17) are performed we obtain 

+ [ ( 7 -  1)/7] ½ Ca p 
P 

r a  ~ = ~ + [ ( 7 -  1)/7]½ ¢a pu (20) 
pu pa 
--~ 4- 2[7(7 -- 1)]½ =t= [(7 -- 1)/7]½ ¢ a pu22 

Here ¢ is a dissipation control parameter  to be determined by requiring that  the 

stability condition gives the best stability limit on the permissible t ime step. The 

variation of ¢ with Mach number is given by the following expression (Balakrishnan 

& Deshpande 1994a): 

1 .37925-  2 . 6 7 7 4 M -  4.34512M 2 for 

¢ = 0.520381 - 0.03088531 for 

0.2 for 
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for u < 0. We obtain the amplification matr ix  G(fl) in the form, 

At Y Y ETAt + EBA~ + + EFA a-, G = I - A - - - ~  ; = (26) 

where ET = EB if u > 0 and EF if u < 0, and EB and EF are defined by 

EB = 1 - - e - i ~ , E F  = e i~ -- 1 , /3=  2~-~Ax. (27) 

The spectral theory of stability demands that  the spectral radius of G be less 

than or equal to unity. Figure 1 shows the stability plots for the above scheme. 

These plots show the maximum allowed acoustic courant number ( a ( A t / A x ) )  as a 

function of Maeh number for vMues of dissipation control parameter  ¢ varying from 

0 to 1.5. It is obvious that  the Acoustic Flux Vector Splitting Scheme is unstable for 

very low Mach numbers when ¢ = 0. We can increase the low mach number limit of 

the allowed a ( A t / A x )  by increasing ¢. Table 1 shows the real and imaginary parts 

of the eigenvalues of A ~±. 

T a b l e  1. Eigenvalues of A ±~ for 

various values ore 

¢ Eigenvalues of A ±~ 

Real parts hnaginary parts 

0.00 

0.000000 0.000000 

± 1.000000 0.000000 

T 0.250000 0.000000 

0.10 

± 0.046877 0.000000 

± 1.011320 0.000000 

T 0.158201 0.000000 

0.25 

± 0.090635 0.000000 

± 1.034360 0.000000 

0.000000 0.000000 

0.50 

± 0.202128 ± 0.127213 

± 0.202128 T 0.127213 

± 1.095740 0.000000 

1.00 

± 0.455587 ± 0.269326 

± 0.455587 T 0.269326 

± 1.338830 0.000000 

± 0.797879 -4- 0.419213 

2.00 ± 0.797879 :F 0.419213 

± 2.154240 0.000000 

A factor of [(3' - 1)/3`]½ has been pulled out. of the eigenvalues in the above table 

for convenience. It is obvious from this table that  for ¢ < 0.25 all the eigenvalues of 
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A a+ and A ~- are real but  are of mixed sign. At ¢ = 0.25 all the eigenvalues of A ~+ 

are positive and those of A a- are negative. For values of ¢ > 0.25 the eigenvalues 

are complex. An interesting point tha t  emerges from the present stabil i ty and 

eigenvalue analysis is tha t  a stable upwind scheme based on split fluxes need not 

have all positive and all negative eigenvalues for the split flux Jacobians.  This has 

been followed as an unnecessarily restrictive methodological  principle in the past  

while designing FVS schemes. 

2.2 Acoustzc flu~ d(gerence splitting ( A F D S )  

Acoustic flux difference split t ing is yet another  variant of  the wave-particle split t ing 

method.  We s tar t  with the t ransport-acoust ic  split Euler equations (8), 

OU OF t OF ~ 

0-7 + O x  + -bT:  = 0 (28) 

as befbre but  treat  the term OFa/Ox  differently (Balakrishnan and Deshpande 

1991a,1992). The t ranspor t  term OFt /Ox  is ,,pwind differenced as before. The 

acoustic term OFa/Ox  is discretised by using Flux Difference Splitting. There are 

many  ways of achieving this discretisation. In the AFDS version studied here we use 

I{oe-linearisation. We nmst  hasten to add that  R.oe (1981) has treated the unsplit  

flux F in this manner  while we use Roe's approach for the acoustic flux vector F ~ 

only. For this purpose following Ro('. we introduce the parameter  vector, 

~"1 = , / 7  ; w~ = v~'~, " w3 = ' ; , / ~ ,  (29) 

which is somewhat  different from the paramete r  vector used by Roe. In terms of the 

above paramete r  veclor the conserved vector U and acoustic flux vector F a become 

9 

[01 If = W l W 2  ., and F ~ = w~w2 . (30) 
Wl tv______~3 w ;  

( 7 -  1) + -2- wew3 

The corresponding averaged quantities are defined ])y, 

l~) 2 

.t~-, 1 

7we 

'~1 

The averaged mat r ix  j{a is 

Aa= 

+ " 

+ 

given by, 

0 

- I)  

2 
_ 6 " u  + ('y - 1) Oa 

~t 2 7 

(31) 

0 0] 
- ( v  - ( v -  I) (32)  

- 9  

a--~ - ( 7 -  1) ~2 ( 7 -  1)ii 

It. is interesting t.o observe that  averaged ,~a matr ix  is very similar to A a given by 

(11) except that  u and a in (11) are replaced by ii and a defined above. The mat r ix  

A a satisfies the well-known property, 

A F  = .~i"AU, (33) 
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where A F  ~ = F~ - F~, AU = Un - UL. Because of the similarity between .~a and 

A ~ it follows that,  

,\(A a) = 0, +a[(7 - 1)/71½ • (34) 

The corresponding right eigenvectors are, 

r 1 = 

0 

1 

[ v ( v -  1)]½ 

[11 ; r 2  = ,~2 ; r 3  = 

T 

0 

1 

f i +  
[v(v - 1)]} 

The acoustic flux F~ at the cell interface are calculated using the formula 

1[ 3 ] 
j=l  

(35) 

(36) 

where L and R stand for the states to the left and right of the cell face C and Z2kcj 
are given by, 

X / 7 / ( 7 -  1) 2-2~ / 

+ x/v/(v 

(37) 

pAu 
_ 

2 
= / X p  

f i A  u 
- 

2 

and, 

A p  : PR -- PL,  A U  ~- u R -  UL, A p  : p R  -- pL .  (38) 

The total flux at a cell face C is then given by the sum of upwind interpolated 

transport flux F * and F(~,. As a last comment on AFDS we may add that  even 

though AFDS is based on our wave-particle idea it is somewhat different from AFVS 

described before. Both AFDS and AFVS treat the transport part of the flux in the 

same fashion but acoustic part F a on a cell face is computed differently by these 

methods. 

3.  P e c u l i a r  v e l o c i t y  b a s e d  u p w i n d  ( P V U )  m e t h o d  

Here we discuss yet another line of approach for construction of novel algorithms 

for Euler equations of gas dynamics. This line of attack called the PVU method, 

is an application of the moment method strategy so successfully applied by Desh- 

pande (1986c) and Mandal (1989) and Mandal & Deshpande (1994) to develop the 

Kinetic Flux Vector Splitting (KFVS) method. The KFVS method, which has been 

recently surveyed by Deshpande (1993), has turned out to be extremely robust in 

numerically solving a variety of 2-D and 3-D problems arising in inviscid gas dy- 

namics. The KFVS m~thod suffers from three basic deficiencies : 

(i) like many other flux vector splitting methods it is highly diffusive. This property 

is both a virtue and a vice. The KFVS method owes its robustness to its highly 

diffusive character (virtue) and ipso  f a c t o  leads to unacceptably large smearing of 

contact discontinuity and boundary layers (vice) ; 

(ii)the KFVS method assumes a rest frame because the splitting is accomplished by 

dividing the molecular velocity into positive half (v > 0) and negative half (v < 0) ; 

(iii) the integration of the Maxwellian distribution over v > 0 and v < 0 in KFVS 
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leads to formulae involving error functions whose computat ion for every mesh point 

can be expensive. 

Raghurama Rao & Deshpande (1991a,1995) have recently advanced the concept 

of splitting based on the peculiar velocity c (also called the thermal velocity in 

the jargon of the Kinetic Theory of Gases). The split flux expressions so obtained 

are fi'ee of the defects (ii) and (iii) above, and lead to the PVU method which is 

more etficient than the KFVS method while at the same time possessing its robust 

property. 

We will now describe the basis of the PVU method (Raghurama Rao & Deshpande 

(1991a,1995)). Consider the 1-D Boltzmann equation 

Of Of  
O--t- + v0-7 = J (f' f ) '  (39) 

where v is the molecular velocity, f is the velocity distribution function, J ( f ,  f )  is 

the collision term whose structure is of no concern here as it vanishes in the Euler 

limit. The  basic unknown f in (35) is a function of t ime t, position x and velocity 

v. The Maxwellian velocity distribution denoted by F is given by 

[ ,] 
F = k( / ) exPi0 ' u )  2 - Too , 

where p is the mass density,/3 = 1 T is the temperature,  R is the gas constant 
2 R T  ' 

per unit mass,u is the fluid velocity, I is the internal energy variable corresponding 

to nontranslational degrees of freedom (this variable is required to force a given 

vMue of 7 for the gas), I0 is the average internal energy due to nontranslational 

degrees of freedom, given by i0 = [(3 - 2 7 ) / ( 2 ( 7 -  1))] R T  and 7 is the ratio of 

specific heats. One of impor tant  properties of 

OF OF 
0--7. + v-0-~x = 0, (41) 

is that  the Euler equations of motion, 

OU OG 
0-7- + ~x, = 0, (42) 

can be cast in the compact  form 

where 

(~,  OF OF. 

-gi-+ 

q2 = moment  fllnction w~ctor = I'] 'O "~ , 

(43) 

(44) 

U = (qZ,F) = dI  dv ~h '  = , 
• , -oo pE  

(45) 



P V U  and wave-particle spl i t t ing schemes 1039 

G = ( ~ , F ) = [ . / 0  dr  dv ¢ tvF = + pu 2 . (46) 
oo pu + p u E  

The  above connection between the Bol tzmann equation (37) and the Euter equations 

(38) is at the root of many  kinetic schemes. Raghurama  Rao &; Deshpande (1991a,1995) 

rewrite (37) in the form , 

OF 0 ( u F )  + 0 ( c Y )  = O, (47) 
o--7+~ 

where c = v - u is the peculiar velocity. Taking kO-moments of (43) gives 

OU OG ~ 8G" 
0-i- + ~ + o~ - o, (48) 

where 

/o Gt = (qg, uF> = d I  dc ~lguF, (49) 
O 0  

/:J? G a = (fit,oF> = d[  de qlcF. (50) 
O 0  

The flux vectors G ~ and G a defined by (44) and (45) are exactly the same as F t 

and F a given by (9). It  is interesting to observe that  the physical arguments  lea(l- 

ing to the equation (8) involving splitting of the flux vector into the t ranspor t  and 

the acoustic parts,  are different f rom those behind equation (4,1). Even then both 

ways of looking at the splitting of the flux vector lead to identical expressions for 

the t ranspor t  and the acoustic parts.  The basic idea behind writing tile Bol tzmann 

equation (39) ill the form given by (45) is the recognition that  the u-part  is unidirec- 

tional while the c-part  is nmltidirectional.  Another  way of looking at this difference 

is tha t  u is a deterministic variable while the random variable c ~ N (0, 1/(2//)), 

tha t  is, c follows a Normal  distribution with zero mean and variance equal to 1/(2~).  

The mot ion of a particle can be thought  of as consisting of an orderly mot ion (u) 

and a r andom motion (c) due to thermal  agitat ion of molecules. The PVU method 

recognises this difference in the behaviour of u- te rm and c-term and treats them 

differently. It  is also believed tha t  this way of dealing with the two terms is useful 

in constructing genuinely multidimensional upwind schemes. 

The  next question in the development of t.he PVU method is the upwind differ- 

encing of OGt/Ox and O(.;a/Ox terms. So far as the t ransport  term is concerned we 

follow the same method as before, tha t  is, we write 

(,,Y) = ~ + ~ , 

and then obtain the upwind differenced approximat ion as 

[. ] l 
( u F )  - a x  

J 

1 
+ 

(52) 
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After taking f i-moments as per the moment method strategy (Deshpande 1986c) 

we obtain the upwind differencing at the Euler level as 

( _ ~ x  t ) [0_@ ( )] 1 " / I F  - -  

j Ax 

1 

] 
(53) 

Let us now deal with the upwind differencing of the acoustic term OG~/Ox.  Fol- 

lowing Raghurama Rao & Deshpande (1991a,1995) we observe that  

OG a 

Ox 

0 
- (fi' U~ (cr)) 

= ( f i , ~  F ) + ( f i , ~  F ) .  

= 0 ( f  i ,  ~ F ) +  O( f i ,  ~ F )  
Ox 

(54) 

We therefore obtain split acoustic fluxes G a+ and G a-  given by 

c + Ic c -  Ic 
a °+ = (fi ,  - - g - - F )  a n d  a a -  = (fi,  - 5 - - ~  ). (55) 

This splitting is based on the peculiar velocity c and hence this scheme is called 

Peculiar Velocity based Upwind (PVU) scheme. In terms of the split fluxes (48) 

gives 

OG a OGa+ OG a-  
_ - -  + - -  (56) 

Ox Ox Ox 

Performing the integration with respect to c and I in the formulae (49) we obtain 

G azlz 

+ _P 

2 2v'-~ 
pu 1 

(57) 

Both the AFVS and PVU schemes are somewhat similar to the CUSP (Convection 

Upwind and Split Pressure) scheme of Jameson (1993) in the sense that  the con- 

vection terms in the Euler equations are upwind differenced and the pressure terms 

are split, ttowever, the CUSP scheme is different from the present methods. The 

transport flux and the acoustic flux of AFVS and PVU methods are not the same as 

the convective flux and pressure flux either in the CUSP scheme of Jameson or that  

due to Denton (1983). ttence, the eigenvalues of the corresponding flux Jacobians 

are also different for CUSP and the present methods. The method of upwind dif- 

ferencing the convective and pressure fluxes is also different in the AFVS and PVU 

methods compared to the CUSP method. Let us now compare the expressions for 

the split acoustic fluxes for the AFVS and PVU methods. We note that /3 = 7/(2a 2) 
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and hence G a+ for the PVU method reduce to 

a a+ ~__ 

4- x/2~r3` 

p 4- pua 
2 ~ 

pu pa ( p  3 ' + 1  ~ )  
E 4- ~ 2 C.;- 1) + 

Now compare these with the AFVS expression (18) 

-t- ~ @  ¢ pa 

G a:t: = 

(58) 

p ,  / 7 - 1 .  
~ 23/_---4-9pu. (59) 

V 7 \PIT-- II + 

We observe that PVU formulae for G a+ given by (52) are very similar to those of 

AFVS given by (18). However, they are not identical even if we try to choose a 

suitable value of the dissipation control parameter  ¢ in (18). For, a comparison 

between (18) and (52) suggests that  

1 
= (60) 

¢ [2~(3`-1)]3 

This value when substi tuted in expressions (18) yields 

+ pa 

Ga+ P = ~ 4- ~ , (61) 

-E±~ ~_i + 

which shows that  the split fluxes for mass and momentum are in agreement with 

the respective expressions for the PVU method but  the split fluxes for energy do not 

match. We therefore conclude that  the AFVS and PV-splitting are allied ideas but  

they do not lead to identical expressions for the split fluxes even when the parameter  

¢ is adjusted. It appears that  one more parameter  may be required for obtaining 

identical formulae. Whether  this is possible within the framework of AFVS remains 

to be seen. 

Finally we end this section by stating that  the PV-splitting can be easily extended 

to multidimensions. We start  with the 2-D Boltzmann equation 

OF 0 0 
o-Y + ~ (vlF) + ~ (v2F) = 0. (62) 

The collision term gets dropped as it becomes zero in the Euler limit. The  2-D 

Maxwellian F is given by 

[ el fl fl --fl(Vl Ul) 2 --~Vl Ul) 2 ~0 F = ~-~o ; e x p  - - - , (63) 
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Io = 2 - 7 RT.  (64) 
3 ' - 1  

Following the same procedure as before we rewrite (62) in the form 

OF O 0 O 0 
O-t- + ~xx (u lF)  + ~xx (u2F) + ~x  (c ,F)  + ~x  (c2F) = 0, (65) 

and define the transport and acoustic fluxes by 

G] = (¢ ,UlF) ,  Gt2 = (q, u2F), G~ = ( '~,elF},  G~ = (ql, e2F), (66) 

The split acoustic fluxes are then given by 

(~, c~ ± M I F )  ' G~+ = (~, c2 :~[C2lF ) (67) G,+  

Performing the integrations in the fornmlae (60) with respect to I, cl and c2 we 

obtain 

± P 

2, /~  
pul p ( p 7 + l  

-2 - ± ~  2(~-11 
m " J r "  - - - -  

"~ +2 ~ ) 

(68) 

( j~ a ::1= 

2 

± P 

P± 

pu2 p ( p  7 + 1  
- ~ -  :t: ~ 2 ~72---1) 

+ 4 +2 ~___A) 

(69) 

The above formulae are based on splitting along x -Y directions of a Cartesian frame. 

When PVU is used in the finite volume framework, the fluxes must be determined 

on a cell face tLot necessarily parallel to either of the coordinate directions. On an 

arbitrary cell face the split fluxes are given by 

P ± - -  

p pul 
n j~  2c 

p 

pu,~ p f p 

-?- :~ 7 ~  \~7 + 

(7o) 

where ~t.l and n2 are the direction cosines of the outward normal on the cell face, 

u .  is the fluid velocity normal to the cell face and £7 is the internal energy per 

unit mass. Wc observe that  the sprit, flux formuaJe G a± of the PVU method do not 
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involve error functions and exponential  te rms and hence are expected to lead to a 

more efficient computa t iona l  method than the KFVS method.  Also, no rest f rame 

is assumed in deriving the above formulae. The next section discusses the results 

obtained by solving a large number  of 2-D problems using AFVS, AFDS and PVU 

methods.  

4. Resu l t s  and discuss ions  

For some prel iminary results obtained using the AFDS method reference is made  

to Balakrishnan & Deshpande (1991). AFDS method has been found to be less 

dissipative and less robust  than the AFVS method.  Here we concentrate on the 

results obtained by using AFVS and PVU methods.  

Both the AFVS and PVU schemes have been tested on a large number  of 2- 

D problems ( R a g h u r a m a  Rao(1994) and Balakrishnan and Deshpande (1992). It  

is a s tandard  practice in Computa t iona l  Fluid Dynamics  to evaluate the perfor- 

mance of new schemes by computing subsonic, transonic and supersonic flows for 

G A M M / A G A R D  test cases. We give below a few examples demonst ra t ing  the 

capabil i ty of these two new methods.  More details are available in R a g h u r a m a  

Rao (1994) and Balakrishnan & Deshpande (1992). The AFVS method was applied 

to compute  flow past  NACA0012 airfoil on 128 x 64 O type structured grid with 

outer boundary  five chord lengths away from the mid-chord point. The  free s t ream 

Maeh number  is 0.85 and the angle of a t tack is 1 °. This is an A G A R D  test case. 

The pressure and Math  contours obtained are shown in figure 2. The contours are 

smooth  and are indicative of the ability of the scheme to capture shocks accurately. 

The PVU method was also applied to the above test example.  The computa t ions  

were done on an unstructured mesh with adapta t ion,  tligh resolution finite volume 

version of PVU method  was used (Raghurama  Rao 1994). The s tar t ing mesh, the 

adapted mesh as well as the pressure contours obtained on these meshes are shown 

in figures 3, 4, 5 and 6. Only a part  of the mesh is shown for clarity. The  outer  

boundary  is located 15 chord lengths away from the airfoil, which is not shown in 

the above figures. The shocks on the upper  and the lower surfaces are very accu- 

rately captured.  Table 2 shows the lift and drag coefficients (CL and Co)  obtained 

by AFVS and PVU schemes. Also shown in this table are the s tandard  values of 

these coefficients in the AGARD report  (AGARD 1986). 

T a b l e  2. Lift and drag coetqficients obtained with AFVF and PVU schemes.  

Case A(; ARD range AFVS PVU 

Moo a CL CD CL CD C'r CD 
0.85 1 ° 0.3.30-0.3889 0.0464-0.0590 0.4145 0.0607 0.3351 0.0565 

The coefficients predicted by more accurate computat ions  using PVU method  

fall within the A G A R D  range. The AFVS computa t ions  were not done with mesh 

adapta t ion  and the coefficients predicted by the AFVS method are slightly outside 

the A G A R D  range. More accurate computa t ions  done by using AFVS method  push 

these values into the A G A R D  range. 

At the outer limit of the speed range is the hypersonic flow involving blunt body 

shock. The performance of the AFVS scheme was further tested by comput ing  
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F i g u r e  3. S tar t ing  mesh for NACA0012 airfoil, points = l123, c e l l s =  2056, edges 

= 3179. 

- 1 . ~  - 0 . ~  0 . ~  0 . ~  1 . ~  1 . ~  2 . ~  
I . ~  1 . ~  

1.00 
1.00 

0 .50 

0.00 
0.00 

- 0 . 5 0  
--0.50 

- I . 0 0  -1.00 

-1 ,50 
-1  "~0-1.00 -0.50 O.O0 0.50 1.00 1.50 2.00 

F i g u r e  4. Pressure contours obtained on the s tar t ing mesh. Contour  Levels from 

0.54 to 1.5 ( increment 0.04), scheme: Itigh resolution PVU finite volume method ,  

Mach no. = 0.85, angle of a t tack = 1% 
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F i g u r e  5. Adapted  mesh for NACA0012 airfoil, points = 5724, cells = 11197, edges 

= 16921. 

1.00 

- 0 . 0 0  

- 1 . 0 0  

- 1.50_ 1.00 --0.50 O.O0 0.50 1.0~1 1 .~LI ~..LIO 

F i g u r e  6. Pressure contours obta ined on the adapted mesh. Contour levels from 

0.48 to 1.5 ( increment 0.04), scheme: High resolution PVU finite volume method ,  

Mach no. = 0.85, angle of a t tack  = 1 °. 
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Mach no.=4.0 Mach no.=lO.O 

10.5 10.5 

Mach n o . = 1 5 , 0  

10.5 

1047 

9.5 

8.5 
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6.5 

5.5 

4.5 

3.5 
4.0 5.0 6.6 

9.5 

8.5 

7.5 

6.5 

5.5 

4.5 

3.5 I I 
4.8 5.0 0.8 

9.5 - -  

0.5 

7.5 

8.5 

5.5 

4.5 

3.5 I I 
4.0 5.8 6.8 

F i g u r e  7. P r e s s u r e  c o n t o u r s  for  A F V S  s c h e m e  (f low p a s t  cy l inde r ,  99 x 98 g r id ,  

M U S C L ,  c o n t o u r s  0.05 u n i t s  a p a r t ) .  

- -  n u m e r i c a l  
- -  - -  e x a c t  

M a c h  n o . = 4 . 0  M a c h  n o . = l O . O  
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0.0 i I I I I i i I I I I I I i I I I I " 1  I I I i I I J 

0.5 1.0 0.0 0.5 1,0 0.0 0.5 1.0 

X X X 

F i g u r e  8.  Po v a r i a t i o n  a l o n g  t h e  s t a g n a t i o n  l ine  for  A F V S  s c h e m e  (f low p a s t  a 

cy l inde r ,  99 x 98 g r id ,  M U S C L ) .  
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Mach n o . = 4 . 0  

5 . 5 -  

n u m e r i c a l  
* * * * * e x a c t  stll. d e n s i t y  

M a t h  no .= lO.O 

7 . 0 -  
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F i g u r e  9. Density variation along the stagnation line for AFVS scheme (flow past 

a cylinder, 99 x 98 grid, MUSCL). 

F i g u r e  10. Starting mesh for 

blunt body, points = 446, cells 

-- 800, edges = 1245. 
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- 8  - 3  - 1  1 3 
7 7 

f. 5 

• 1 3 

1 | 

-1  - 1  

-,1 - 3  

- a  - 5  

-7  -7  
- 5  - 3  -1  1 3 

F i g u r e  11. Pressure contours 

on start ing mesh. Contour levels 

from 1.2 to 5.5 (increment 0.2), 

Mach no. = 2.0, angle of attack 

= 0 °, scheme: High resolution 

PVU finite volume method.  

F i g u r e  12. Adapted mesh for 

supersonic flow, points = 1017, 

cells = 1942, edges = 2958. 
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- 5  - 3  --1 3 
7 

-1 - 1  
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- 1  

- 1  

- 1  
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F i g u r e  13. Pressure contours 

on adapted  mesh. Contour levels 

-5 f rom 0.7 to 5.7 (increment 0.2), 

Mach no. = 2.0, angle of a t tack 

= 0 °, scheme: High resolution 
- 7  

3 PVU finite volume method.  

- 1  

- 3  

- 5  

3 
7 

- 7  
3 

F i g u r e  14. Pressure contours 

on s tar t ing mesh. Contour  levels 

f rom 2.0 to 78.0 ( increment 2.0), 

Mach no. = 8.0, angle of  a t tack 

= 0 °, scheme: First order PVU 

finite volume method.  
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F i g u r e  15. Adapted mesh for 

hypersonic flow, points -- 1520, 

cells = 2940, edges = 4459. 

- 5  --3 - 1 1 3 
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- 5  I -  -4 - 5  

- 7  ~ - 7  
- 5  -.3 - 1  1 3 

F i g u r e  16. Pressure contours 

on adapted  mesh. Contour  levels 

f rom 2.0 to 82.0 ( increment 2.0), 

Mach no. = 8.0, angle of a t tack  

= 0 °, scheme: First order PVU 

finite volume method.  
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flow past a semi-cylinder. The  computations were made for three different differ- 

ent roach numbers : 4, 10 and 15. A uniform 99 x 98 structured grid is employed for 

computations.  The radius of the outer boundary is chosen to be 3.5 times the radius 

of the semi-cylinder. The pressure contours given by the AFVS scheme for three 

different Mach numbers, the total pressure variation and the density variation along 

the stagnation line are shown ill figures 7,8 and 9. The smoothness of these contours 

demonstrate  the robustness of the AFVS scheme in capturing strong shocks. 

The PVU scheme was applied to the test problem given by Arminjon & Dervieux 

(1993) for hypersonic flow. The computations are done for M = 2.0 and M = 8.0 with 

zero angle of at tack using high resolution and first order PVU scheme respectively 

on all unstructured mesh. Again the starting mesh, adapted mesh and the pressure 

contours obtained on these meshes are shown in figures 10 to 16. The bow shock 

is closer to the body in hypersonic case compared to the supersonic flow. This is 

a well-known result of gas dynamics. The shocks are captured crisply by the PVU 

method with grid adaptaion. 

Extensive computat ions performed using the AFVS and PVU schemes show the 

basic soundness of the wave-particle idea and splitting based on the peculiar velocity 

of molecules. The basic idea of having a discrete mathematical  model inheriting as 

many physical properties of the fluid flow as possible appears quite sound and turns 

out to be often promising needing further study. Implicit in the AFVS method is the 

physically meaningful model that fluid behaves part ly particle like and partly wave 

like. The PVU method is based on a different but closely related idea that  the mo- 

tion of particles is a random motion superimposed on a unidirectional motion. The 

particle like behaviour in wave-particle splitting is equivalent to the unidirectional 

motion in the PVU method. The random motion taking place in all directions is 

similar to the wave spreading in all directions, tt  would be very tempting to design 

a new scheme taking the multidirectionality of the pressure part  into account. The 

genuinely multidimensional upwind scheme based on the Boltzmann equation has 

been developed by Raghurama Rao & Deshpande (1991b) and Eppard & Grossman 

(1993). The results show a lot of improvement but  these schemes are at present 

quite expensive. These two schemes also do not separate unidirectional and random 

motion of the molecules as in the PVU scheme. Further work is required to exploit 

these ideas in a more efficient manner.  
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