This paper was presented as part of the main technical program at IEEE INFOCOM 2011

PW-MAC: An Energy-Efficient Predictive-Wakeup
MAC Protocol for Wireless Sensor Networks

t

Lei Tang>’< Yanjun Sun

Omer Gurewitzi David B. Johnson>'<

>’<Department of Computer Science, Rice University, Houston, TX, USA
JfSystems and Applications R&D Center, Texas Instruments, Dallas, TX, USA
iDepartment of Communication Systems Engineering, Ben Gurion University, Israel

Abstract—This paper presents PW-MAC (Predictive-Wakeup
MAC), a new energy-efficient MAC protocol based on asyn-
chronous duty cycling. In PW-MAC, nodes each wake up to
receive at randomized, asynchronous times. PW-MAC minimizes
sensor node energy consumption by enabling senders to pre-
dict receiver wakeup times; to enable accurate predictions,
PW-MAC introduces an on-demand prediction error correction
mechanism that effectively addresses timing challenges such
as unpredictable hardware and operating system delays and
clock drift. PW-MAC also introduces an efficient prediction-
based retransmission mechanism to achieve high energy effi-
ciency even when wireless collisions occur and packets must be
retransmitted. We evaluate PW-MAC on a testbed of MICAz
motes and compare it to X-MAC, WiseMAC, and RI-MAC,
three previous energy-efficient MAC protocols, under multiple
concurrent multihop traffic flows and under hidden-terminal
scenarios and scenarios in which nodes have wakeup schedule
conflicts. In all experiments, PW-MAC significantly outperformed
these other protocols. For example, evaluated on scenarios with
15 concurrent transceivers in the network, the average sender
duty cycle for X-MAC, WiseMAC, and RI-MAC were all over
66%, while PW-MAC’s average sender duty cycle was only 11%:;
the delivery latency for PW-MAC in these scenarios was less than
5% that for WiseMAC and X-MAC. In all experiments, PW-MAC
maintained a delivery ratio of 100%.

I. INTRODUCTION

The main sources of energy consumption in sensor nodes
include listening to the wireless channel and transceiving
packets. In recent years, many energy-efficient MAC
protocols have been proposed to improve the lifetime of
sensor networks by reducing the energy consumed by idle
listening and overhearing. The idle listening problem [13]
refers to a node listening to the channel even though there are
no radio transmissions to receive. The overhearing problem
refers to a node receiving a packet it is not intended to receive.

An important mechanism for reducing energy consumption
in sensor networks is duty cycling. The duty cycling technique
saves energy by switching nodes between awake and sleeping
states [1]. The average duty cycle measures the ratio of the
time a node is awake to the total time. Existing duty cycling
energy-efficient MAC protocols can be categorized into two
types: synchronous and asynchronous.

Synchronous duty-cycling MAC protocols (e.g.,
S-MAC [13], TRAMA [9], SCP [14], and DW-MAC [10])
reduce sensor energy consumption by synchronizing the
sensors’ sleep and wakeup times. However, synchronous duty-
cycling MAC protocols require multihop time synchronization.

978-1-4244-9921-2/11/$26.00 ©2011 |EEE

In addition, using fixed sleeping times and listening times [13]
is inefficient in handling traffic with variable rates.

In contrast, asynchronous duty-cycling MAC protocols do
not require such synchronization. They may be either sender-
initiated (e.g., B-MAC [8], X-MAC [1], and WiseMAC [3])
or receiver-initiated (e.g., RI-MAC [11]). With the sender-
initiated approach, a sender transmits a preamble before a
packet transmission to notify the receiver of the upcoming
packet. WiseMAC pioneered predictive wakeup in sensor
network MAC protocols by fixing the node wakeup interval,
thereby enabling a sender to deduce future receiver wakeup
times and send a shortened wakeup preamble shortly before
the receiver wakes up. However, this fixed node wakeup inter-
val may allow repeated node wakeup schedule collisions, par-
ticularly in dense networks, thus degrading performance. With
the receiver-initiated approach, in contrast, sender preambles
are replaced with receiver wakeup beacons; as the beacon
is substantially shorter than a preamble, wireless bandwidth
usage and collisions are reduced [11].

In this paper, we present a new asynchronous duty cycling
energy-efficient MAC protocol called PW-MAC (Predictive-
Wakeup MAC). PW-MAC achieves near-optimal energy ef-
ficiency both at receivers and at senders. In an optimally
energy-efficient MAC protocol, when there is a packet to send,
the sender and receiver wake up at the same time, transfer
the packet reliably, and both then quickly go to sleep again.
PW-MAC approaches this optimality in several ways.

Specifically, PW-MAC is a receiver-initiated protocol but in-
troduces use of an independently generated pseudo-random se-
quence to control each node’s wakeup times, allowing senders
to accurately predict the time at which a receiver will wake up.
Thus, whereas previous receiver-initiated protocols (e.g., [11])
reduce the duty cycle only at receivers, PW-MAC reduces the
duty cycle for receivers and for senders. In addition, to prevent
senders from missing the wakeup of receivers due to factors
such as hardware and operating system latency and clock drift,
PW-MAC introduces a novel on-demand prediction-error cor-
rection mechanism. Thus, unlike prior protocols using forms
of wakeup prediction (e.g., [3]), PW-MAC is able to maintain
accurate prediction; we have found in experiments on real
sensor nodes that wakeup prediction without such correction
can otherwise lead to significantly reduced performance.

Furthermore, the traffic in wireless sensor networks can be
bursty, and multiple sensors may attempt to transmit at the

1305

same time, possibly to the same node, e.g., when a group
of sensors detect the occurrence of an event and transmit a
report to the sink. Wireless collisions are likely when there are
multiple concurrent transceivers, and prior work did not specif-
ically include a mechanism for energy-efficiently resolving
collisions and retransmitting lost packets. PW-MAC provides
a prediction-based retransmission mechanism to achieve high
energy efficiency even when wireless collisions occur and
packets need to be retransmitted.

Finally, PW-MAC scales well in large and dense networks
owing to its small memory and message overhead. In PW-
MAC, a node does not explicitly send its wakeup times to
other nodes. Instead, a sender independently deduces future
wakeup times of a receiver based on the sender’s knowledge
of the receiver’s pseudo-random wakeup-schedule generator.

The contributions of this paper include the following:

o We present the design and implementation of PW-MAC
(Predictive-Wakeup MAC). PW-MAC is designed to
minimize sensor node energy consumption by enabling
senders to predict receiver wakeup times, even given
the challenges of unpredictable hardware and OS delay
and clock drift. PW-MAC achieves very high energy
efficiency by minimizing idle listening and overhearing.

o We present an efficient prediction-based retransmission
mechanism to achieve high energy efficiency when wire-
less collisions occur and packets need to be retransmitted.

o Through experiments on MICAz motes, we show that
the prediction error caused by hardware and OS latency
can be much larger than that caused by clock drift. To
enable a sender to wake up shortly before a receiver does,
we introduce an on-demand prediction error correction
mechanism, allowing a sender to resynchronize with
a receiver when needed. Our experimental results on
MICAz motes show that PW-MAC is very effective in
controlling the prediction error.

o We present the results of experiments on a testbed of
MICAz motes to evaluate the performance of PW-MAC
compared with other energy-efficient MAC protocols
(i.e., X-MAC, WiseMAC, and RI-MAC) under single-
hop and multihop traffic flows, under hidden-terminal
scenarios, and under scenarios in which nodes have
wakeup schedule conflicts. In all experiments, PW-MAC
significantly outperformed these other protocols.

The rest of this paper is organized as follows. Section II
describes related work on duty-cycling MAC protocols for
sensor networks. Section III presents the design of the
PW-MAC protocol, and Section IV presents the evaluations of
PW-MAC on a testbed of MICAz motes. Finally, Section V
presents conclusions.

II. RELATED WORK

Several asynchronous duty-cycling MAC protocols have
recently been proposed in the literature [1], [3], [8], [11]. Such
protocols are attractive, as they do not require multihop time
synchronization among nodes as is required by synchronous
duty-cycling MAC protocols [5], [10], [12], [13].

B-MAC [8] and X-MAC [1] are early examples of sender-
initiated asynchronous duty-cycling protocols. In these proto-
cols, before transmitting a DATA frame, a sender transmits
a preamble of duration longer than the receiver’s periodic
wakeup interval, serving as a notification of the pending DATA
frame transmission. In order to receive packets, each node
periodically wakes up to check for activity on the wireless
channel, and if activity is present, the node remains active to
receive a possible incoming packet that may be destined to it.
Each node will thus wake up to receive at least once during
the preamble and will then be able to receive the DATA frame
that follows the preamble. The UPMA package [6] for TinyOS
implemented a modified version of X-MAC by using copies of
the DATA frame itself as the short preambles. This variation of
X-MAC simplified the implementation in TinyOS and helps
a sender to determine whether the DATA was successfully
delivered, as the receiver returns an ACK following receipt of
the DATA.

However, with all of these sender-initiated protocols, a
sender often shows much larger duty cycle than a receiver,
transmitting the preamble until the receiver wakes up and thus
capturing the wireless channel throughout this time. PW-MAC,
in contrast, captures the channel only for very short intervals
and achieves a very low duty cycle at receivers and at senders.

WiseMAC [3] is a sender-initiated protocol, similar to
B-MAC. WiseMAC, however, pioneered predictive wakeup in
sensor network MAC protocols to enable reducing the pream-
ble length by fixing the node wakeup interval. Thus, a sender
can simply predict the next wakeup time of a receiver based on
this repeating schedule and send a shortened wakeup preamble
beginning shortly before the predicted receiver wakeup time.
However, as with B-MAC, when there are multiple concur-
rent transceivers in the network, the simultaneous preamble
transmission from each of the multiple senders creates poor
performance. In addition, each individual node with WiseMAC
must use the same fixed, repeating wakeup interval over time,
which can lead to persistent collisions if two nodes choose
approximately the same wakeup time.

Unlike WiseMAC, nodes with PW-MAC wake up according
to independently generated pseudo-random schedules, ensur-
ing that nodes will not continuously generate the same wakeup
times and thereby significantly reducing transmission colli-
sions. PW-MAC also allows a node to change the parameters
of its pseudo-random wakeup-schedule generator (e.g., if the
node reboots or due to other circumstances). Through the on-
demand prediction state request mechanism of PW-MAC, a
sender can quickly learn to predict the changed wakeup times
of a receiver.

Furthermore, prediction in WiseMAC uses only clock drift
rate to adjust the predicted receiver wakeup times, ignoring the
prediction error that may be caused by factors such as variable
hardware and OS latency; the effect of these additional factors,
as shown in our experiments, can lead to poor performance on
real sensor nodes. WiseMAC also does not address the issue of
energy-efficient collision resolution and packet retransmission,
and its performance thus degrades significantly as the number

1306

of concurrent traffic flows increases. In contrast, PW-MAC
can effectively control the prediction error caused by hardware
and OS latency as well as by clock drift, and achieves high
energy efficiency on real sensor nodes. PW-MAC furthermore
includes a prediction-based retransmission mechanism to
achieve high energy efficiency even when wireless collisions
have caused packet transmission failures.

Crankshaft [5] is a sender-initiated protocol that divides time
into frames, with each frame divided into n slots. Crankshaft
assumes global synchronization and assigns a wakeup slot to
each receiver as its MAC address modulo n. Every receiver
can use only a fixed slot in each frame, making Crankshaft
inflexible in handling bursty traffic that may occur in sensor
networks. In addition, using this fixed scheduling of receiver
wakeup slots can lead to receivers repeatedly waking up at the
same time, causing packet collisions.

O-MAC [2] is also a sender-initiated protocol that divides
time into frames and frames into slots. However, although the
authors of O-MAC [2] presented a careful analytical study
on which they based the design of the O-MAC protocol,
many important details of a complete protocol are unstated in
their paper. Similar to PW-MAC, wakeup scheduling for each
receiver in O-MAC is based on a pseudo-random sequence.
Howeyver, in contrast to PW-MAC, nodes in O-MAC cannot
learn their neighbor’s wakeup schedules just by listening to
the channel; they must run a special neighborhood discovery
procedure (not specified in the paper) in order to learn these
schedules and to synchronize time with each receiver. Fur-
thermore, perfect synchronization between nodes is difficult to
achieve and maintain. If the clocks drift between sender and
receiver, packet transmissions in O-MAC may be lost since the
sender may transmit the packet (or part of the packet) before
the receiver wakes up or after it goes back to sleep; O-MAC
also does not define a retransmission mechanism.

In contrast, in PW-MAC, we present an efficient prediction-
based retransmission mechanism to achieve high energy effi-
ciency when packets must be retransmitted. In addition, the use
of slotted time in O-MAC limits the choices for the pseudo-
random number that determines the slot within the receiver’s
frame in which the receiver will wake up next. This limitation
increases the likelihood of collisions, where two receivers pick
the same slot, which may particularly be a problem in dense
networks. In contrast, time in PW-MAC is unslotted, allowing
more variation in pseudo-random choices, and PW-MAC uses
carrier sensing to avoid collisions between two nodes that
pick closely separated wakeup times. Moreover, since each
receiver in O-MAC can use only one slot within each frame, O-
MAC cannot efficiently handle bursty traffic, whereas receivers
in PW-MAC may remain awake if additional packets are
transmitted to it after receiving one. Finally, although some
analytical evaluation of O-MAC has been presented [2], no
detailed simulation or experimental evaluation of the complete
O-MAC protocol exists; in particular, the expected perfor-
mance of O-MAC on real sensor node hardware in different
scenarios remains unclear.

RI-MAC [11], in our prior work, introduced a receiver-

initiated approach, in which the receiver-initiated wakeup
beacons are used to avoid long sender-initiated preambles
required by protocols based on sender-initiated transmissions.
This approach increases channel utilization and enables
more efficient collision detection. In RI-MAC, each node
announces its wakeup with a beacon, and a sender starts the
DATA transmission upon receiving a beacon from its intended
receiver. However, when a sender in RI-MAC has a packet to
send, it immediately wakes up to wait for the receiver, leading
to a large sender duty cycle due to its idle listening until
the receiver wakes up. Compared with RI-MAC, PW-MAC
achieves near-optimal duty cycle at receivers and at senders.

III. PW-MAC DESIGN

In this section, we present the detailed design of the
PW-MAC (Predictive-Wakeup MAC) protocol for sensor net-
works. We first describe the basic predictive wakeup mech-
anism of PW-MAC in Section III-A. Then, Section III-B
presents the prediction-based retransmission mechanism of
PW-MAC, and Section III-C presents an on-demand prediction
error correction mechanism that efficiently controls the predic-
tion error caused by factors such as hardware and operating
system latency and clock drift. Finally, Section III-D shows
the algorithm used by a sender to compute its wakeup time
when sending a DATA packet to some receiver.

A. PW-MAC Predictive-Wakeup Mechanism

The goal of PW-MAC is for a sender to wake up and turn
on its radio right before the intended receiver wakes up. In
addition, PW-MAC strives to avoid and efficiently resolve any
radio collisions caused by multiple concurrent traffic flows.

To enable a sender to accurately predict the wakeup times
of a receiver, we require every node in PW-MAC to compute
its wakeup times using its pseudo-random wakeup-schedule
generator rather than waking up on a truly random schedule.
By using a pseudo-random wakeup schedule rather than a
fixed schedule (which would also be predictable, as is done in
WiseMAC [3]), we avoid the possibility of neighboring nodes
consistently waking up at the same time, as such occurrences
would significantly increase the chances of collisions from
senders that are hidden with respect to each other; such
collisions would also generally be persistent with a fixed
wakeup schedule.

The predictive-wakeup mechanism of PW-MAC can be
applied to receiver-initiated duty-cycling MAC protocols (e.g.,
RI-MAC) and to sender-initiated duty-cycling MAC protocols
(e.g., WiseMAC and SCP). Our design for PW-MAC uses
the receiver-initiated approach since it provides good receiver
duty cycle performance and provides a beacon transmission
mechanism that can be used as the basis for transmitting the
prediction state of a node when needed.

There are many ways to build pseudo-random number
generators suitable for use with PW-MAC. For the sake of
simplicity, we take the linear congruential generator (LCG)
[7] in Equation 1 as an example:

Xnt1 = (aX,, + ¢) mod m (1)

1307

Prediction-based
retransmission

Set prediction state
request flag

Wake up at Detect transmission
predicted time failure

S [oama [DATA B DATA |

i« Pseudo-random _ pseudo-random
i wake-up interval wake-up interval

r_ g o

Send predictidn state in beacon

. Transmit |:| Receive

Fig. 1. A sender S in PW-MAC requests the prediction state of a receiver
R and wakes up right before R does, after learning the prediction state of
R. The prediction-based retransmission mechanism of PW-MAC enables S
to detect the transmission failure and efficiently do packet retransmissions.

Node active

Here, m > 0 is the modulus, a (0 < a < m) is the multiplier,
c (0 < ¢ < m) is the increment, and X,, (0 < X,, < m)
is the current seed. Each X, generated can be used as a
pseudo-random number and becomes the new seed.

Different nodes have different parameters for their pseudo-
random number generators to avoid nodes persistently gener-
ating the same numbers. If the m, a, ¢ and X, of the pseudo-
random number generator of a node R are learned by another
node S, S can deduce the values of all future pseudo-random
numbers generated by R. When R uses these pseudo-random
values as its wakeup intervals and S has learned the time
difference between S and R’s clocks, S can deduce all future
wakeup times of R and wake up right before R does any time
S needs to send a packet to R, significantly reducing sender
duty cycle.

The prediction state of R learned by S comprises the
parameters and current seed of the pseudo-random number
generator of R (6 bytes in total), as well as the current time
difference between S and R (4 bytes); a sender thus needs
only 10 bytes of memory to store the prediction state of a
receiver. Owing to its small memory and message overhead
and its ability to maintain high energy efficiency under mul-
tiple concurrent traffic flows, PW-MAC scales well in large
and dense networks. The message overhead of PW-MAC is
analyzed in Section III-C.

Figure 1 illustrates the predictive-wakeup mechanism of
PW-MAC. As in RI-MAC [11], each node periodically wakes
up and broadcasts a beacon, denoted as “B” in the figure, to
announce that it is awake and ready to receive DATA packets.
In PW-MAC, as shown for node R in this figure, the interval
between wakeups is calculated by a pseudo-random number
generator such as the one in Equation 1.

A node S in PW-MAC learns or updates the prediction state
of a neighbor R only on-demand, when necessary. If, when .S
has a packet (e.g., from the network layer) to send to R, .S has
does not have the prediction state of R, S turns on its radio and
waits for a beacon from R. After receiving R’s beacon, when
S transmits the DATA packet, S then sets a special flag in the
DATA packet header to request R’s prediction state. Once R
receives this DATA packet, R sends another beacon that serves
both to acknowledge the DATA packet reception (i.e., an ACK
beacon) and to allow additional DATA packets to be sent to
R; in response to the prediction state request from S, R also

embeds its current time and prediction state in the beacon. The
current time of R is used by S to compute the time difference
between S and R’s clocks. In order to precisely determine
this time difference, the current time and prediction state of R
are added to the ACK beacon immediately before the packet
is sent by R. As soon as the radio hardware of S receives
the ACK from R, S computes the time difference between S
and R to minimize the error of time difference caused by the
sensor node’s operating system delay.

With the prediction information received from the ACK
beacon, node S can predict future wakeup times of R. In the
future, if S has another DATA packet for R, S wakes up
shortly before the predicted wakeup time of R, as illustrated
in Figure 1. In contrast to RI-MAC, in which a sender stays
awake for on average half a wakeup interval, waiting for the
receiver before starting DATA transmission, PW-MAC reduces
this idle listening time to almost O once the prediction state of
the intended receiver has been learned by the sender. In this
way, PW-MAC greatly improves energy efficiency.

B. Prediction-Based Retransmission

Energy-efficiently doing packet retransmissions is an im-
portant issue in a real sensor network. The traffic in wireless
sensor networks can be bursty, and multiple nodes may trans-
mit at the same time, causing wireless collisions. Wireless
channel interference may also lead to the need for packet
retransmissions. PW-MAC includes a prediction-based retrans-
mission mechanism that achieves high energy efficiency even
when such factors have caused packet transmission failures
and packets must be retransmitted.

With existing energy-efficient asynchronous duty-cycling
MAC protocols, the senders after a collision will do a short
backoff and retransmit the DATA packets. This way of con-
ducting retransmissions may significantly increase sender duty
cycle since, after the collision, receivers may have gone back
to sleeping state since they have not received valid packets
or they regard the packet transmission as completed, thereby
making these retransmissions futile. For instance, after packet
transmission failures, senders in RI-MAC stay awake until
receivers wake up again, leading to large sender duty cycles.
Disregarding the state of the receivers, senders in WiseMAC
repeatedly retransmit the packets until the packets are ac-
knowledged, potentially causing further wireless collisions and
large sender duty cycle.

In contrast, senders in PW-MAC achieve high energy ef-
ficiency even when packets have to be retransmitted, by
detecting wireless collisions, switching to sleeping state and
intelligently choosing when to wake up and retransmit the
packets. Figure 1 illustrates the prediction-based retransmis-
sion mechanism of PW-MAC. If a sender S receives the
wakeup beacon from receiver R but not an ACK beacon for the
DATA packet sent, S recognizes that either the DATA packet
or the ACK beacon transmission failed. S then switches to
sleeping state and wakes up at the next predicted receiver
wakeup time to retransmit the DATA packet, thereby mini-
mizing the energy spent on waiting for the receiver.

1308

Prediction Error (ms)

.
0 500 1000 1500 2000 2500 3000
Time (Second)

(a) Factors such as variable operating system and hardware
latency dominate the prediction error, as clock drift between
these two motes is very small.

Fig. 2.

Prediction Error (ms)

25 4

30 L L L L L
0 500 1000 1500 2000 2500

Time (Second)
Fig. 3. The development of prediction error with on-demand correction. The
correction threshold is configured as 20 ms, which is the same as the sender
wakeup advance time. The same pair of MICAz motes as used in Figure 2(b)
were used in this experiment.

If two senders happen to send DATA packets at the same
time to a receiver, such sender transmission collision is re-
solved using the receiver-based collision resolution mechanism
of RI-MAC [11], with which the receiver detects the collision
through the Clear Channel Assessment (CCA) and notifies
the senders to retransmit their packets after increasing their
random backoff windows.

C. On-Demand Prediction Error Correction

We define the prediction error for a wakeup of a node R
as the difference between the actual wakeup time and the
predicted wakeup time of R. Controlling prediction error is
an important issue because if a receiver wakes up before the
predicted wakeup time, the sender will miss the wakeup of the
receiver, prolonging the packet delivery latency at least by a
full wakeup interval and significantly increasing the sender’s
duty cycle. On the other hand, if a receiver wakes up much
later than the predicted wakeup time, the sender duty cycle
will also increase, since the sender then has to remain awake
until the receiver does wake up.

WiseMAC partially handles the prediction error by adjusting
the sender wakeup time using a clock drift rate; however, this
is not effective on real sensor nodes, as our experiments on
MICAz motes indicate that the prediction error not only results
from clock drift but also from other factors such as hard-
ware and operating system latency. Section IV-A shows that

Prediction Error (ms)

. i
500 1000 1500 2000 2500 3000
Time (Second)

(b) Clock drift is much more significant between these two
motes, dominating other factors such as variable operating
system and hardware latency.

The prediction error between two different, arbitrarily chosen pairs of MICAz motes over time.

WiseMAC suffers reduced performance due to not addressing
the prediction error caused by these factors. Furthermore, the
clock drift rate between nodes is subject to the influences such
as temperature and humidity [4].

PW-MAC introduces an efficient on-demand prediction er-
ror correction mechanism that can effectively control the pre-
diction error caused by various factors such as those discussed
above. Figure 2 shows how the prediction error between two
different, arbitrarily chosen pairs of MICAz motes develops
over time. The nodes in these experiments use the TinyOS
2.1.0 operating system, but different motes are used in each
figure. In each of the experiments of Figures 2(a) and 2(b),
a node R sends its prediction state to a node S only at
the beginning of the experiment. The average node wakeup
interval is 1 second. Node S measures the difference between
the predicted wakeup time and the actual wakeup time of R.
Each figure shows 3000 measurement points, each indicating
the prediction error at a particular time.

These results demonstrate that clock drift may not always
be the dominating factor causing prediction error. Only using
clock drift rate in the computation of the predicted wakeup
time can cause senders to wake up too early or too late,
depending on the parameter chosen for clock drift as part of
the prediction. For instance, at the beginning of Figure 2(a),
prediction error varies from 0 to 10 ms, whereas the prediction
error caused by clock drift is almost O since R just sent its
prediction state to .S. Over time, the prediction error between
these two motes grows very slowly, as their clocks appear
to run at almost the same rate. For this pair of motes, the
prediction error is mainly caused by hardware and operating
system latency rather than by clock drift. In contrast, in
Figure 2(b), the rate of clock drift between these two motes
is much greater, even though the two motes used in this
experiment are the same type of MICAz motes used in the
experiment in Figure 2(a). Again, at the beginning of this
experiment, the error caused by clock drift is almost 0, since as
in Figure 2(a), R here just sent its prediction state to S. Over
time, however, the prediction error quickly becomes dominated
by the clock drift between this pair of motes.

PW-MAC utilizes a platform-dependent parameter, sender

1309

wakeup advance time, to account for the hardware and operat-
ing system latency. A sender also adjusts its wakeup advance
time based on the clock drift rate. With the on-demand pre-
diction correction mechanism of PW-MAC, a node S requests
an update of the prediction state of another node R when
it detects that the prediction error is larger than the sender
wakeup advance time. Figure 3 illustrates the effectiveness
of the on-demand prediction error correction mechanism of
PW-MAC on a pair of MICAz motes; the same pair of MICAz
motes as used in the experiment of Figure 2(b) were used, but
in this case, the on-demand prediction error correction was
enabled. Once a node detects that the prediction error of the
other node is more than the correction threshold, it quickly
recovers the ability to precisely predict the other node wakeup
times. Through this on-demand prediction error correction
mechanism, a sender can effectively control the prediction er-
ror of a receiver to be within its wakeup advance time, thereby
minimizing the cases in which a sender misses the wakeup of
a receiver. On-demand prediction error correction also is very
efficient in terms of message overhead. From Figure 3, a node
only updates another node once every 1400 seconds and the
size of the prediction state update is only 10 bytes.

D. Sender Wakeup Time Algorithm

The algorithm used by a sender .S for computing its wakeup
time for sending a DATA packet to an intended receiver
R is shown in Figure 4. The value A here denotes the
sender wakeup advance time parameter, and A,,;, denotes
the minimum time required to power up a node (A > A,,in)-
For MICAz motes with TinyOS 2.1.0, our experiments show
that A,,;, is about 2 ms. The value Drift denotes the clock
drift ratio, measured in our experiments for MICAz motes to
be limited to about 40 ms per hour.

Through a previous prediction state request, S has
obtained a random number generator seed of R (i.e.,
randState|R], 2 bytes), the time difference between S and
R (i.e., timeDifference[R], 4 bytes), and the last wakeup
time of R (i.e., nextWakeupTime[R], 4 bytes). The value
timeDifference| R] is computed by S as the difference between
its local time when receiving the prediction state from R and
the current time of R embedded in the prediction state update
from R. The value lastUpdate[R] denotes the time that S
received the prediction state from R, which is used to compute
Ty, the prediction error caused by clock drift. In Figure 4, .S
computes each successive wakeup time of R until it finds one
that is at least Ty + Aq larger than the current time of R.

IV. EVALUATION ON MICAZ MOTES

In this section, we evaluate PW-MAC by comparing its
performance with that of WiseMAC, RI-MAC, and X-MAC
in a testbed of MICAz motes.

We implemented PW-MAC in TinyOS 2.1.0. Each wakeup
interval of a node is computed as a pseudo-random number
between 500 to 1500 ms. The parameters a, ¢, and m of
a node’s pseudo-random number generator were configured
as node ID x 20, 7, and 1000, respectively, such that the

procedure COMPUTE-SENDER-WAKEUP-TIME (R):

if the time or random number generator info of R is unknown then
return 0; {wake up now to wait R}

end if

{compute the current time of R}

curTime[R] < localTime — timeDifference[R];

{compute the error caused by clock drift}

Tq < Drift X (curTime[R] — lastUpdate[R]);

{if next wakeup time of .S for sending to R has been computed before }

if nextWakeupTime[R] > curTime[R] then
return (nextWakeupTime|R] — curTime[R]);

end if

while nextWakeupTime[R] < (curTime[R] + Ty + Amin) do
randState|R] = RandNum(randState[R], IDR);
nextWakeupTime|R] += randState[R];

end while

if nextWakeupTime[R] > (curTime[R] + A + T4) then
return (nextWakeupTime[R] — curTime[R] — A — Ty);

else
return 0; {wake up now}

end if

Fig. 4. A sender S computes when it wakes up to send DATA packets to a
receiver R.

TABLE I
PW-MAC PERFORMANCE WITH DIFFERENT SENDER WAKEUP ADVANCE
TIME CONFIGURATIONS

‘Wakeup Sender Receiver Delivery PDR
Advance Duty Cycle Duty Cycle Latency
30 ms 6.6% 3.7% 519 ms 100%
20 ms 6.0% 3.7% 517 ms 100%
15 ms 6.8% 3.7% 511 ms 100%
10 ms 9.8% 3.7% 521 ms 100%

pseudo-random numbers generated have a full period [7].
We used the implementation of X-MAC under the UPMA
framework [6]. WiseMAC has previously been evaluated only
through simulations [3], without an implementation on real
sensor node hardware; therefore, we implemented WiseMAC
under the UPMA framework in TinyOS.

The following metrics are measured in our evaluation:

e Data packet delivery ratio (PDR): the percentage of
DATA packets that are successfully delivered from the
source to the destination.

o Average duty cycle: the ratio of the time a node is awake
to the total experiment time. The lower the duty cycle,
the less the energy consumption.

o Data packet delivery latency: the average time taken by
each delivered DATA packet to be delivered from the
source to the destination.

A. Configuration of Sender Wakeup Advance Time

A sender must wake up slightly before the predicted wakeup
time of the receiver. Since the sender wakeup advance time
(i.e., the parameter A) is hardware-dependent, this section
studies the configuration of wakeup advance time through
experiments on real hardware.

There are 3 pairs of MICAz motes in this experiment. Each
pair of motes comprises a sender and a receiver. The packet
generation interval at each sender is randomly distributed
between 0.5 to 1.5 seconds. We tested each wakeup advance
time configuration 3 times and present the average results in
Table I.

From these experiments, we concluded that overall perfor-
mance for PW-MAC on this hardware is best when the sender

1310

TABLE 11
PERFORMANCE OF WISEMAC WITH AND WITHOUT USING THE SENDER
WAKEUP ADVANCE TIME

WiseMAC with
Wakeup Advance

WiseMAC without
Wakeup Advance

Sender Delivery Sender Delivery
Duty Cycle Latency Duty Cycle Latency
9.4 % 538 ms 39.7% 930 ms

wakeup advance time is 20 ms, which is consistent with the
experimental results for prediction error shown in Figure 2.
As shown in Figure 2, the prediction error of a mote caused
by hardware and operating system latency was about 10 ms
when one mote stayed awake to measure the wakeup times
of the other mote. When both motes are duty cycling, the
prediction error can be doubled to 20 ms. Configuring the
sender wakeup advance time as 20 ms offsets the prediction
error caused by hardware and operating system latency and
reduces the occurrences of a sender missing a receiver.

When the sender wakeup advance time was configured as
10 ms, the sender duty cycle was higher than when 20 ms
was used, since the prediction error caused by hardware and
operating system latency can be larger than 10 ms, leading to
senders missing the wakeups of the receivers. Based on these
results, we set the sender wakeup advance time to 20 ms in
the rest of our experiments.

WiseMAC considers only the prediction error caused by
clock drift. Table II compares the performance of WiseMAC
with and without using the sender wakeup advance time
parameter, configured as 20 ms. Adding the sender wakeup
advance time significantly improves the performance of
WiseMAC. WiseMAC without this parameter has a high
sender duty cycle and delivery latency, as the prediction
error caused by hardware and operating system latency leads
to the sender missing some wakeups of the receiver. To
improve the performance of WiseMAC, we include the sender
wakeup advance time parameter (20 ms) when conducting the
experiments in the following sections.

B. Experimental Results with Conflicting Wakeup Schedules

Two nodes may happen to choose the same wakeup time,
which can lead to the collisions of the packets transmitted to
them. This section evaluates the performance of PW-MAC and
WiseMAC when there are such wakeup schedule conflicts.

In the experiments, there are four motes (51, S2, R1, and
R2), with S1 being the sender to R1 and S2 being the sender
to R2. All four motes were adjacent to each other. To create
wakeup schedule conflicts, we made R1 and R2 use the same
first wakeup time. Each experiment lasted 300 seconds and
was conducted three times. Table III reports the average sender
duty cycle and delivery latency of PW-MAC and WiseMAC in
these experiments. PW-MAC achieved a low sender duty cycle,
whereas WiseMAC had a much higher sender duty cycle. The
reason for the high sender duty cycle of WiseMAC is that once
two receivers wake up at the same time, they will continue
waking up at the same time in the following cycles due to
the fixed wakeup interval of WiseMAC. The two senders will
transmit packets to the two receivers at the same time, causing

TABLE III
AVERAGE SENDER DUTY CYCLE AND PACKET DELIVERY LATENCY OF
PW-MAC AND WISEMAC WHEN THERE ARE WAKEUP
SCHEDULE CONFLICTS.

Sender Duty Cycle Delivery Latency

PW-MAC 5.5% 579 ms
WiseMAC 78.1% 17425 ms
TABLE IV

AVERAGE SENDER DUTY CYCLE AND PACKET DELIVERY LATENCY OF
PW-MAC AND WISEMAC IN HIDDEN-TERMINAL EXPERIMENTS

Sender Duty Cycle

6.8%
81.6%

Delivery Latency

670 ms
10905 ms

PW-MAC
WiseMAC

a large number of collisions. When packets collide, WiseMAC
does not have an efficient retransmission mechanism other than
keeping senders awake to retransmit the packets.

In contrast, nodes in PW-MAC follow independent, pseudo-
random wakeup schedules, ensuring that nodes waking up at
the same time will have different wakeup times in following
cycles, thereby greatly reducing the packet collision probabil-
ity. In addition, when collisions occur, senders in PW-MAC are
still able to maintain a small duty cycle through PW-MAC’s
prediction-based retransmission mechanism.

Due to significant packet collisions in WiseMAC, a packet
has to be retransmitted multiple times to reach the receiver,
resulting in the large delivery latency of WiseMAC. In these
experiments, PW-MAC achieved 100% packet delivery ratio,
whereas the packet delivery ratio of WiseMAC ranged from
99% to 100%. The receiver duty cycle of PW-MAC and
WiseMAC were both smaller than 5%.

C. Experimental Results with Hidden Terminals

When senders are hidden to each other, the CSMA mech-
anism becomes ineffective and the transmissions from the
hidden senders may collide at the receiver. To evaluate how
efficiently PW-MAC and WiseMAC handle packet collisions
and conduct retransmissions in hidden-terminal situations, we
conducted experiments in which there were two senders hidden
to each other, with one receiver placed between the two
senders. Each experiment was conducted three times.

Table IV shows the experimental results. The average sender
duty cycle of WiseMAC in these hidden-terminal experiments
was very high, at 8§1.6%. WiseMAC also had a much larger
delivery latency than that of PW-MAC. WiseMAC is unable
to detect the packet collisions of the two hidden senders and
does not have an efficient mechanism to handle packet re-
transmissions other than keeping senders awake to repeatedly
retransmit the packets until receiving the ACK packets from
the receiver; this causes persistent collisions and a high sender
duty cycle and leads to packets staying in the queue for a long
time before they are delivered to the receiver.

In contrast, PW-MAC achieved a much smaller sender
duty cycle (6.8%) and delivery latency with hidden terminals
because the senders in PW-MAC can detect collisions and
efficiently retransmit the packets using PW-MAC’s prediction-
based retransmission mechanism. The packet delivery ratio of
the two protocols was 100%, and the receiver duty cycle for

1311

both was less than 8%.

D. Experimental Results in Multihop Networks

This section presents the evaluation of PW-MAC,
WiseMAC, RI-MAC, and X-MAC in multihop networks.
These experiments were conducted on an indoor testbed con-
sisting of 15 MICAz motes in a 3 x 5 grid topology. There
are between 1 and 3 concurrent multihop traffic flows, with
hop count ranging from 1 to 4. Each traffic flow traverses a
distinct multihop path. The packet sending interval of each
traffic source is randomly distributed from 0.5 to 1.5 seconds.
The packet size is 28 bytes. To evaluate the influences of
wireless collisions on packet transmissions, motes were placed
within the radio interference range of each other.

The left part of each graph in Figure 5 shows the perfor-
mance of the four protocols when there is one multihop traffic
flow, with lengths ranging from 1 to 4 hops. The right part
of each graph in Figure 5 shows the performance of these
protocols when there are one to three concurrent 4-hop traffic
flows. A multihop traffic flow traverses multiple intermediate
forwarders to reach the destination. The destination nodes
only receive packets and do not generate or forward packets.
The senders (i.e., sources and intermediate forwarders) may
receive and send packets. Figure 5 shows the destination duty
cycle and sender duty cycle in separate graphs to more clearly
present the duty cycle performance of the motes.

In addition to its high sender duty cycle, the packet delivery
ratio and delivery latency of X-MAC degrade as the hop-
length of a traffic flow and the number of multihop traffic
flows increase. With X-MAC, senders repeatedly transmit each
DATA packet until it is acknowledged by the receiver, which,
in a multihop network, can cause significant collisions. Once
a collision occurs, senders do a short random backoff and
retransmit the packets. The larger the number of senders, the
more likely the retransmissions from multiple senders collide.
These significant wireless collisions lead to the high sender
duty cycle and the large delivery latency of X-MAC and cause
the drop of its packet delivery ratio.

All four MAC protocols have a small destination duty
cycle because, unlike the sources and intermediate packet for-
warders, the destinations only periodically wake up to receive
the packets without transmitting any packets. In addition, to
reduce overhearing, a destination hearing garbled packets and
packets destined to other nodes will go back to sleeping state.

When there was only one multihop traffic flow, WiseMAC
achieved a smaller sender duty cycle than X-MAC and
RI-MAC. However, when the number of concurrent multihop
traffic flows increased, the performance of WiseMAC degraded
significantly: the average sender duty cycle and packet delivery
latency of WiseMAC when there was only one 4-hop traffic
flow were 21% and 4.7 seconds, respectively, whereas these
two metrics of WiseMAC deteriorated to 72% and 90 seconds,
when there were three 4-hop traffic flows (each 4-hop traffic
flow consisted of 4 senders and one destination). This per-
formance degradation is due to the following reasons. First,
the wakeup interval of a node in WiseMAC is fixed. Thus,

as the number of senders increases from 4 to 12, so does the
probability of having node wakeup schedule collisions, which,
as shown in Section IV-B, causes persistent collisions and
dramatic performance degradation in WiseMAC. Furthermore,
WiseMAC uses preambles to send DATA packets. Once packet
collisions occur, with WiseMAC, a sender does not have an
efficient packet retransmission mechanism to resolve collisions
other than repeatedly retransmitting the packets, which inter-
feres with the normal transmissions of other senders and may
further lead to additional collisions. With this retransmission
mechanism, when the number of senders increased to 12,
packet collisions increased significantly and senders had to
stay wakeup for a long time to retransmit packets.

PW-MAC achieved a much smaller sender duty cycle than
the other protocols. As the hop-length of a traffic flow and
the number of traffic flows increased, so did the sender duty
cycle performance margin of PW-MAC relative to the other
MAC protocols, which indicates PW-MAC’s high efficiency in
handling dynamic traffic loads. When there were three 4-hop
traffic flows in the network, the average sender duty cycles
of X-MAC, RI-MAC, and WiseMAC were 70%, 66%, and
72%, respectively, whereas the average sender duty cycle of
PW-MAC was only 11%.

PW-MAC also achieved the smallest delivery latency and
achieved 100% packet delivery ratio. When there were three
4-hop traffic flows, the delivery latency of PW-MAC was less
than 5% that of WiseMAC and X-MAC. The delivery latency
of PW-MAC is less than that of RI-MAC because in our
PW-MAC implementation, if a DATA packet transmission by
a node is in progress when the node is scheduled to transmit its
wakeup beacon, the beacon is transmitted only after the DATA
transmission completes; in our earlier RI-MAC implementa-
tion [11], the DATA transmission is canceled and retransmitted
later in order to maintain the beacon transmission schedule.

In summary, the significant performance margin of
PW-MAC over other energy-efficient sensor network MAC
protocols is mainly due to the following reasons. PW-MAC
enables senders to accurately predict receiver wakeup times on
real hardware and to wake up shortly before the receivers do,
thereby minimizing the sender idle listening and overhearing.
Furthermore, PW-MAC greatly reduces wireless collisions by
effectively spreading node wakeup times. Even when wireless
collisions occur and packets must be retransmitted, PW-MAC
achieves a small sender duty cycle and packet delivery latency
through its prediction-based retransmission mechanism.

V. CONCLUSION

This paper has presented the design and evaluation
of PW-MAC (Predictive-Wakeup MAC), an energy-efficient
asynchronous duty-cycling MAC protocol for sensor networks.
PW-MAC is designed to minimize energy consumption by
enabling senders to predict receiver wakeup times even given
the challenges of unpredictable hardware and operating system
delay and clock drift. Nodes in PW-MAC wake up according to
independently determined pseudo-random wakeup schedules
to minimize wireless collisions. Transmission collisions may

1312

Fig. 5.

occur in wireless networks, especially with bursty traffic that
may be present in a sensor network. PW-MAC introduces
an efficient prediction-based retransmission mechanism to
achieve high energy efficiency even when wireless collisions
occur and packets need to be retransmitted. PW-MAC also
introduces an on-demand prediction error correction mecha-
nism that can effectively control the prediction errors caused
by hardware and operating system latency and clock drift.

40+ B

Sender Duty Cycle (%)

20 o |

.
4-hop-2flow
Multihop Traffic Flow

(a) Average Sender Duty Cycle

1-hop 2-hop 3-hop 4-hop

Delivery Ratio (%)

20 1

1 1 1 1
1-hop 2-hop 3-hop 4-hop

1 1
4-hop-2flow 4-hop-3flow

Multihop Traffic Flow

(c) Packet Delivery Ratio

[2]

[3]

[4]

[5]

We conducted experiments on a testbed of MICAz motes [¢]

to evaluate the performance of PW-MAC compared with
WiseMAC, RI-MAC, and X-MAC. Our evaluation includes
hidden-terminal scenarios, scenarios in which nodes have
wakeup schedule collisions, and scenarios with multiple con-
current multihop traffic flows, ranging from 1 to 3 flows of
hop-length ranging from 1 to 4. In all experiments, PW-MAC
significantly outperformed the other protocols. For example,
evaluated on scenarios with 15 concurrent transceivers in
the network, the average sender duty cycle for X-MAC,
RI-MAC, and WiseMAC were 70%, 66%, and 72%, re-
spectively, whereas average sender duty cycle for PW-MAC
was only 11%. The delivery latency for PW-MAC in these
scenarios was less than 5% of that of WiseMAC and X-MAC.
PW-MAC maintained a 100% packet delivery ratio in all
experiments.

[7]

[8]

[9]

[10]

[11]

[12]

13
REFERENCES [13]

[1] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. X-

MAC: A short preamble MAC protocol for duty-cycled wireless sensor
networks. In SenSys 2006, pages 307-320, November 2006.

[14]

1313

80 [

60 [1

40 F 4

Destination Duty Cycle (%)

20 - 1

1-hop 2-hop 3-hop 4-hop 4-hop-2flow 4-hop-3flow
Multihop Traffic Flow
(b) Average Destination Duty Cycle
ol : .
."o

80

60 >,~ o |

Delivery Latency (second)
(o]

40 | b 1

& e
o !.unh'iﬁ 5 R
4-hop-2flow 4-hop-3flow
Multihop Traffic Flow

(d) Average Delivery Latency

o L
1-hop 2-hop 3-hop 4-hop

Performance of PW-MAC, WiseMAC, RI-MAC, and X-MAC in a multihop MICAz testbed. The hop-length increases from 1 to 4 and the number
of 4-hop traffic flows increases from 1 to 3.

Hui Cao, Kenneth W. Parker, and Anish Arora. O-MAC: a receiver
centric power management protocol. In /ICNP 06, pages 311-320, 2006.
Amre El-Hoiydi and Jean-Dominique Decotignie. WiseMAC: An ultra
low power MAC protocol for multi-hop wireless sensor networks. In
ALGOSENSORS 2004, pages 18-31, July 2004.

Saurabh Ganeriwal, Deepak Ganesan, Hohyun Shim, Vlasios Tsiatsis,
and Mani B. Srivastava. Estimating clock uncertainty for efficient duty-
cycling in sensor networks. In SenSys 2005, pages 130-141, 2005.

G. P. Halkes and K. G. Langendoen. Crankshaft: An energy-efficient
mac-protocol for dense wireless sensor networks. In EWSN 07, 2007.
Kevin Klues, Gregory Hackmann, Octav Chipara, and Chenyang Lu. A
component-based architecture for power-efficient media access control
in wireless sensor networks. In SenSys 2007, pages 59-72, 2007.
Donald E. Knuth. The art of computer programming, third edition, vol-
ume 2: Seminumerical algorithms, section 3.2.1: The linear congruential
method. pages 10-26. Addison-Wesley, 1997.

Joseph Polastre, Jason Hill, and David Culler. Versatile low power media
access for wireless sensor networks. In SenSys '04, pages 95-107, 2004.
Venkatesh Rajendran, Katia Obraczka, and J. J. Garcia-Luna-Aceves.
Energy-efficient collision-free medium access control for wireless sensor
networks. In SenSys 2003, pages 181-192, November 2003.

Yanjun Sun, Shu Du, Omer Gurewitz, and David B. Johnson. DW-
MAC: A low latency, energy efficient demand-wakeup mac protocol for
wireless sensor networks. In MobiHoc 2008, 2008.

Yanjun Sun, Omer Gurewitz, and David B. Johnson. RI-MAC: A
receiver initiated asynchronous duty cycle MAC protocol for dynamic
traffic loads in wireless sensor networks. In SenSys 2008, 2008.

Tijs van Dam and Koen Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. In Proceedings of SenSys 2003,
pages 171-180, November 2003.

Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In Proceedings of IEEE
INFOCOM 2002, pages 1567-1576, June 2002.

Wei Ye, Fabio Silva, and John Heidemann. Ultra-low duty cycle MAC
with scheduled channel polling. In SenSys 2006, pages 321-334, 2006.

