
The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342

DOI 10.1186/s12859-016-1170-y

RESEARCH Open Access

PWHATSHAP: efficient haplotyping for
future generation sequencing
Andrea Bracciali1*, Marco Aldinucci2, Murray Patterson3, Tobias Marschall4,5, Nadia Pisanti6,7, Ivan Merelli8

and Massimo Torquati6

From 11th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014)

Cambridge, UK. 26-28 June 2014

Abstract

Background: Haplotype phasing is an important problem in the analysis of genomics information. Given a set of

DNA fragments of an individual, it consists of determining which one of the possible alleles (alternative forms of a

gene) each fragment comes from. Haplotype information is relevant to gene regulation, epigenetics, genome-wide

association studies, evolutionary and population studies, and the study of mutations. Haplotyping is currently

addressed as an optimisation problem aiming at solutions that minimise, for instance, error correction costs, where

costs are a measure of the confidence in the accuracy of the information acquired from DNA sequencing. Solutions

have typically an exponential computational complexity. WHATSHAP is a recent optimal approach which moves

computational complexity from DNA fragment length to fragment overlap, i.e., coverage, and is hence of particular

interest when considering sequencing technology’s current trends that are producing longer fragments.

Results: Given the potential relevance of efficient haplotyping in several analysis pipelines, we have designed and

engineered PWHATSHAP, a parallel, high-performance version of WHATSHAP. PWHATSHAP is embedded in a toolkit

developed in Python and supports genomics datasets in standard file formats. Building on WHATSHAP, PWHATSHAP

exhibits the same complexity exploring a number of possible solutions which is exponential in the coverage of the

dataset. The parallel implementation on multi-core architectures allows for a relevant reduction of the execution time

for haplotyping, while the provided results enjoy the same high accuracy as that provided by WHATSHAP, which

increases with coverage.

Conclusions: Due to its structure and management of the large datasets, the parallelisation of WHATSHAP posed

demanding technical challenges, which have been addressed exploiting a high-level parallel programming framework.

The result, PWHATSHAP, is a freely available toolkit that improves the efficiency of the analysis of genomics information.

Keywords: Haplotyping, High-performance computing, Future generation sequencing

Background

In diploid individuals, such as humans, each chromosome

exists in two copies, also referred to as haplotypes. One

haplotype is inherited from the father while the other hap-

lotype is inherited from the mother. Although these two

copies are highly similar, they are not identical, reflect-

ing the genetic differences between mother and father. A

*Correspondence: abb@cs.stir.ac.uk
1Computer Science and Mathematics, School of Natural Sciences, Stirling

University, FK9 4LA Stirling, UK

Full list of author information is available at the end of the article

Single Nucleotide Polymorphism (SNP) is a variation of a

single nucleotide that occurs at a specific position, called

locus, in the pair of sequences. Given a set of heterozygous

variants, i.e., loci where the two alleles differ, e.g. SNPs, the

problem of assigning each of the two alleles at each locus

to one of the two haplotypes is known as phasing.

Phasing SNPs is important for many applications.

Haplotype-resolved genetic data allows studying epistatic

interactions, for instance. Gene regulation and epigenet-

ics have also been demonstrated to be haplotype specific

in many instances [1]. One of the prime uses of haplotype

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1170-y-x&domain=pdf
mailto: abb@cs.stir.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 28 of 71

panels, i.e., large sets of haplotypes present in a popu-

lation, lies in the imputation of missing variants, which

is instrumental for lowering costs and boosting power

of genome-wide association studies [2]. Not surprisingly,

constructing high-quality haplotype panels for human

populations has been one of the central goals of sev-

eral large-scale projects [3–6]. Further uses of haplotype

data include studying evolutionary selection, population

structure, loss of heterozygosity, and for determining the

parental origin of de novo mutations. Refer to [7] for a

detailed review of these and other applications.

Currently, the most prevalent phasing tools use geno-

type information for a large number of individuals

as input. Therefore, phase information has not been

observed directly, but is inferred based on the assump-

tion that haplotype tracts are shared between individuals

in a population. The resulting approaches are statistical in

nature, based on, e.g., latent variable modeling [8–10], and

Markov chain Monte Carlo (MCMC) techniques [11].

Noticeably, one of the major drawbacks of these sta-

tistical phasing methods is the lack of direct information

that pairs of neighboring SNPs are on the same haplotype

– something that is ultimately needed if one is chain-

ing together the SNPs to form a pair of haplotypes. This

can be provided by a sequencing read, i.e., a fragment of

the actual DNA sequence. The existence of a read con-

taining a pair of heterozygous SNPs is direct evidence

that they come from the same haplotype. However, cur-

rent sequencing technologies often do not provide long

enough reads to sufficiently link neighboring SNPs. This

is why the most widely used phasing methods are based

on statistical information compiled from a large amount of

data about the relationship between SNPs, such as linkage

disequilibrium [12], or from patterns that arise in exist-

ing haplotypes, such as these aforementioned haplotype

panels [3].

It is long reads that will really solve this problem, one of

themajor reasons for the recent interest in long-read tech-

nologies. While still not competitive in terms of per-base

cost and error rates, and not yet sufficient to completely

overcome the above drawbacks, cutting edge technologies

such as PacBio’s Single Molecule Real Time Sequenc-

ing (SMRT) [13] or Oxford Nanopore Technology’s min-

ION [14] are already on themarket. This is only the begin-

ning – these technologies will mature and improve, and

other ones are under development. This might eventu-

ally enable routine use of haplotype-resolved sequencing

in clinical diagnostics and pharmaceutical research. So,

in the next decade, when long reads become cheap and

widely available, this will push to the forefront thosemeth-

ods that phase SNPs based on read information alone,

the so-called haplotype assemblymethods, a research area

that has, until now, remainedmostly of theoretical interest

[15–17].

The haplotype assembly methods do exactly this: they

assemble haplotypes from a set of sequencing reads. If two

reads overlap on a SNP position, and their base-pairs at

this position are different, i.e., they are “conflicting”, then

one can deduce that they are on different alleles of the

chromosome. The idea of this is that one can take this

conflict information between pairs of reads to obtain a

bipartitioning of the reads into two sets, i.e., the two alle-

les. This, combined with reads that link neighboring SNPs

would give us a complete phasing of all SNPs, i.e., a set

of haplotypes based on direct observation, in contrast to

being based only on statistical information. This is where

the long reads come in: they will someday provide this

information, making haplotype assembly a much-needed

tool for phasing.

Real data contains upstream errors, from the SNP

calling phase, or the read-mapping phase, and so this

becomes an optimisation problem: to obtain such a bipar-

titioning that involves correcting the minimum number

of errors to the base-pairs of the reads. There are sev-

eral different types of optimisation criteria in the litera-

ture, some of them equivalent. However we focus here

on the minimum error correction (MEC) [18], as it is

the most general of the criteria. Current read informa-

tion is in the form of many short reads, that may pile

up on certain SNP positions. Up to 2014, the current

state-of-the-art of haplotype assembly methods [16, 17]

solved MEC with approaches that scale, in terms of com-

putational complexity, with the read-length. In addition

to this drawback, these algorithms take advantage of

the fact that many neighboring SNPs are not linked by

these reads, because it allows to decompose this opti-

misation problem into independent subproblems. When

reads get longer, these subproblems will no longer be

independent – they should not be, since the goal is to

link all of the SNPs. Also, a proportionally lesser cover-

age, i.e., the number of reads that cover a SNP position,

will eventually be needed to obtain relevant informa-

tion.

It is for these reasons that the authors of [19] intro-

duced WHATSHAP, the first fixed-parameter tractable

(FPT) [20] approach for solving the weighed minimum

error correction (wMEC) [21] (and hence, the MEC prob-

lem) where coverage is the only parameter. The runtime

of this approach is linear in the number of SNPs per read,

which is the term that will increase by orders of magnitude

as longer and longer reads become available.

A distinguishing feature of WHATSHAP with regards

to the other currently available proposals is that it

is exponential in the sequencing coverage and not

in in read length. This appears to be very relevant

when considering current trends in future generation

sequencing technologies: technical improvements will

clearly yield longer reads. The WHATSHAP algorithm has

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 29 of 71

been implemented in a freely available toolkit (https://

bitbucket.org/whatshap/whatshap).

Because WHATSHAP is the first approach in this

promising direction, it appeared worthwhile to speed up

its implementation by parallelising it. This paper presents

PWHATSHAP, an optimised parallelisation of WHAT-

SHAP, and its implementation in a toolkit which is also

freely distributed (also available at https://bitbucket.org/

whatshap/whatshap). PWHATSHAP has been a developing

project, evolving together with the very active develop-

ment of WHATSHAP. Preliminary results on the paralleli-

sation experiment of the core structure of the algorithm

were reported in [22]. In this paper we report on the par-

allelisation of the latest version of WHATSHAP, which has

matured into an integrated framework engineered accord-

ing to the current trends in genetic applications, and

capable of analysing data in standard file formats (such as

BAM and VCF) used in genomic analysis.

The merits of this work are:

i) The PWHATSHAP project provides the research

community with a freely available application, which

can easily be embedded in analysis pipelines requiring

the solution of haplotyping problems. The core of the

parallel haplotyping algorithm consists of an

advanced and optimised implementation tailored to

multi-core architectures. Such an enhanced core has

now been engineered in the integrated framework

described above, supporting standard data formats.

This is a major engineering step, requiring the

embedding of several C++ core functions, coherently

running as a parallel application, into a framework

developed in Python. This allowed the PWHATSHAP

project to move from a prototype development phase

to a mature, open-source product. Haplotyping can

be typically employed in larger pipelines, for instance

including other typically expensive steps, such as data

acquisition and result analysis. The provision of

efficient solutions to haplotyping, such as

PWHATSHAP, empowers more accurate analysis in

all those contexts.

ii) The incremental construction of haplotypes in

WHATSHAP is the type of algorithm whose

parallelisation is very difficult. These algorithms

process a large amount of data and are therefore

sensitive to the availability of sufficiently large

amounts of memory (RAM). Their exponential

complexity (in time, but with direct implications on

space complexity), and the huge datasets currently

available, easily make memory availability a critical

parameter. Parallelising one of the problems of this

type represents an engineering challenge. The

solution adopted is supported by the FastFlow

framework [23], which provides high-level parallel

programming constructs, such as skeletons
and parallel design patterns. Thanks to the

high-level programming paradigm adopted, it has

been possible to build PWHATSHAP retaining most

of the overall structure and code of WHATSHAP. The

chosen paradigm has also the advantage to limit the

need for mutual exclusion mechanisms, known to be

typically slow. The clear performance improvement

obtained supports the efficient treatment of large

datasets and high coverage. It is important to note

that the presented results can be obtained by

computers that may easily equip current

state-of-the-art genomic laboratories. Such

improvement in the computational efficiency of

haplotyping, made available at affordable costs, may

be key in several analysis pipelines.

iii) A comprehensive evaluation of the obtained results

has been carried out, both theoretically and

experimentally. First, the correctness of
PWHATSHAP has been validated against

WHATSHAP: both applications return identical

results in terms of the wMEC score of the computed

optimal solutions. Following correctness, the

accuracy of PWHATSHAP has been discussed in

terms of the accuracy of WHATSHAP, which is

known to be strong. We discuss various aspects of the

accuracy of WHATSHAP and review the several

constraints under which the competing approaches

to haplotyping work. PWHATSHAP emerges as an

accurate and largely applicable approach. The

efficiency of PWHATSHAP is discussed against

theoretical complexity results, and validated by means

of experimental results over benchmark datasets.

Overall, the large applicability and accuracy of

PWHATSHAP, together with its increased efficiency,

make it a reference player in the quick developing

quest for solutions to the haplotyping problem.

In the next section, Methods, the problem of haplo-

typing will be defined and the WHATSHAP approach

described. Then, the details of the construction of

PWHATSHAP are illustrated and the choices made in

the engineering of the parallel solution discussed. An

account of FastFlow, the supporting high-level paral-

lel programming framework, concludes the section. The

Results section evaluates the performances of PWHAT-

SHAP. Two main parameters are considered to illus-

trate the validity of the developed application: accuracy

of the returned results, and efficiency of the computa-

tion. The accuracy of PWHATSHAP builds on top of

the accuracy of WHATSHAP, as discussed. Efficiency,

instead, is demonstrated by means of suitable experimen-

tal results on benchmark datasets. Concluding remarks

follow.

https://bitbucket.org/whatshap/whatshap
https://bitbucket.org/whatshap/whatshap
https://bitbucket.org/whatshap/whatshap
https://bitbucket.org/whatshap/whatshap

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 30 of 71

Methods

Haplotyping: a fixed-parameter tractable solution to wMEC

The haplotype assembly problem takes as input a set of

reads of a diploid genome that has been mapped to some

reference genome. For such a genome, the SNP positions

are known, and the set of alleles are arbitrarily re-labelled

to 0 and 1 for each SNP position. This makes the input as a

matrix with reads as rows and SNP positions as columns.

More formally, the input data for n reads and m SNP

positions is organised in an n × m matrix F. The cells fi,j
of F have values in {0, 1,−}, indicating whether the read

i at SNP position j has the value of allele 0 or of allele 1,

or it does not cover the SNP site at all, i.e., the respec-

tive read is not active at this SNP position. A confidence

value (or weight) vi,j is assigned to each active fi,j as part

of the input to the problem. The weight vi,j is obtained at

preprocessing as a combination of the confidence degree

of that value after the sequencing phase (that is, the con-

fidence of that specific base call) and after the mapping

phase (that is, the confidence degree of having mapped

that read at that SNP position). In this way, the weight

gives a measure of how likely value of fi,j is correct. That

is, this weight represents the “cost” of flipping fi,j in the

optimisation problem wMEC, which aims to correct with

higher priority the bases with higher probability of being

inexact, as in [24].

We say that two reads rp and rq have a conflict at a

SNP position j if they are both active and have differ-

ent values at column j. If there were no errors, two reads

in conflict necessarily come from different alleles. A cor-

rect haplotype assembly is a bipartitioning of the rows

of matrix F (the reads) into a pair of conflict-free sets R

and S. Both R and S contain each the whole set of reads

that have been identified as belonging to the same hap-

lotype. However, conflict-free bipartitioningss rarely can

be found in existing datasets because of sequencing and

mapping errors. Therefore, it is important to be able to

determine a minimum-weight set of corrections to such

errors capable of making the bipartitioning conflict-free.

As an example, the following fragment matrix F has not

a conflict-free bipartitioning of its fragments (f1, f2 and f3,

one each row):

F =

⎛

⎝

19 19
03 18
− 08

⎞

⎠

Subscripts are a measure of confidence of each datum, i.e.,

vi,j, the cost to be paid to “correct” it. The minimum cost,

conflict-free bipartitioning R = {f1, f2}, S = {f3} can be

obtained by correcting the element f2,1, i.e., flipping it to a

1 at a cost of 3.

Several heuristic proposal to solve the MEC, e.g. the

greedy approaches of [25, 26] to assemble haplotypes of

a genome, based on sampling a set of likely haplotypes

under theMECmodel [27], and themuch-efficient follow-

up, analogous to [28], and based on an iterative greedy

approach to optimise the MAX-CUT of a suitably defined

[29]. Improved perfomrmances do not impact on accu-

racy.Mousavi et al. [30] reducesMEC toMAX-SAT, which

is then be solved by a heuristic solver.

A heuristic, by definition, provides no bound on the

quality of the obtained results, what each of these above

methods are. In order to solve optimally the MEC prob-

lem, several non-heuristic, exact algorithms exist in the

literature. Examples include the integer linear program-

ming techniques of [17, 31]. Another way to solve a prob-

lem optimally is fixed-parameter tractable (FPT) algo-

rithms. Several FPT algorithms for the MEC have been

developed in [19, 24, 32, 33]. Nonetheless, the complex-

ity of [32] is exponential in the read length, or the number

of SNPs per read, which will soon become larger quite

quickly with the developments of sequencing techniques.

In turn, HapCol ([33]) requires the fragment matrix to be

gapless (that is, in a row of F, no ‘-’ can occur with 0’s

and 1’s both on the left and on the right), which exclude

the applicability to datasets with paired end reads. Also,

given that the HapCol is exponential in the number of cor-

rections (and in the coverage too, but less strongly that

WHATSHAP), then it actually solves a constrained version

of the MEC problem where the number of correction is

bounded a priori.WHATSHAP [19, 24] is an algorithm that

is fixed parameter tractable in the coverage, rather than in

read length It is hence muchmore suitable to the trends in

development of current sequencing techniques. Not long

after the publication of WHATSHAP, a very similar algo-

rithm that is based on belief propagation was developed

independently by Kuleshov [34]. The following section

gives a brief summary of the WHATSHAP algorithm.

WHATSHAP: the algorithm

The original sequential WHATSHAP uses dynamic pro-

gramming. It takes as its input the fragment matrix F (one

row per read, one column per SNP position, and values in

{0, 1,−}) and a set of confidence values associated to the

reads’ active positions.WHATSHAP returns a conflict-free

bipartitioning of the set of reads of minimum cost, using a

dynamic programming approach.

The cost matrix C built by WHATSHAP has the same

number of columns as F (i.e., one column for each SNP),

and is constructed in an incremental way, a single column

at a time. Fj represents the set of active reads in the j-th

column. C(j, (R, S)) is the cell in the j-th column of C cor-

responding to (R, S), one of the possible bipartitionings

of Fj. Then, WHATSHAP computes the minimum-cost

C(j, (R, S)) of making (R, S) conflict-free, over all possible

bipartitionings (R, S) of Fj.

A read that spans several consecutive SNP positions

induces dependencies across the columns, given that such

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 31 of 71

a read must be consistently assigned to the same allele

over all the positions for which it is active – e.g. read

(row) 2 in the matrix of the previous example. When

WHATSHAP computes the cost of the bipartitionings of

Fj in order to construct the j-th column of C, the (min-

imum) cost that is inherited by constructing compatible

partitionings in the previous position Fj−1 must also be

considered. Such a cost, on its turn, carries the price for

consistency with the preceding columns.

In the initial column of C, which refers to (R, S)s belong-

ing to F1, entries C(1, (R, S)) depend only on the cost of

making R and S conflict-free (trivially no inheritance has

to be considered here).

The cost W (1)1R of making R ⊆ F1 conflict-free by flip-

ping to 1s all 0s in fk,1 (for an rk ∈ R) is equivalent to

the sum of the weights associated to the 0s which are

flipped. Alternatively, we indicate with W (1)0R the cost of

making R conflict-free by flipping to 0 all the 1s. At any

such step, WHATSHAP takes the alternative that is most

advantageous:

C(1, (R, S))=min
{

W (1)1R,W (1)0R
}

+min
{

W (1)1S,W (1)0S
}

.

When building column j-th, the cost associated to each

partitioning is the sum of the cost coming from the col-

umn itself, computed as in the first column, and the cost

of a compatible bipartitioning inherited from the previ-

ous column. That is, when computing C(j, (R, S)), with

j > 1 and (R, S) a bipartitioning of Fj, the local contri-

bution of the jth column is the minimum cost of making

R and S conflict-free over the jth column of F. Then, the

cost of ensuring that (R, S) is consistent on all the columns

i < j must be added. This is the minimum cost of all

the C(j − 1, (R′, S′)), such that (R′, S′) is “compatible” with

(R, S). A partitioning (R, S) defined at j and a partitioning

(R′, S′) defined at j − 1 are compatible, written (R, S) ∼=

(R′, S′), when each element in Fj∩Fj−1, i.e., the active reads

in both j and j − 1, is assigned to the same subset in (R, S)

and in (R′, S′). Importantly, in such incremental construc-

tion the cost in the preceding column j− 1 summarises all

correction costs made to keep (R′, S′) conflict-free from

column 1 up to column j − 1. It follows:

C(j, (R, S)) = min
{

W (j)1R,W (j)0R
}

+ min
{

W (j)1S,W (j)0S
}

+min
{

C(j − 1, (R′, S′)) | (R′, S′) ∼= (R, S)
}

The implementation of such an algorithm for the j-th

step consists of

1. All the possible (R, S) at j are defined;
2. Column j is made conflict-free and the minimum

cost for this is determined;

3. The minimum-cost compatible partitionings

computed at step/column j − 1 are identified;

4. The entry C(j, (R, S)) is filled in with the sum of all

outcomes of the previous two steps.

After the completion of the construction of C, the result

of the input wMEC instance is contained in the conflict-

free partitioning (R∗, S∗) of smallest cost in the final col-

umn. Such solution also encodes all the (minimum-cost)

corrections made during the construction of C, based

on assigning reads in F to partitionings compatible with

(R∗, S∗).

The maximum number of bipartitionings computed in

the construction of each column determines the com-

plexity of WHATSHAP. At each column j the possible

bipartitionings are 2|Fj|. Therefore, the complexity is expo-

nential in the number of active reads at any position, i.e.,

the the sequencing coverage (see [19]).

The sequential version of WHATSHAP makes use

of several optimisation to speed up the computation.

Among them, one is actually relevant for its paral-

lelisation: the order in which bipartitionings are taken

into account. Specifically, when computing column j

of C, the possible bipartitionings of Fj are processed

in a specific order, that is, according to its Gray code

ordering. Gray code guarantees that the binary rep-

resentation of each bipartitioning differs from that of

the previous one by only one bit, for example, 0001

and 0011 (here, as standard we assume that each bit

represents the fact that an active read is assigned to

either R or S). This entails that two subsequent par-

titionings differ only because of a single read moving

from a set to another. This results in an incremental

computation that is more efficient, since, the compu-

tation of the new cost for the subsequent partition-

ing comes from the cost of the previous one in con-

stant time, because updating W (j)1R,W (j)0R,W (j)1S,W (j)0S
requires constant time when they differ only because of

a specific single read. As we will see, this organisation

is relevant when partitioning the workload in parallel

tasks.

WHATSHAP: an integrated toolkit for haplotyping

Since the first prototype described in [24], the sequen-

tial version of WHATSHAP is currently an integrated

toolkit. To facilitate seamless integration into data anal-

ysis pipelines, a new command-line user interface sup-

porting general file formats (BAM for alignments and

VCF for phased/unphased variants) has been added.

Considerable effort has also been invested into opti-

mised algorithms for read pruning, e.g. in order to con-

trol the maximum coverage. Furthermore, the major

modules have been reengineered in Python, a suitable

and largely used development environment in Bioinfor-

matics. The core haplotyping algorithm is still a C++

application.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 32 of 71

PWHATSHAP: high-performanceWHATSHAP onmulti-core

architectures

The focus of this work is on parallelising the core

haplotyping algorithm embedded in theWHATSHAP inte-

grated toolkit described above. The main rationale behind

such a choice are the desirable properties of WHATSHAP:

solving wMEC with a complexity that does not depend

on read length, but is exponential only in the sequenc-

ing coverage. This appeared to be particularly relevant

when considering the future trend of sequencing technol-

ogy, which are inching towards longer reads. Furthermore,

solving the weighted version of the problem caters to its

accuracy.

Twomain approaches to parallelisation can be followed,

respectively focusing on the haplotyping of a single chro-

mosome or many of them. Actually, single chromosome

datasets that can be decomposed in “independent” sets

of SNPs, i.e., no read covers any two of these sets, can

be addressed as if the sets were belonging to different

chromosomes. The many instances of haplotype assem-

bly required for the different genes of a whole genome,

or independent sets of SNPs of the same gene, are com-

pletely independent. They can be run concurrently in an

embarrassingly parallel fashion. Since haplotyping is a

memory-bound algorithm, it exhibits the best scalability

when executed on distributed platforms (e.g. clusters or

cloud resources) where the memory hierarchy and the file

system are not shared resources among executors. Inde-

pendent runs of PWHATSHAP could be supported by the

cloud computing services, which are regarded as enabling

technologies for bioinformatics and computational biol-

ogy because they can provide pipelines with computing

power and storage in an elastic and on-demand fashion.

In this paper we address the parallelisation of the core

haplotyping algorithm for a single chromosome, and the

consequent development of the PWHATSHAP toolkit, i.e.,

the parallel version of the WHATSHAP toolkit. In this,

we directly selected multi-core as target platforms class

for three fundamental reasons: 1) simplicity of porting;

2) minimal disruption with respect to existing sequential

code; 3) concurrency grain availability in the fine- to very

fine-grained range.

PWHATSHAP: the parallel algorithm

In the parallelisation of the core haplotyping algorithm

for a single chromosome, the structure of WHAT-

SHAP clearly imposes strong constraints on the paral-

lelising approach that can be followed. The incremental

approach of WHATSHAP when building the solution, i.e.,

the column-wise exploration of the input matrix, imposes

a strong linear dependency of each step on the immedi-

ately preceding one. This makes very difficult to imagine a

possible decomposition of the problem by sets of columns

that can be independently processed in parallel.

Given that WHATSHAP follows the described linear

incremental construction of a solution by columns, and

this makes the decomposition of the problem in sets

of columns independently processed not viable, a “row-

based” parallelisation has been adopted. Each parallel

executor processes a number of the elements (rows) of the

column of the cost matrix under consideration, that is,

each executor evaluates some of the bipartitionings (R, S)

of Fj, which are the active reads on column j. A column-

based decomposition, as well as hybrid solutions possibly

mixing the two approaches, are the scope of future work.

The first step when moving from the sequential design

of WHATSHAP to a row-based parallel implementation

was profiling the efficiency of WHATSHAP in terms of the

time needed to generate the j-th column of C, the mini-

mum cost matrix C (see p. 5). This is useful to determine

whether a column of a given coverage requires enough

work to be worth parallelising it. Table 1 shows data from a

profiling test on a given dataset. The time required by the

sequential algorithm for processing a column is reported

in the second row, according to the column dimension.

This is a function of the number of possible bipartition-

ings of the active reads on the column, i.e., it depends on

the coverage (there are ∼ 2c possible bipartitionings for

coverage c). It is easy to appreciate its exponential growth.

From the results summarised in the table, the cost for

the smaller columns (coverage < 15) is negligible, less

than one ms, therefore not justifying the parallel over-

head. Differently, when c > 15, the cost varies from a

few milliseconds to a few seconds for each column (for

c > 25). Columns with coverages bigger than 16/18 are

worth being parallelised.

What is also interesting is to gauge how many columns

worth being parallelised are present in a given dataset.

This of course is highly dependent on the specific dataset,

but carried out experiments show that a sufficiently large

number of high-coverage columns justify the parallelisa-

tion, as shown in the section Results. Statistical analysis

of this kind are useful to predict the gain that can be

achieved. Depending on factors like the specific archi-

tecture, the incurred overhead of parallel executions, and

data distribution, it might be worth it to implement

Table 1 WHATSHAP profiling. Test for an input data sample with coverage 20 on a 2 CPU Xeon E5-2695 @2.4 GHz, 12-core x 2 context

for each CPU, 64 Gb RAM

Coverage <15 15 16 18 20 22 24 26 28 30

Time (ms) < 1 1.1 2.2 8.7 34.2 144.7 558.5 2352.7 9194.3 36622.7

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 33 of 71

an adaptive partitioning, where the number of execu-

tors is tuned to the dimension of each column. After

some empirical validation, we have abandoned this pos-

sibility because it did not appear to be of much value

for our reference architecture and settings. Overall, this

appears as a fine-grained algorithm, typically difficult to

be parallelised, but, interestingly and not surprisingly,

the best speed-ups can be obtained with large coverages,

which are of great interest, since they provide increased

accuracy.

In the following, the parallel construction of a minimum

cost matrix C that we designed for PWHATSHAP is pre-

sented through a simple example (an elaboration of the

example firstly introduced in [22]). Let us consider the

fragment matrix F in Fig. 1, which has two columns only,

with associated weights (in red). In F, for instance, read

f1 is 0 in SNP 1 with confidence 5, while read f2 covers

SNPs 1 and 2, where is 1 and 0 with confidence 3 and 2,

respectively.

The cost matrix C(1, (R, S)), reported in Fig. 2 and asso-

ciated to the first column of F, is built by considering

all the possible bipartitionings (R, S) of the reads active

on SNP 1, i.e., f1, f2 and f3. In the matrix C(1, (R, S)),

partitionings are represented as binary strings in Gray-

code order (see p. 5), as reported in the first three

columns. In the example under consideration, the set of

all possible bipartitionings is split between two execu-

tors (horizontal line). Parallel executors work on disjoint

section of the partitioning space. In order to retain as

much as possible the original structure of the sequen-

tial algorithm, bipartitioningss are processed sequentially

by each executor according to the Gray code order. A

bit of care is necessary to properly identify the entry

points for each executor, i.e., the As in red in the matrix,

in the Gray code sequence. Suppose that an executor is

expected to process a set of partitionings starting from

the r − th one. This will not necessarily be identified by

the r − th binary number, as expected, but actually by the

r − th entry in the Gray code. For instance, in the matrix,

the second entry point A is not 100, as one would expect,

but 110.

Fig. 1 The fragment matrix F

Fig. 2 The cost matrix C(1, (R, S))

Each entry in the column c1 in the matrix C(1, (R, S))

reports the cost of making the corresponding partition-

ings conflict-free. This is the only cost incurred so far,

dealing with the construction of the first column. For

instance, partitioning ({f1, f2, f3},∅) (first row) requires

flipping f1 to 1 at a cost of 5 (column c1), so that R is

conflict-free and S empty.

The last three columns of C(1, (R, S)) show the cor-

rected values of the reads.

Considering Cj, the j-th column of C and k executors,

each executor computes a number of bipartitionings of Fj
in the range of 2cj/k, with cj the coverage and k that may

be dynamically adapted according to the coverage (and

the current hardware features). Each one of the k execu-

tors processes the assigned bipartitioning in parallel. This

is themap-phase, see Fig. 3.

In the construction of Cj, the cost of any specific bipar-

titioning of the reads active on the j − th column depends

on theminimum costs of the bipartitionings inCj−1 which

are compatible with that partitioning. In our example, f2
and f3 are active in both columns 1 and 2. Bipartitionings

({f1, f2, f3},∅)1 and ({f2, f3}, {f4})2, from columns 1 and 2

respectivley, are compatible and could eventually lead to

({f1, f2, f3}, {f4}). Instead, ({f1, f2, f3},∅)1 and ({f2}, {f3, f4})2
are not compatible (see p. 5). Cost information about

compatible partitionings between any two columns is

recorded in a suitable matrix (Gray code ordered). In our

example, such matrix would be the one reported in Fig. 4:

each executor over-writes the currently discovered best

cost for that specific partitioning. This may cause write

conflicts, whenever different executors report costs asso-

ciated to the same row. In the example this is indicated by

W, in red, in the matrix, and it is due to the two execu-

tors working on C(1, (R, S)) and attempting to update the

(minimum) cost of having both f2 and f3 in the “0” par-

titioning. Note that there are two cases in which this

happens, marked in red in the partitioning columns of

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 34 of 71

R
S

W
1

W
2

W
n

S,W1,...,Wn

Fig. 3 The FastFlow skeleton used in PWHATSHAP. Each entity is a concurrent thread. The Emitter (S) produces and schedules tasks towards a pool of

Workers (Ws). Each Worker sends results to the Reducer (R) and asks for new tasks from S

C(1, (R, S)) in Fig. 2 (first and last row), and these two

cases are being dealt with by different executors. Such case

of write conflict has been addressed by constructing local

copies of the table for each executor, and then manag-

ing their merging by means of a sequential reduce-phase,

executed in pipeline with themap-phase (Fig. 3).

Minimum costs recorded as in Fig. 4 are then accumu-

lated in the definition of the so-far-incurred costs in the

construction of the cost matrix for the next column of the

fragment matrix F, as shown in Fig. 5 (corrected values

of fragments omitted). This last matrix is built on top of

the three reads in the second column of F. The c2 col-

umn reports the cost of the local corrections for making

each partitioning of {f2, f3, f4} conflict free, as standard.

The minj−i carries over the minimum costs recorded in

the previous table (columnmin((R, S), 1) in our example).

The last column � reports the so-far-incurred minimum

costs to make each partitioning conflict-free as the sum

of the previous two columns. Possible concurrent read

accesses to the previous table, as the ones in red (the

Fig. 4 Cost information about compatible partitionings between any

two columns

0 in min((R, S), 1) is copied twice - possibly by different

executors, inminj−1), are of no particular concern.

The partitioning ({f1}, {f2, f3, f4}) is conflict free andmin-

imal cost, once that f3 has been corrected in [1, 0] at the

cost of 1. This is an optimal solution found by PWHAT-

SHAP, built in the last and first rows, respectively, of the

two cost matrices above.

It is worth remarking that whenever two or more

solutions with the same minimum cost exist, due to

the interplay of the different amounts of time spent

by different executors to accomplish their parallel tasks,

non-determinism may occur when overwriting minimum

costs, and, as a consequence, different optimal solutions

of same cost can be returned from different runs. The

comparison and properties of such equivalent solutions is

scope for future work.

Fig. 5 The cost matrix C(2, (R, S))

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 35 of 71

PWHATSHAP: the parallel implementation

The focus of the present work is the parallelisation of

the core WHATSHAP haplotyping algorithm, which is a

component of a larger application whose main module

is written in Python, with Cython used for interfacing

Python and C++. Our starting point is the WHATSHAP

core algorithm written in C++, which is actually embed-

ded into a larger, multi-language application, making the

development of the parallel version very elaborated, for

instance requiring us to work on the edge of differ-

ent programming paradigms during both debugging and

tuning.

The parallel construction of the minimum cost matrix

C proceeds independently over the possible bipartition-

ings (R, S) of the current column Fj. We aimed to exploit

the maximum possible parallelism in this construction

by exploiting both task and data parallelism. For this we

used a pipelined map-reduce paradigm, i.e., pipeline(map-

phase, reduce-phase).

In the map-phase, all the possible bipartitionings

of the fragments in Fj are generated; their cost is

also computed. In the reduce-phase, the cost matrix

C is updated with with the minimum cost found

among all the bipartitionings generated in the previous

stage.

In FastFlow, this can be easily realised by nesting pat-

terns implementing map and reduce phases within the

pipeline pattern. The map-phase can be implemented

by way of the task-farm-with-feedback pattern,

which make it possible to execute independent tasks in

parallel, i.e., generate and analyse all the possible bipar-

titionings. The feedback loop feature enables the pattern

to implement a effective dynamic load balancing strategy.

The reduce-phase can be implemented in a single worker

since it is much lighter than themap-phase and is actually

never a bottleneck for the whole process. Overall:

pipeline(task-farm-with-feedback

(S,W1,...,Wn), sequential(R))

where S is a task scheduling,Wi, i = 1..n is array of work-

ers for the map-phase, and R is a reducer worker for the

reduce-phase (see Fig. 3. In the map-phase, the S thread,

by using a dynamic scheduling policy, sends tasks hav-

ing a computation granularity proportional to chunksize

towards the workersWi. Each workerWi, stores results in

a local data array (thus avoiding the need of mutual exclu-

sion for accessing global data) and eventually sends the

produced data as a single task to the second stage of the

overall pipeline (R). This way, for each worker’s input task,

is produced an output task containing maximum chunk-

size different results. The second stage receives tasks from

all workers (i.e., locally produced results) and then updates

the cost matrix C with the minimum cost found (reduc-

tion phase on all inputs received). The R thread, is the only

thread that performs write accesses to the cost matrix.

Overall, it is possible to exploit: 1) Scheduler–Workers

pipeline parallelism: the scheduler S computes all possi-

ble bipartitionings sending disjoint sub-partitionings to

Workers Wi using a dynamic scheduling policy; 2) par-

allelism among Workers: the computation of local min-

imum costs proceeds in parallel in all the Wi; and 3)

Workers-Reducer pipeline parallelisms: the Reducer R

receives multiple results in chunks from each worker.

It is worth noting that, the parallelisation strategy just

described, is applied to only those columns that have a

coverage larger than a given size (theTHRESHOLD value).

This is because, the overhead introduced in the paral-

lelisation of an excessively fine level of granularity with

respect to computation (due to synchronisation among

threads and to the creation of extra data structures), might

overcome the advantages of the parallel execution. For

this, is necessary to cut the application of parallel comput-

ing to kernels exploiting a minimum level of granularity.

As we shall discuss in the Results section, for PWHAT-

SHAP the threshold value is set around coverage 20,

this value being almost independent of the input dataset

considered.

The proposed parallelisation is quite direct and, impor-

tantly, requires minimal changes to the original sequential

WHATSHAP code. Furthermore, a high degree of paral-

lelisation is involved due to the many entries of the large

fragment table F corresponding to many (small) tasks that

can be executed in parallel on the available cores.

The FastFlow parallel framework

FastFlow [23] is a programming framework support-

ing high-level parallel programming for shared memory

multi/many-core and heterogeneous distributed systems.

It is implemented in C++ on top of the Posix Threads and

the libfabric standard interfaces and provides developers

with a number of efficient, high-level parallel program-

ming patterns.

The framework offers a methodological approach that

allows applications to be rapidly and efficiently par-

allelised on a broad range of multi/many-core plat-

forms. Thanks to its efficient lock-free run-time support

[35], applications developed on top of FastFlow typically

exhibit a good speedup because of the reduced synchroni-

sation cost (about 20–40 clock cycles) and with a minimal

tuning effort.

The parallelisation of WHATSHAP here presented is

based on FastFlow. It exploits the cache-coherent shared

memory of the underlying architecture, making it unnec-

essary to move data between threads, which is a typical

source of overhead. However, if shared memory greatly

simplifies the parallelisation, it also introduces concur-

rent data access problems which eventually turn into

synchronisation overheads. Parallel patterns defined and

implemented by the FastFlow framework solve these

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 36 of 71

problems by defining clear dependencies among differ-

ent parts of the computations, hence avoiding costly

synchronisations.

FastFlow has proven to be effective in parallelising a

broad class of sequential applications and in redesign-

ing concurrent applications originally developed with

low-level abstraction programming tools, which typically

hinder portability and performance on new multi-core

platforms, e.g. [36–38]. For the development of parallel

version of WHATSHAP, FastFlow offered a methodologi-

cal approach capable to support the parallelisation while

keeping the needed modifications to the sequential code

at a minimum.

Results and discussion

The PWHATSHAP project focused on the design and

development of a high-performance, parallel application

for the solution of the haplotype problem. This has been

done building upon theWHATSHAP framework, an evolv-

ing tool-kit which currently supports several stages in

the haplotyping pipeline and supports data analysis in

standard formats. As illustrated, the choice of WHAT-

SHAP is justified by its performance in terms of accu-

racy, i.e., being able to provide solutions with a low

percentage of errors, and its interesting computational

complexity, which depends on the coverage of data sets

rather than on the length of reads. This appeared as

a desirable property in the light of the future trends

in sequencing technologies that will yield longer and

longer reads. Indeed, other proposals based on simi-

lar approaches to computational complexity are being

developed.

Building upon the feasibility study presented in [22],

PWHATSHAP addresses in particular the efficiency of the

core algorithm for the construction of correct haplotypes,

and provides a multi-core, high-performance version of it

that is fully integrated with the other stages of the WHAT-

SHAP framework. Thanks to the parallelisation technique

adopted, which requires minimal modifications to the

the sequential code, the developed solution retains the

accuracy properties of WHATSHAP.

A detailed description of the accuracy and efficiency

properties of PWHATSHAP is reported in the following.

Accuracy reduces to the accuracy of WHATSHAP, since

the sequential and parallel frameworks return identical

results in terms of the wMEC score, i.e., solutions of the

same minimal cost, although PWHATSHAP can return

a richer set of cost-equivalent solutions than WHAT-

SHAP. Therefore, the accuracy of PWHATSHAP can be

properly accounted for on the basis of the results exist-

ing in literature on the accuracy of WHATSHAP. Effi-

ciency instead has been validated by suitable tests on

a medium-size, shared-memory, multi-core computer,

which could reasonably equip a genomics analysis facility.

Test results show the effectiveness of the parallel PWHAT-

SHAP developed, as far as the core haplotyping module is

concerned.

Accuracy

In this section we compare the accuracy of PWHAT-

SHAP against the accuracy of state of the art approaches

to haplotyping. As explained, this is done by exploit-

ing existing data about the accuracy of WHATSHAP,

given that PWHATSHAP exhibits the same behaviour

as WHATSHAP. In order to make this explicit, we will

use (P)WHATSHAP where appropriate in the rest of this

section.

The accuracy of reconstructed haplotypes can be vali-

dated by considering both error rate [39], that is the count

of phased variants presenting some discrepancies, and

phased positions, that is the count of genomic positions for

which a phased prediction can be identified out of all the

phasable positions in the whole dataset. (P)WHATSHAP

is compared to three tools which have been specifically

designed for the long reads coming from third generation

sequencing technologies: ProbHap [40], a recent approach

that uses a probabilistic graphical model to exactly opti-

mise a specific likelihood function; RefHap [41], a heuris-

tic method presenting very high accuracy; and HapCol

[33], a Fixed-Parameter Tractable algorithm that com-

putes linearly in relation of the number of SNPs and expo-

nentially in function of the coverage. More precisely, Hap-

Col’s time complexity is in O
(

∑k
s=0

(cov
s

)

· cov · L · m
)

,

where L is the length of the read, m the number of SNPs,

cov the coverage, and k is HapCol’s input parameter of the

maximum number of errors it corrects per column, while

WHATSHAP’s complexity is in O(m · 2cov−1).

Both a real and a synthetic data set have been con-

sidered for the comparison. The real dataset (the sample

NA12878) was analysed in the HapMap project [41] and

it is a standard benchmark for haplotyping algorithms

designed to work with long reads, since the haplotype

of this patient, and also those of her parents, was inde-

pendently reconstructed using genome sequencing tech-

niques. The dataset consists of 271,184 reads with average

length of ∼40 kb and with average coverage of ∼3x. Vari-

ant calls have been achieved using the GATK [42] con-

sidering the 1,252,769 positions covered by the NA12878

dataset and are trio-phased. (P)WHATSHAP, RefHap,

HapCol, and ProbHap have been tested on each chromo-

some independently. The dataset used does not include

paired end reads because HapCol cannot handle them.

Moreover, despite the fact that (P)WHATSHAP and Hap-

Col can compute haplotypes outside the all-heterozygous

hypothesis (which allows for a better handling of sequenc-

ing errors, since it permits to consider a SNP site homozy-

gous also if its column is non-monotone), in this test

case, the all-heterozygous assumption was enforced for all

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 37 of 71

the tools. Even if the all-heterozygous assumption has no

impact on their time/space complexities, the comparison

between solutions achieved under different hypothesis

may produce misleading results. Considering that all the

SNPs in the dataset are heterozygous with high confi-

dence, this assumption is not strictly necessary in this

case.

Figure 6, built from data in [33], shows, for the different

tools, the error rate (left histogram) and the percent-

age of phased positions compared to the total number of

positions which can be phased in the input reads (right

histogram). Considering this dataset, both HapCol and

(P)WHATSHAP achieved very good results in terms of

accuracy, reconstructing the haplotypes with high pre-

cision and phasing a large number of positions com-

pared with the other two tools. In particular, HapCol and

(P)WHATSHAP improved the accuracy of the other two

tools by more than 40 %. Incidentally, WHATSHAP also

performed fast, 172 s, behind RefHap, 43 s, and ahead of

HapCol, 332 s, and ProbHap, 1205 s.

In [33] a synthetic dataset was also generated and

used for comparative analysis on accuracy. Specifically,

the analysis aimed to assess how accuracy changes while

varying the coverage of the dataset. Given that the real,

standard benchmark dataset previously used relies on

the all-heterozygous assumption, and hence contains only

heterozygous SNP positions and has low average cover-

age, a synthetic datasets has been used to characterise

the behaviour of tools against the long reads that will

be soon available thanks to future-generation sequencing

technologies (max coverage 25×, max read length 50,000

bases, max indel rate 10 %, max substitution rate 5 %).

The dataset has been generated inserting all the variants

of chromosomes 1 and 15 of the Venter’s genome into the

hg18 assembly genome. Long reads have been generated

at length 1000, 5000, 10,000, and 50,000 using a uniform

indel distribution of 10 % and substitution rates 1 and 5 %.

These rates have been defined according to the informa-

tion currently available about the accuracy of long read

data generated using future-generation sequencing tech-

nologies (see, e.g., [43, 44]). The final in silico datasets

were achieved extracting from each set of simulated reads

subsets with maximum coverage of 15×, 20×, and 25×.

Since ProbHap and RefHap require that haplotypes

are computed outside the all-heterozygous hypothesis,

only tests regarding (P)WHATSHAP and HapCol are rel-

evant. Data in [33] shows a substantial coherence of

(P)WHATSHAP and HapCol in terms of accuracy (less

than 1 % of differences), and illustrate how accuracy, mea-

sured as error rate, improves with larger coverages. Trends

of such improvements are reported in Fig. 7. Such data

provides further grounds to the interest for PWHATSHAP,

whose speed-up increases with coverage.

Although HapCol, together with WHATSHAP, has high

accuracy on these datasets, it is worth recalling that Hap-

Col has a couple of substantial drawbacks with respect

to WHATSHAP. The first one is the above mentioned

requirement for the fragment matrix F to be gapless,

which results in the heavy limitation of not being usable

with paired end reads. The second one is that HapCol

actually solves a constrained version of the MEC prob-

lem (which is called k − cMEC in [33]) that limits to

a given parameter k the amount of errors that can be

corrected. This is due to efficiency reasons, because Hap-

Col takes time and space exponential in the amount of

corrected errors. Moreover, for the same reason, HapCol

actually requires the assumption that errors are uniformly

distributed, which is not very realistic for certain sequenc-

ing technologies. Finally, the computational complexity of

HapCol is also exponential in the coverage, even if not as

strongly as WHATSHAP.

Efficiency

In this section we outline results of experiments aim-

ing at assessing the performance of the proposed parallel

algorithm. All the experiments have been performed on

a platform equipped with two E5-2695@2.40G Hz Ivy

Bridge Intel Xeon processors, each with 12 cores, 64G

Bytes of memory, Linux Red Hat 4.4.7 with kernel 2.6.32.

CPU dynamic frequency scaling and turbo frequency

boost have has been disabled to ensure a fair comparison

among codes using a different number of cores. Both

Fig. 6 Accuracy comparison amongst state of the art toolkits. (P)WHATSHAP (first-left in the histograms) is top in minimising errors as well as in

properly phasing, together with HapCol. Data extracted from [33]

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 38 of 71

Fig. 7 Accuracy as error rate for increasing coverages. The curves in figure show how the accuracy scales up (error rate decreases) with larger

coverages. Curves represent data for Venter’s Chromosome 1 and 15 with substitution error rate 1 and 5 %. From coverage 15 to coverage 25 the

error rate decreases by about 40 %. Based on data extracted from [33]

parallel and sequential codes have been compiled with

gcc 4.8.2 using -O3 optimisation level. The parallel ver-

sion was executed using the shell command numactl

-interleave=all to exploit all the available mem-

ory bandwidth of the 2 NUMA nodes of the hardware

platform.

Experiments have been run on a range of synthetic data

sets with maximum coverage of 16, 18, 20, 22, 24, 26 and

28, which have been generated from a single data set with

an average coverage of 30, mapped to human genome and

then pruned to smaller coverage data sets (see [24] for

details on the construction). Such coverages correspond

to fairly large data sets. Performance has been evaluated

by measuring the computation time elapsed in the com-

putation of subsets (i.e., a given number of columns) of

each data set. The dimension of each subset was chosen

to guarantee that the entire produced output could fit in

main memory.

Firstly, we executed a set of tests aimed at assessing the

time needed to compute columns of different coverage.

On the considered platform we observed that it is worth

parallelising only columns with a coverage≥ 20; we define

them as higher coverage columns. Columns with coverage

of 20 have an average computation time of about 35.7 ms.

The average time from processing columns with a cover-

age < 20 is less than 10 ms; we defined them as lower

coverage columns.

For higher coverage columns, we observed that the

best execution time was obtained by using all the cores

of the platform (24), specifically 23 worker threads

for the map phase and 1 thread for the reduc-

tion phase. Conversely, for columns with lower cover-

age the synchronisation overhead exceeds the perfor-

mance gain, thus they are computed with sequential

code.

The speedup of the proposed parallel PWHATSHAP

against the original sequential WHATSHAP is reported in

Table 2. Specifically, the table reports the average comput-

ing time for a column for the reference dataset, filtered

by different maximum coverages. For each filtering, the

WHATSHAP and PWHATSHAP performance is reported

together with the speedup of PWHATSHAP over WHAT-

SHAP, defined as Speedup = TSeq/TPar. For all coverages,

the amount of main memory used was fixed to ∼ 63GB

in all the tested cases.

Considering the case of the dataset filtered for max cov-

erage 28, the fraction of sequential time, including both

the columns whose construction is not parallelised and

inherently sequential parts of the application, amounts

to about 15.6 % of the overall computation time. In that

case, from Amdahl’s law [45] it follows that the maxi-

mum possible speedup would be around 6.4. Indeed, if

f is the fraction of the algorithm that is strictly sequen-

tial, i.e., 15.6 % in our case, which is about 1/6.4, then the

theoretical maximum speedup that can be obtained with

Table 2 Overall speedup considered for the dataset filtered for

different maximum coverage figures

max cov. Avg. time/col. (ms) Speedup

TSeq TPar

16 0.3 0.3 1.0

18 0.6 0.6 1.0

20 2.4 2.3 1.1

22 11.1 5.2 2.1

24 47.4 14.3 3.3

26 180.9 44.7 4.0

28 1462.5 287.9 5.0

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 39 of 71

Table 3 Speedup on columns with a specific coverage and % of

dataset with the given coverage. Dataset is filtered for max

coverage 28

col. cov. % of dataset Avg. time/col. (ms) Speedup

TSeq TPar

16 2.0 % 2.3 2.3 1.0

18 2.4 % 9.0 9.0 1.0

20 2.5 % 35.7 32.8 1.1

22 3.6 % 153.1 41.4 3.6

24 3.2 % 557.1 139.6 3.9

26 2.8 % 2461.0 585.3 4.2

28 12.0 % 9555.5 1175.5 5.3

n threads is S(n) = 1/
(

f + 1
n (1 − f)

)

, i.e., 1/f ≃ 6.4 with

n → ∞.

The average execution time for computing columns

with fixed coverage for several different coverages is

reported in Table 3. The per-column gain obtained, is in

the range 1–5.3, with a gentle but monotonic increase of

speedup in the tested range. Due to the rapid increase

of used memory, the biggest coverages in the table are

somehow limit cases for speedup increase, since mem-

ory limitations strongly affect performances. As previ-

ously discussed, due to Amhdal’s law, a further significant

increase of speedup will probably require improvements

in the non-parallel parts of the algorithms, possibly lead-

ing to a major restructuring of the code.

Conclusions

The work presented in this paper contributes to the

haplotype assembly approach, a developing methodology

for phasing SNPs based on direct evidence from reads

obtained by DNA sequencing. Phasing grants us a better

understanding of haplotype information, which is relevant

in many contexts, including gene regulation, epigenetic,

genome-wide association studies, evolutionary selection,

population structure and mutation origin.

In this context, our contribution consists of a frame-

work, PWHATSHAP, that improves the efficiency of state

of the art haplotype computational analysis. Importantly,

PWHATSHAP is aligned with the future trends of sequenc-

ing technology, which will provide long reads, i.e., long

fragments of DNA sequences. Building on WHATSHAP,

PWHATSHAP improves the efficiency of solving the

weighted MEC optimisation problem for haplotyping and

supports a faster analysis of datasets with large coverage.

This also caters to the accuracy of the results, which in the

current settings, increases with coverage.

PWHATSHAP is a multi-core, parallel porting ofWHAT-

SHAP. Experimental results and benchmark tests show

increased performance that can be obtained using

computational facilities which are available today at

affordable costs. The core haplotyping algorithm is

embedded in a larger framework, the same as WHAT-

SHAP, which enables the treatment of standard for-

mats for sequencing datasets. As PWHATSHAP is dis-

tributed as a freely available toolkit, our contribution

aims to be widely accessible to researchers, as well as

companies.

The development of PWHATSHAP has been a challeng-

ing parallelisation exercise for a fine-grained, data inten-

sive algorithm. Such features made the process difficult.

We have addressed this by exploiting FastFlow, a high-

level parallel programming framework specifically target-

ing the parallelisation of fine-grained tasks, which allowed

us to develop PWHATSHAP with minimal modifications

to the sequential code.

Common to similar frameworks dealing with large

datasets, a critical aspect of PWHATSHAP is the trade-off

between memory usage and performance. A large amount

of information is currently kept in memory for efficient

access. However, the amount of available memory repre-

sents a rigid limit, after which the necessary virtual mem-

ory management and swap to secondary memory devices,

i.e., disks, start to have an impact on performance. We

envision two possible approaches to solve this problem

and push even further the efficiency of PWHATSHAP.

The first one is based on optimised, ad-hoc memory

management. The memory access pattern is fully sequen-

tial: a large bulk of data is sequentially written, then

sequentially read in reverse order to build the solution.

Data is never accessed in random order except for the

very last column. An intelligent memory management,

aware of such problem-specific information, could main-

tain relevant data in a limited amount of memory while

needed, and swap to disk data outside such a working set

(i.e., almost all but the last two columns). The difficulty

lies in providing programmers with suitable abstractions

that allow them to transparently deal with data swap-

ping, i.e., technically, a user-space virtual memory opti-

mised to manage the sequential data scheme used by

PWHATSHAP.

The second approach is based on memory compres-

sion, which is making a comeback mainly because of the

availability of multiple core processors.Memory compres-

sion has been considered recently in projects regarding

Linux, ChromeOS, Android and OS X. Intelligent mem-

ory compression would also exploit haplotyping specific

information. The two approaches could be combined

together, and paired with advanced data management

techniques.

The large availability of cores would allow such data

management processes to be offloaded to one or more

processor cores in a quite seamless way.

This is the scope of future developments.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 40 of 71

Acknowledgments

Authors would like to thank the anonymous reviewers for their comments and

suggestions that have contributed to improve our paper. This work has been

partially supported by the EU FP7 project n. 288570 “ParaPhrase: Parallel

Patterns for Adaptive Heterogeneous Multicore Systems” (no. 288570), and by

the EU H2020 project “Rephrase: Refactoring Parallel Heterogeneous

Resource-Aware Applications - a Software Engineering Approach” (no. 644235).

Declaration

Publication charges for this supplement were funded by the EU H2020

“OpenAIRE2020” project grnt n. 643410. This article has been published as part

of BMC Bioinformatics Volume 17 Supplement 11, 2016. Selected articles from

the 11th International Meeting on Computational Intelligence Methods for

Bioinformatics and Biostatistics (CIBB 2014). The full contents of the

supplement are available online https://bmcbioinformatics.biomedcentral.

com/articles/supplements/volume-17-supplement-11.

Availability of data andmaterials

Dataset used are publicly available as indicated in the provided references.

PWHATSHAP is distributed as open source software at https://bitbucket.org/

whatshap/whatshap.

Authors’ contributions

MT and AB designed the parallelisation of PWHATSHAP. MT and MA

implemented, tested and tuned PWHATSHAP. NP, TM and MP had a major role

in designing and developing WHATSHAP and contributed to its parallelisation.

IM, NP and AB contributed to the comparison with other state of the art

approaches. All the authors contributed to the writing of the paper. All authors

read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Author details
1Computer Science and Mathematics, School of Natural Sciences, Stirling

University, FK9 4LA Stirling, UK. 2Department of Computer Science, University

of Torino, Torino, Italy. 3Laboratoire de Biométrie et Biologie Evolutive,

University Claude Bernard, Lyon, France. 4Center for Bioinformatics, Saarland

University, Saarland, Germany. 5Computational Biology & Applied

Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany.
6Department of Computer Science, University of Pisa, Pisa, Italy. 7Erable Team,

INRIA, Grenoble, France. 8 Institute of Biomedical Technologies, National

Research Council, Milan, Italy.

Published: 22 September 2016

References

1. Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, et al.

Integrative analysis of haplotype-resolved epigenomes across human

tissues. Nature. 2015;518(7539):350–4.

2. Marchini J, Howie B. Genotype imputation for genome-wide association

studies. Nat Rev Genet. 2010;11(7):499–511.

3. The International HapMap Consortium. Integrating common and rare

genetic variation in diverse human populations. Nature. 2010;467:52–8.

4. The 1000 Genomes Project Consortium. A map of human genome

variation from population-scale sequencing. Nature. 2010;467(7319):

1061–73.

5. The Genome of the Netherlands Consortium. Whole-genome sequence

variation, population structure and demographic history of the dutch

population. Nat Genet. 2014;46:818–25.
6. Huang J, Howie B, McCarthy S, Memari Y, Walter K, Min JL, et al.

Improved imputation of low-frequency and rare variants using the UK10k

haplotype reference panel. Nat Commun. 2015;6:1–9.

doi:10.1038/ncomms9111.

7. Glusman G, Cox HC, Roach JC. Whole-genome haplotyping approaches

and genomic medicine. Genome Med. 2014;6(9):73.
8. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype

imputation method for the next generation of genome-wide association

studies. PLoS Genet. 2009;5(6):1000529.
9. Li Y, Willer CJ, Ding J, Scheet P, Abecassis GR. MaCH: using sequence

and genotype data to estimate haplotypes and unobserved genotypes.

Genet Epidemiol. 2010;34:816–34.
10. Scheet P, Stephens M. A fast and flexible statistical model for large-scale

population genotype data: Applications to inferring missing genotypes

and haplotypic phase. Am J Hum Genet. 2006;78:629–44.
11. Menelaou A, Marchini J. Genotype calling and phasing using

next-generation sequencing reads and a haplotype scaffold.

Bioinformatics. 2013;29(1):84–91.
12. Slatkin M. Linkage disequilibrium – understanding the evolutionary past

and mapping the medical future. Nat Rev Genet. 2008;9:477–85.
13. Chin CS, Alexander D, Marks P, Klammer AA, Drake J. Nonhybrid,

finished microbial genome assemblies from long-read smrt sequencing

data. Nat Methods. 2013;10:563–9.
14. Mikheyev AS, Tin MMY. A first look at the oxford nanopore minION

sequencer. Mol Ecol Resour. 2014;14(6):1097–102.
15. Bansal V, Bafna V. HapCUT: an efficient and accurate algorithm for the

haplotype assembly problem. Bioinformatics. 2008;24(16):153–9.
16. Deng F, Cui W, Wang LS. A highly accurate heuristic algorithm for the

haplotype assembly problem. BMC Genomics. 2013;14(Suppl 2):2.
17. Chen ZZ, Deng F, Wang L. Exact algorithms for haplotype assembly from

whole-genome sequence data. Bioinformatics. 2013;29(16):1938–45.

doi:10.1093/bioinformatics/btt349.
18. Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R. SNPs problems,

complexity and algorithms. In: Proceedings of the 9th Annual European

Symposium on Algorithms (ESA). London: Springer; 2001. p. 182–93.

19. Patterson M, Marschall T, Pisanti N, van Iersel L, Stougie L, Klau GW,

Schönhuth A. WhatsHap: Weighted haplotype assembly for

future-generation sequencing reads. Journal of Computational Biology.

2015;22(6):498–509. doi:10.1089/cmb.2014.0157.
20. Downey RG, Fellows MR. Parameterized Complexity. Berlin: Springer;

1999.
21. Zhao YT, Wu LY, Zhang JH, Wang RS, Zhang XS. Haplotype assembly

from aligned weighted SNP fragments. Comput Biol Chem. 2005;29:

281–7.
22. Aldinucci M, Bracciali A, Marschall T, Patterson M, Pisanti N, Torquati M.

High-performance haplotype assembly. In: Computational Intelligence

Methods for Bioinformatics and Biostatistics - 11th International Meeting,

CIBB 2014, Cambridge, UK, June 26-28, 2014, Revised Selected Papers.

Lecture Notes in Computer Science, vol. 8623. Cambridge, UK: Springer;

2015. p. 245–258. doi:10.1007/978-3-319-24462-4_21.
23. Fastflow website. 2015. http://mc-fastflow.sourceforge.net/ Accessed 1

Sept 2015.
24. Patterson M, Marschall T, Pisanti N, van Iersel L, Stougie L, Klau GW,

et al. Whatshap: Weighted haplotype assembly for future-generation

sequencing reads. J Comput Biol. 2015;22(6):498–509.

doi:10.1089/cmb.2014.0157.
25. Panconesi A, Sozio M. Fast hare: a fast heuristic for the single individual

SNP haplotype reconstruction In: Jonassen I, Kim J, editors. Proceedings

of the Fourth International Workshop on Algorithms in Bioinformatics

(WABI). Lecture Notes in Computer Science. vol. 3240. Berlin: Springer;

2004. p. 266–77.
26. Levy S, Sutton G, Ng P, Feuk L, Halpern A, Walenz B, et al. The Diploid

Genome Sequence of an Individual Human. PLoS Bio. 2007;5(10):254.

doi:10.1371/journal.pbio.0050254.
27. Bansal V, Halpern AL, Axelrod N, Bafna V. An MCMC algorithm for

haplotype assembly from whole-genome sequence data. Genome Res.

2008;18(8):1336–1346.
28. Cilibrasi R, van Iersel L, Kelk S, Tromp J. On the complexity of several

haplotyping problems In: Casadio R, Myers G, editors. Proceedings of the

Fifth International Workshop on Algorithms in Bioinformatics (WABI).

Lecture Notes in Computer Science. vol. 3692. Berlin: Springer; 2005.

p. 128–39.
29. Bansal V, Bafna V. HapCUT: an efficient and accurate algorithm for the

haplotype assembly problem. Bioinformatics. 2008;24(16):153–9.

30. Mousavi SR, Mirabolghasemi M, Bargesteh N, Talebi M. Effective

haplotype assembly via maximum Boolean satisfiablility. Biochem

Biophys Res Commun. 2011;404(2):593–8.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-11
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-11
https://bitbucket.org/whatshap/whatshap
https://bitbucket.org/whatshap/whatshap
http://dx.doi.org/10.1038/ncomms9111
http://dx.doi.org/10.1093/bioinformatics/btt349
http://dx.doi.org/10.1089/cmb.2014.0157
http://dx.doi.org/10.1007/978-3-319-24462-4_21
http://mc-fastflow.sourceforge.net/
http://dx.doi.org/10.1089/cmb.2014.0157
http://dx.doi.org/10.1371/journal.pbio.0050254

The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):342 Page 41 of 71

31. Fouilhoux P, Mahjoub AR. Solving VLSI design and DNA sequencing

problems using bipartization of graphs. Comput Optim Appl. 2012;51(2):

749–81. doi:10.1007/s10589-010-9355-1.

32. He D, Choi A, Pipatsrisawat K, Darwiche A, Eskin E. Optimal algorithms

for haplotype assembly from whole-genome sequence data.

Bioinformatics. 2010;26(12):183–90.

33. Pirola Y, Zaccaria S, Dondi R, Klau GW, Pisanti N, Bonizzoni P. Hapcol:

accurate and memory-efficient haplotype assembly from long reads.

Bioinformatics. 2016;32(11):1610–1617. doi:10.1093/bioinformatics/

btv495.

34. Kuleshov V. Probabilistic single-individual haplotyping. Bioinformatics.

2014;30(17):379–85. doi:10.1093/bioinformatics/btu484.

35. Aldinucci M, Danelutto M, Kilpatrick P, Meneghin M, Torquati M. An

efficient unbounded lock-free queue for multi-core systems. In: Proc. of

18th Intl. Euro-Par 2012 Parallel Processing. Lecture Notes in Computer

Science, vol. 7484. Rhodes Island, Greece: Springer; 2012. p. 662–673.

doi:10.1007/978-3-642-32820-6_65.

36. Aldinucci M, Bracciali A, Liò P, Sorathiya A, Torquati M. StochKit-FF:

Efficient systems biology on multicore architectures. In: Euro-Par 2010

Workshops, Proc. of the 1st Workshop on High Performance

Bioinformatics and Biomedicine (HiBB). Lecture Notes in Computer

Science, vol. 6586. Ischia, Italy: Springer; 2011. p. 167–75.

doi:10.1007/978-3-642-21878-1_21.

37. Aldinucci M, Torquati M, Spampinato C, Drocco M, Misale C, Calcagno C,

et al. Parallel stochastic systems biology in the cloud. Brief Bioinform.

2013. doi:10.1093/bib/bbt040.

38. Misale C, Ferrero G, Torquati M, Aldinucci M. Sequence alignment tools:

one parallel pattern to rule them all? BioMed Res Int. 2014.

doi:10.1155/2014/539410.

39. Browning SR, Browning BL. Haplotype phasing: existing methods and

new developments. Nat Rev Genet. 2011;12(10):703–14.

40. Kuleshov V, et al. Whole-genome haplotyping using long reads and

statistical methods. Nat Biotechnol. 2014;32(3):261–6.

41. Duitama J, et al. Fosmid-based whole genome haplotyping of a HapMap

trio child: evaluation of single individual haplotyping techniques. Nucleic

Acids Res. 2012;40:2041–53.

42. DePristo MA, et al. A framework for variation discovery and genotyping

using next-generation dna sequencing data. Nat Genet. 2011;43(5):491–8.

43. Carneiro M, Russ C, Ross M, Gabriel S, Nusbaum C, DePristo M. Pacific

biosciences sequencing technology for genotyping and variation

discovery in human data. BMC Genomics. 2012;13(1):375.

doi:10.1186/1471-2164-13-375.

44. Roberts R, Carneiro M, Schatz M. The advantages of smrt sequencing.

Genome Biol. 2013;14(7):405. doi:10.1186/gb-2013-14-7-405.

45. Amdahl GM. Validity of the single processor approach to achieving large

scale computing capabilities. In: AFIPS ’67 (Spring): Proc. of the April

18-20, 1967. New York: ACM; 1967. p. 483–5.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1007/s10589-010-9355-1
http://dx.doi.org/10.1093/bioinformatics/btv495
http://dx.doi.org/10.1093/bioinformatics/btv495
http://dx.doi.org/10.1093/bioinformatics/btu484
http://dx.doi.org/10.1007/978-3-642-32820-6_65
http://dx.doi.org/10.1007/978-3-642-21878-1_21
http://dx.doi.org/10.1093/bib/bbt040
http://dx.doi.org/10.1155/2014/539410
http://dx.doi.org/10.1186/1471-2164-13-375
http://dx.doi.org/10.1186/gb-2013-14-7-405

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Haplotyping: a fixed-parameter tractable solution to wMEC
	WhatsHap: the algorithm
	WhatsHap: an integrated toolkit for haplotyping
	pWhatsHap: high-performance WhatsHap on multi-core architectures
	pWhatsHap: the parallel algorithm
	pWhatsHap: the parallel implementation
	The FastFlow parallel framework

	Results and discussion
	Accuracy
	Efficiency

	Conclusions
	Acknowledgments
	Declaration
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

