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Abstract— We present a novel, deeply embedded robotics
middleware and programming environment. It uses a multi-
threaded, publish-subscribe design pattern and provides a Unix-
like software interface for micro controller applications. We
improve over the state of the art in deeply embedded open
source systems by providing a modular and standards-oriented
platform. Our system architecture is centered around a publish-
subscribe object request broker on top of a POSIX application
programming interface. This allows to reuse common Unix
knowledge and experience, including a bash-like shell. We
demonstrate with a vertical takeoff and landing (VTOL) use
case that the system modularity is well suited for novel and
experimental vehicle platforms. We also show how the system
architecture allows a direct interface to ROS and to run
individual processes either as native ROS nodes on Linux or
nodes on the micro controller, maximizing interoperability. Our
microcontroller-based execution environment has substantially
lower latency and better hardware connectivity than a typical
Robotics Linux system and is therefore well suited for fast, high
rate control tasks.

I. INTRODUCTION

Micro aerial vehicles (MAVs) have been an active re-
search topic for decades, but became of even more interest
to the broader robotics community in recent years. While
ground-based robots are deployed in applications today,
they remain confined to particular work spaces. Micro air
vehicles navigate much more freely outdoors, and due to their
3D motion are a suitable generalization for many robotics
design challenges. Recently a number of large scale industry
applications have been proposed which require higher levels
of autonomy than deployed systems can offer today. As the
field progresses and more sophisticated robotics problems are
targeted, the software complexity of these systems increases
rapidly. Similar to ground robotics recently, aerial robotics
is reaching a level of complexity where individual research
groups are unable to tackle the system design on their own.
We address this problem by providing a very flexible, stan-
dards oriented and low-cost research platform supporting
MAVs in the micro size scale but still offering a multi-
threaded industry standard programming environment. This
allows path planning and other high-level navigation and
control research topics to benefit from a fully featured Unix
system even on platforms too small to carry a companion
computer. With an object request broker (ORB) and a stan-
dardized API, it can be characterized as Robot Operating
System (ROS) equivalent for small aerial or any other size
and power constrained systems. The platform has also been
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successfully utilized in conjunction with Linux companion
computers, when more processing power is necessary.
The contributions of this work are as follows: First we first
discuss related works concerning existing deeply embedded
systems. Second, we introduce the design criteria for such a
system. Third, the general software architecture and imple-
mentation is presented. Last we show performance results
and provide some possible applications for the framework.

II. RELATED WORK

As robotics research is currently tackling a wide range of
problems from estimation and control to high-level planning,
communication and middleware systems have emerged to
support the increased complexity. Huang et al. created a
publish-subscripe design pattern object request broker for
robotics systems [1] which is particularly lightweight and
low latency. Quigley et al. designed a complete robotics
meta operating system which not only includes a middleware
layer providing different communication methods including
publish-subscribe patterns, but also a library of robotics pack-
ages [2]. Our previous work was concerned with a different
layer and application domain and was not focused on the
deeply embedded scope. It leveraged LCM [1] as middleware
and added a set of computer-vision specific interfaces and
algorithms [3]. While the presented work has much stronger
similarities to Linux / Unix based robotics systems in terms
of architecture or features, the most prominent existing
research system in the micro air vehicle domain is PPZ
[4][5]. It features a complete fixed wing and rotary autopilot
suite, but does not support native multithreading or a native
ROS integration. The authors of APM [6] have created a
complete autopilot system for fixed wing, multicopters and
traditional helicopters. While the system shows excellent
flight performance, it utilizes an internal function-scheduling
routine without support for preemption. It does support PX4
hardware and middleware and leverages the multithreading
capabilities of the platform by running background worker
threads. However the design, whilst using worker threads,
does not decouple individual tasks and does not implement
a general inter process communication scheme. Instead it
utilizes different main loops for different vehicle types.
The OpenPilot platform [7], which focuses on multicopters,
implements a fully multithreaded solution, but uses an API
that is custom to the operating system, therefore making the
convergence and reuse between the deeply embedded and
Unix platforms more challenging. One design feature of the
platform is the linkage of inter process message formats to
telemetry, which is making interoperability challenging. For



a complete discussion of open source systems, please refer
to the excellent overview in [8]. Apart from pure onboard
systems, hybrid onboard and off board research systems are
widely used today. One of the first instances of this class,
the system of Lupashin et al.[9] uses a hybrid system. It
implements a custom off-board trajectory generation and
position control, which is combined with on-board attitude
and rate control. The architecture of Michael et al. [10] is
very similar, but the system operates on top of the Robot
Operating System (ROS) infrastructure.

III. DESIGN CRITERIA FOR DEEPLY EMBEDDED
SYSTEMS

In this section we describe the design criteria for deeply
embedded systems. We focus on the real-time aspects of
the system. This is mostly defined by requirements for low-
latency sensor acquisition and control responses and special-
ized low level interfaces, such as I2C, SPI, CAN and PWM
outputs. The PX4 software architecture is modeled to address
typical estimation and control tasks in deeply embedded
platforms with a modular approach. We describe the common
layered control architecture of robotic platforms, reusability
considerations, and interoperability concerns.

A. Controller Timing Requirements

Robot controllers can generally be modeled as a set of
nested control loops. Each control loop has a reference set
point and the current vehicle state as input. It generates
the reference for the next inner loop. Even more advanced
control structures often can be described as a set of nested
control loops. The outer loops generally have less strict tim-
ing requirements compared to the innermost control loops,
thus giving the system designer more flexibility on which
platform to implement the outer layers. Fig. 1 illustrates
the typical modeling and control of a generalised robot,
following the notation of [10], but generalized to all vehicle
types. For a complete example of this design scheme please
refer to [11] for multi rotors and [12] for fixed wing aircraft.

B. Reusability

To date, when compared to open platforms, many research
projects run custom hardware and software with very little
testing and virtually no safety track record. An open and
modular architecture is required to enable research groups
to focus on their core research interests. We achieve a high
level of reusability, while not sacrificing performance and
safety by:

• Clear and clean layering of the software API from low-
level to high-level controllers

• Multithreaded node-like architecture that decouples in-
dividual applications

• Availability of current sensors and actuator buses
• Expansion bus on the hardware for new sensors
• Safety hard-override in hardware at all times
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Fig. 1: Independent of the vehicle type, the dynamical model
and nested control architecture can be generalized. Different
levels have different update rate and latency requirements.

C. Interoperability

The PX4 platform offers both compatibility and inte-
gration: The cross-platform API supports writing software
packages which can be executed on the micro controller or
on the ROS/Lnux system. It provides an interface between
the micro controller based solutions and Linux companion
computers to run them as a distributed system, leveraging
the deeply embedded platform where real-time performance
is necessary. The PX4 API allows to use the same code on
ROS and on NuttX. For example the code in the listing below
executes on both platforms and allows to build and run the
same controller on the micro controller, on Linux, or in the
Linux Software-in-the-Loop environment.

px4::Publisher<px4::rc_channels>
*pub = n.advertise<rc_channels>()

IV. SOFTWARE ARCHITECTURE

In the following section we describe the different layers of
the developed software architecture. The software architec-
ture is split into four main layers, as depicted in Fig 2: in the
lower half, device drivers with device-specific code (e.g. for
the particular microcontroller or bus type), and in the upper
half, drivers which expose an interface for the system as
device node. These are part of the operating system (NuttX
[13]). The third layer is the micro object request broker
which handles inter process communication efficiently and
ensures data integrity between threads. The fourth layer is the
application layer, which consists of individual applications
(apps), such as flight control or state estimation modules.
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Fig. 2: The different layers of the software architecture make
the system horizontally and vertically modular.
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Fig. 3: A single process can subscribe (consume) and publish
multiple topics, allowing it to interface at different rates.

Our contribution consists of the PX4 middleware which
provides devices drivers and a micro object request broker
(µORB). The presented experimental results were obtained
using the PX4 flight stack, which is a selection of estimators
and controllers developed in close collaboration with the
open source community. All hardware plans and the complete
source code are available under a permissive BSD (software)
and CC-BY-SA license (hardware) on the project website
[14]. Although not formally certified, the system design
is oriented towards several industry standards: The device
drivers and operating system are modeled after the POSIX
[15] interface standards. The off-board communication is
using the commonly used MAVLink protocol [16]. The
onboard networking is following the UAVCAN standard
proposal [17].

A. µORB Middleware

The object request broker provides a data structure for data
distribution. It follows the one-to-many publish-subscribe
design pattern: A publisher wanting to share information
advertises a topic. A topic is defined as a semantic message
channel such as ’attitude’ or ’position’. A subscriber can
subscribe to a topic, and after the subscription is established
ask at his own pace for new data (polling), or be woken from
the thread sleep state at the instant new data is available. As
Fig. 3 depicts a process can be both publisher and subscriber
at the same time, and subscribe and publish to multiple
topics.

Our implementation of this design pattern has particular
strengths for realtime control applications:

• The topic handle is implemented as virtual file, allowing
listeners to do blocking waits on interfaces and drivers
(such as serial ports) and topics in parallel. This is
commonly not supported by middleware solutions but
saves a complete worker thread.

• The read-write lock of the publication allows efficient
concurrency and ensures atomic reads and writes of the
complete topic content.

• Subscribers can ask for a notification limit, allowing a
subscriber to receive the topic only every N millisec-
onds. This is important for the efficiency of high-rate
topics such as the 1KHz accelerometer updates.

• The asynchronous / blocking wait approach combined
with the task priority setup of the operating system
allows for minimal latency and deterministic scheduling
in the control pipeline. Low-priority tasks and high-
priority real time control tasks can be mixed.

B. Applications

Each state estimator and controller in the PX4 stack is
implemented as standalone application, which is started with
a main() function and then subscribes / publishes to different
topics. Applications can be started and stopped at runtime.

C. Work Queue and HRT Callbacks

For applications that repeatedly only execute one function,
such as device drivers, three different work queues to execute
callbacks are available: The low priority and high priority
work queues and the high resolution timer (HRT) callbacks.
The two work queues execute in the normal application
context, while the HRT callbacks operate in interrupt context
for time-critical functions. Work queue entries are part of
the normal scheduling and can access all operating system
interfaces, HRT callbacks should be kept as short as possible
and only support a subset of the OS API calls. However, HRT
callbacks can publish to µORB topics.

D. Companion Computer

As this system is designed as deeply embedded system,
the average robotic application will also provide a companion
computer, commonly running ROS on Linux [18][19][3]. We
not only offer a ROS interface for feedback and control,
but go one step further: Our framework supports the native
operation of nodes originally designed for the autopilot on
ROS. This is feasible as the node centered design of the
deeply embedded solution has the same architecture as on
a Linux platform. Therefore we also build our software-in-
the-loop simulation based on the ROS native port.

Figure 4 shows the architecture of the joint deeply embed-
ded + Linux setup. Some components are exclusive to one
of the platforms, e.g. the actuator drivers on the embedded
platform or e.g. a simultaneous localization and mapping
pipeline on the Linux system. Nodes that suit both envi-
ronments can be executed on either platform. This has the
particular benefit of allowing a proven version of a controller
to run on the safety-critical deeply embedded controller,
while testing a new version or different implementation on
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Fig. 4: Interface to the companion computer and examples
of applications which can be executed on either platform.

the Linux companion computer. Instead of encapsulating and
hiding ROS in our environment, we run native and standard
ROS nodes on Linux, allowing researchers already familiar
with ROS to easily adopt the embedded codebase without
having to learn a new API. Furthermore any time-critical
nodes can be run on the deeply-embedded platform in real-
time, whereas a Linux system does not offer that capability
without using a real-time kernel on dedicated hardware. Our
embedded solution is therefore suitable for low level control
and allows to upgrade an existing ROS system to achieve
real-time performance.

V. IMPLEMENTATION

In this section we describe an efficient implementation
of the time critical driver layer and then introduce the
major hardware components. The software platform is highly
portable, but has been implemented for these results on the
PX4 FMU hardware, with the main hardware features listed
below and a schematic display of the inputs and outputs
provided in Figure 6. The system offers a serial terminal
interface to monitor the system status (for example system
load via the ’top’ command). System startup is managed
through a set of shell scripts and parameters, which allows
the full customization of the system startup if required. A
MAVLink-enabled centralized parameter storage provides an
easy to use (and GUI-supported) management of controller
and general system parameters. Even non experienced users
can therefore setup a fully customized system. Parameters
can be changed during flight and stored in permanent storage
(FRAM).

A. Driver Layer

The system is clocked using a high resolution timer which
supports callbacks on the interrupt level. These callback
functions are ideally suited to read sensors efficiently and
accurate at a high rate. The interrupt latency / jitter is below
4 microseconds. A wide variety of common peripherals is
supported by the system, including MEMS sensors, external
airspeed and pressure sensors, PWM, I2C and CAN motor
controllers as well as PX4 specific peripherals, such as the
flow sensor [20]. The current hardware supports up to 5

Fig. 5: PX4 FMU v1.7 open hardware controller board,
measuring 50 x 36mm with a weight of 8g. The input/output
board (or a custom research module) can be connected. The
Pixhawk autopilot (FMU v2.4) is our 2nd generation.

serial ports, which can be used to communicate point-to-
point or point-to-multipoint with radio modems. The support
for commercial-off-the shelf digital radio control systems
(S.BUS1/2, PPM, Spektrum) allows the use of low-cost but
well-proven manual override solutions.

B. Hardware
The autopilot consists of two independent sub-modules,

the flight management unit (FMU) and the input-output unit
(IO). Fig. 5 shows the standalone flight management unit rev.
1.7 which is optimized for small scale research systems. We
have made FMU + IO available as all-in-one board as well
(Pixhawk). The main hardware features are:

• 168 MHz Cortex M4F, 256 KB RAM, 2 MB flash
• MPU6000 gyro/acc, L3GD20 gyro, LSM303D mag/acc
• 14 PWM (servo) outputs total (8 with hard override)
• Triple-redundant power supply inputs with failover
• 5 serial ports (2 with hardware flow control)
• 2 CAN ports, 1 I2C port, 1 SPI port, 3x ADC
• RC inputs: PPM, S.BUS1/2, DSM2/X, RSSI input
The rationale for the separation of both units is to allow

a hard override to manual control using the safety processor
(see Figure 6). This considerably improves safety, particu-
larly in research setups.
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Fig. 6: Input and output data streams of the system.
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reception in a second process, exhibiting very low latency.

VI. RESULTS

In this section, we show first the performance of the
platform while running an attitude estimator. We then give a
reusability comparison among existing platforms and finally
show the flexibility of our platform.

A. Performance

Despite running on a resource constrained system, our
proposed architecture is capable of processing multiple sen-
sors connected via different embedded bus systems at 1000
Hz or more each, with an average interrupt latency in the
sensor readout of less than 4 microseconds. Context switches
between tasks require only 25 microseconds. As depicted in
Fig. 7 the inter process latency is very low. In contrast to
other deeply embedded solutions, the sensor drivers directly
publish to sensor topics, simplifying the development of
higher-level nodes such as controllers, as no knowledge about
the embedded interfaces is required. Compared to Linux, the
interrupt latency and timings are lower and more consistent
even under high load. The system design allows to log
different sensors and controller outputs at variable rate when
available (similar to a ROS bag), and Python and Matlab
tools are provided to plot these logs for flight analysis or
replay them in unit test harnesses for filter design.

B. Reusability

Recently a wide range of open aerial robotics platforms
have become available. Due to their fast evolution, low cost
and applicability to rovers and underwater vehicles, they
represent general purpose robotic controllers. However, the
reusability of these platforms depends on their modularity.
Table I summarizes aspects relevant to the adaption and
general reusability, including potential limits induced by
the license. The BSD license does not limit the reuse in
academic and industrial applications, while GPL licensed
code is subject to certain restrictions. The column nodes
describes whether one software module (e.g. a controller
or estimator) is self-contained and can be easily exchanged
against a different module without modifying the core system
(equivalent to a ROS node). The column IPC describes if the
system is multithreaded and offers a suitable generic inter

process communication layer. The column ROS-IF (ROS
interface) captures the ROS platform interface. The column
ROS-N captures the native ROS support of flight control and
guidance software. SITL refers to Software-in-the-loop, a
pure software simulation mode. The license column describes
the license model.

TABLE I: Platform reusability. The five selected platforms
performed best out of all evaluated platforms.

System Nodes IPC ROS-IF ROS-N SITL Lic.
PX4 yes yes yes yes ROS BSD

OpenPilot [7] yes yes no no no GPL
APM [6] no no yes no yes GPL
PPZ [4] no no yes no yes GPL

MultiWii [21] no no yes no no GPL

C. Flexibility

For research applications the ability to adapt the sys-
tem to new vehicles and setups without requiring fun-
damental software or hardware changes is critical. Our
platform has been utilised in various non-standard vehicle
setups, including a novel spherical blimp design [22], but
also in various other platforms across very diverse fields
[23][24][25][26][27][28][29].

Here we present a vertical take-off and Landing (VTOL)
vehicle setup as an example of a concrete system design,
including a Linux companion computer. It is trivial to
implement using the platform, despite no VTOL support
designed into the system. As our platform design is airframe-
agnostic, it was possible to combine the fixed wing and
multicopter controllers with a transition controller to obtain
first flight results without changing the system architecture.
As the evolution of the VTOL control logic progresses, it
will later be trivial replace this transition scheme with a
custom VTOL controller, as depicted in Figure 8. In fact the
controllers can be hot-swapped in flight. As the controllers
can be shifted between systems or even run in parallel, test-
flights are possible with experimental controllers in Linux,
with proven controllers as fallback available on the deeply
embedded system if the Linux system fails or the controllers
implemented on it do not perform as desired.

VII. CONCLUSION

We have presented the first node architecture oriented,
fully multithreaded modular robotics framework for deeply
embedded platforms using a publish / subscribe design
pattern. By design, our architecture is well suited for ex-
perimental setups. The ability to run individual nodes as
native ROS nodes allows for a very high flexibility in the
design process. Our system is highly extensible both in terms
of hardware and software, from the addition of individual
sensors to using alternate controllers, filters and estimators.
Researchers also can just leverage the base system and run
completely custom control and estimation pipelines. The



Fixed Wing
Attitude
Control

Deeply Embedded:
FMUv2 Board

400 Hz

< 1 ms 
latency
UART

Linux Computer:
Odroid U3

VTOL
Transition
Controller

Multicopter
Attitude
Control

Actuator
Mixer

uORB pub/sub bus

RO
S pub/sub bus

Multicopter
Attitude
Control

4x Motors
2x Servos
via PWM

Fixed Wing
Attitude
Control

SITL
Flight

Simulator
RVIZ 3D

Visualization

ROS
Logging

Simulation Environment

Fig. 8: Diagram of the PX4 VTOL architecture. The attitude
controllers are present on the micro controller and Linux as
they can be executed on either platform.

use of a POSIX programming model and the publish/sub-
scribe API substantially lowers the barriers for researchers
accustomed to ROS or similar non-embedded toolkits to
implement deeply embedded solutions. The hardware of
our platform is easily and internationally available as open
hardware design from multiple vendors and has even sparked
the creation of derivatives specialised for particular use cases.
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