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Abstract

Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging
from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the
diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information,
including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties.
However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization,
all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for mea-
suring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the
algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental
datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-
source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational
methods in electron microscopy, and we invite the community to contribute to this ongoing project.
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Introduction

In a scanning transmission electron microscopy (STEM) experi-
ment, a beam of high-energy electrons is focused to a very
fine probe—on the order of or, often, smaller than the atomic
lattice spacing—and rastered across the surface of the sample
(Pennycook, 2011). In the traditional STEM, a (two-dimensional)
image is formed by populating the value of each pixel with the
number of electrons (times a scaling factor) scattered onto a detec-
tor at each beam position. The geometry of the detector—its size,
shape, and position in the microscope’s diffraction plane—deter-
mines which electrons are collected at each probe position. As a

result, different detector geometries can give rise to rather different
images, by varying which electron scattering processes dominate
image contrast (Cowley, 1976). A point detector placed on the
optic axis yields a bright-field STEM image which is formally
equivalent, by reciprocity, to a transmission electron microscopy
(TEM) image. In contrast, annular detectors with large inner-radii
are dominated by high momentum-transfer elastic scattering
events, making high-angle annular dark-field STEM a popular
geometry as image contrast generally scales monotonically with
the projected potential of the sample (“Z-contrast” imaging;
Wang & Cowley, 1989). Low-angle annular detectors have greater
sensitivity to lighter elements, but lose the advantage of simple
Z-contrast interpretability due to the increased importance of
phase contrast, that is, self-interference of the electron beam wave-
function. Many more detector geometries are possible, each best
suited to reveal different aspects of sample structure, each suffering
from different limitations (Spurgeon, 2020).
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In a four-dimensional STEM (4D-STEM), we replace the stan-
dard STEM detectors, which integrate all electrons scattered over
a large region, with a pixelated detector that captures the electron
flux scattered to each angle in the diffraction plane (Zaluzec,
2002; Fundenberger et al., 2003; Watanabe & Williams, 2007;
Lupini et al., 2015; Tate et al., 2016; Ophus, 2019). While a typical
STEM image, therefore, produces a single number for each position
of the electron beam, a 4D-STEM dataset produces a two-
dimensional image of diffraction space intensities for each real
space beam position. The resulting four-dimensional data hyper-
cube can be collapsed in real space to yield information comparable
tomore traditional electron diffraction experiments. Alternatively, it
can be collapsed in diffraction space to yield a variety of “virtual
images,” corresponding to both traditional STEM imaging modes
as well as more exotic virtual imaging modalities (Schaffer et al.,
2008; Tao et al., 2009; Gammer et al., 2015; Zhang et al., 2017;
Hachtel et al., 2018).More information still can be extracted by judi-
cious combination of real and reciprocal space. The structure, sym-
metries, and spacings of Bragg disks can be used to extract spatially
resolved maps of crystallinity, grain orientations, and lattice strain
(Schwarzer & Sukkau, 1998; Usuda et al., 2005; Béché et al., 2009;
Caswell et al., 2009; Koch et al., 2012; Kobler et al., 2013; Pekin
et al., 2017; Hou et al., 2019). Redundant information in overlapping
Bragg disks can be leveraged to deconvolve the electron beam shape
from the sample structure, yielding the sample potential itself (Chen
et al., 2016; Lazić et al., 2016; Müller-Caspary et al., 2018). Rings of
diffracted intensity, characteristic of amorphous samples, can be
used to extract correlation functions describing the short and
medium range order and disorder. Indeed, the range of possible
quantities of physical interest which can be extracted from a single
4D-STEM experiment is formidable, leading others to use the term
“universal detectors” for 4D-STEM capable pixelated cameras
(Hachtel et al., 2018). Figure 1 shows the experimental geometry
of a 4D-STEM experiment, and various measurements performed
from the same experimental dataset. For a mathematical discussion
of STEM and 4D-STEM image formation, see Appendix A.

The price paid for the versatility of 4D-STEM is new complexity
in both the raw experimental data and in the computational process-
ing required to extract meaningful measurements. Maximizing the
impact this new generation of STEM experiments will have on
structural characterization research now requires that the computer
processing methods which enable the various 4D-STEM character-
ization modalities are accessible to a broad and diverse segment of
the scientific community. Fortunately, a new generation of open-
source tools for electron scattering experiments is presently on the
rise, such as hyperspy, pyXem, liberTEM, pycroscopy, ncempy,
and others (de la Peña et al., 2019; Nord et al., 2019; Johnstone
et al., 2019; Somnath et al., 2019; Clausen et al., 2020).

Here, we present free and open-source software for analysis of
4D-STEM data. The aim of the Python-based project is threefold:

(1) To make 4D-STEM data analysis easy and accessible for
everyone;

(2) To facilitate reproducibility, even in cases of complicated or
multi-step processing workflows; and

(3) To provide a comprehensive, robust suite of 4D-STEM tools,
enabling high-throughput, multimodal analysis in which a
single dataset can simultaneously provide many distinct
measurements of the sample structure.

For ease and accessibility, py4DSTEM includes a complete appli-
cation programming interface (API) with associated documentation

pages, many fully worked examples in the form of fully commented
and interactive Jupyter notebooks. A graphical user interface is
under development, and currently supports quick data visualization
and some strain mapping functionality. For reproducibility,
py4DSTEM defines a set of structured data object types for
4D-STEM data processing, establishes a set of HDF5-based file
format conventions for 4D-STEM data, and makes it easy to release,
with any publication, the complete and fully transparent codewhich
generates results and figures from raw data. For multimodal, high-
throughput analysis, py4DSTEM includes a comprehensive suite
of tools for structural analysis in crystalline and amorphous materi-
als, including virtual imaging, phase and orientation mapping,
strain mapping, radial distribution analysis, phase contrast imaging,
classification, and more. A self-consistent framework allows many
or even all of these measurements to be readily performed on a sin-
gle dataset. The API and sample code for various analysis pipelines
are freely available from the py4DSTEM repository.

The organization of this document is as follows: following
this introduction, Section “4D-STEM data” discusses the nature
of 4D-STEM data, and how data is structured in py4DSTEM.
Section “Basic processing” discusses basic processing algorithms
which will typically be performed as precursors to the final mea-
surements of interest, including locating Bragg disks, calibration,
polar transformations, and classification. Section “Measurements
and applications” covers various 4D-STEM measurements that
can be performed in py4DSTEM, including virtual imaging,
phase mapping, strain mapping in amorphous or crystalline
materials, short and medium range order analysis in amorphous
materials, and phase retrieval in very thin samples. Conclusions
are given in the last section. Throughout, we have aimed to keep
discussion qualitative in the main text and have also included
mathematical details for the interested reader in a number of
appendices, referenced in the relevant sections.

4D-STEM Data

Fundamentally, most 4D-STEM are just many electron diffraction
experiments being run sequentially. The nature of the diffraction
pattern obtained at each scan position depends on the sample
structure and the illumination conditions of the microscope, as
illustrated schematically in Figure 1. In crystalline materials and
with small-angle illumination, the periodic structure of the sample
gives rise to a periodic pattern of disks in the diffraction plane
(Carter & Williams, 2016). A bright disk appears wherever the
Bragg condition is met, with the disk positions reflecting a slice
through the reciprocal lattice of the crystal. In amorphous materi-
als, concentric rings of diffuse intensity appear centered about the
optic axis (Egami & Billinge, 2003). The radii of these rings reflect
the characteristic spacings of the atoms in the sample and can,
therefore, be used to extract statistical measures of structure, such
as the radial distribution function. In analyzing crystalline materi-
als, the crux of the analysis will generally be measuring the Bragg
angles in each diffraction pattern, by determining the positions
of all the Bragg disks. In analyzing amorphous materials, analysis
will generally revolve around radial integration of the diffraction
patterns. In samples containing both crystalline and amorphous
regions, both types of analysis can be performed in concert.

Experimental Conditions

A complete discussion of the many experimental conditions to be
aware of in devising a given 4D-STEM experiment is beyond our
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scope, however, one parameter stands apart in its centrality to
both acquiring and understanding 4D-STEM data: the conver-
gence semi-angle, α. When examining a diffraction pattern, α cor-
responds to the radius of the bright-field disk in the diffraction
plane, and therefore also the radius of each refracted Bragg disk
in a crystalline sample. In real space, the probe size is inversely
related to α; larger convergence angles correspond to finer probes;
and overlapping disks are required to generate sub-lattice-sized
probes and, therefore, allow atomic resolution imaging
(Kirkland, 2010). In extracting a strain map, for example, non-
overlapping disks are important, both to facilitate the detection
of the disk positions, and also because strain is a physical quantity
only defined on length scales equal to or larger than single unit

cells.1 For a ptychographic reconstruction of the atomic potentials
of very thin materials, overlapped disks are essential, as they
provide the redundant information required to extract the phase
of the electron wavefunction and the sample electrostatic potential
(Hegerl & Hoppe, 1970). For analysis of amorphous materials,
measuring radial distribution functions requires nearly parallel
illumination (a small semi-convergence angle), while measure-
ments of medium range order in fluctuation electron microscopy

Fig. 1. 4D-STEM experimental geometry, and multimodal data analysis with py4DSTEM. An irradiated Gd2Ti2O7 sample contains complex, nanoscale structure,
apparent in the distinct electron diffraction patterns across the field of view. From a single 4D-STEM experiment, py4DSTEM enables a range of measurements
to be performed in post-processing, including virtual imaging, differential phase contrast, structural classification, strain mapping, and much more. Note that
in the DPC subpanel, the final result has been labeled “pseudo-DPC image” to reflect the fact that this image should not be interpreted in terms of the sample
potential. Why this is the case, and when such an identification can reasonably be made, is discussed further in the section “Electron phase retrieval.” Additional
experimental details can be found in Table 1.

1The criterion of nonoverlapping disks when measuring disk positions, while advis-
able in most standard 4D-STEM experiments, is not a strict requirement. For instance,
methods involving structured electron beams may enable disk position measurement
even when the disk size exceeds the reciprocal lattice spacings (Guzzinati et al., 2019;
Zeltmann et al., 2020).
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experiments will often vary the probe semi-angle to probe differ-
ent sizes of atomic clusters (Rodenburg, 1999; Mu et al., 2016). In
general, the convergence angle should be selected carefully in light
of the particular requirements of the experiment.

The convergence semi-angle, accelerating voltage, and associ-
ated figures for all 4D-STEM data herein are in Table 1.

Multimodal Analysis: One Dataset, Many Measurements

A major advantage of 4D-STEM is the ability to perform a single
experiment from which many distinctly meaningful structural
measurements can be made. We take as our guiding example
the Gd2Ti2O7 (GTO) crystal shown in Figure 1. A pyrochlore-
structured GTO single crystal was first bombarded with ions,
creating an amorphized layer. The sample was then annealed, cre-
ating both a layer of recrystallization on the parent lattice as well as
a band of smaller crystallites embedded in an amorphous matrix.
Each of these regions is clearly visible in the diffraction patterns
associated with various beam positions of the 4D-STEM scan.

A selection of the types of measurements that can be performed
from this dataset are shown in the figure. They include virtual imag-
ing spanning bright-field images, annular dark-field images, and
dark-field images of individual or multiple Bragg reflections (see
Section “Virtual imaging”); differential phase contrast imaging,
whereby shifts in the center of mass of the beam are used to back
out the sample structure; strainmapping, showing the local deforma-
tions of the atomic lattice (see Section “Crystalline strain mapping”);
and structural classification, where regions of distinct structure
are identified and segmented (see Sections “Classification” and
“Structural phase mapping”). With py4DSTEM, these analyses
and more can all be applied to a dataset within a single, unified
framework.

Data Structures

Data in py4DSTEM are structured in five different types, broadly
distinguished by their dimensionality, shown in Figure 2.
In-program, these are implemented as the following Python clas-
ses: DataCube, DiffractionSlice, RealSlice, PointList, and

PointListArray. DataCube instances contain a 4D data array cor-
responding to the complete 4D-STEM dataset. DiffractionSlice
and RealSlice instances contain one or more 2D arrays with
shapes corresponding to that of diffraction space (i.e., the detector
shape) or of real space (i.e., the raster scan shape), respectively. A
DiffractionSlice might contain a single diffraction pattern, an
image of the probe over vacuum, or the average background
noise on the detector. A RealSlice might contain a virtual
image, a Boolean mask indicating scan positions to be included
or excluded in an analysis routine, or the x- and y-components
of a lattice vector calculated at each scan position. This last exam-
ple describes a RealSlice of depth 2, that is, the data contained in
the RealSlice class instance are a 3D array consisting of a stack of
two 2D arrays in the shape of real space (x and y of the lattice vec-
tor); in general, DiffractionSlice and RealSlice objects can have
arbitrary depth. The PointList class is flexible, containing a set
of points of arbitrary length in an arbitrary number of dimen-
sions, from simple 1D data to arbitrarily high-dimensional data.
On instantiation of a PointList, a set of coordinates must be spec-
ified—for example, to specify the positions and intensities of the
Bragg disk positions detected in a single diffraction pattern (“qx,”
“qy,” “intensity”) might be used. Points may then be added or
removed from the PointList, for example, as Bragg disks are
detected and then thresholded. Data in PointLists can be easily
extracted or sorted by chosen coordinates. PointListArray
instances are 2D arrays of PointLists, organized in memory to
facilitate quick access of the PointList corresponding to a single
array element, and are useful when storing a PointList for each
scan position. The DataCube class contains a 4D dataset.
Interfaces are provided to load an entire 4D datacube directly
into memory, or to create a memory map to the dataset, enabling
analysis of datasets larger than the system’s memory. All these
datastructure classes inherit from a parent class called
DataObject which facilitates basic searching, storing, and saving
functionality for all data generated by py4DSTEM, as well as
linking to any relevant metadata.

File Structure

py4DSTEM saves data in the Hierarchical Data Format or HDF5
format, described on the HDF5 website (The HDF Group, 2020).
A description of the flavor of HDF5 used in py4DSTEM, which
we refer to as “electron microscopy datasets” or EMD files, is

Table 1. Experimental Parameters.

Dataset
α

(mrad)
Accel.
(keV)

Dose (e−/
probe) Figures

Gd2Ti2O7 0.7 300 4.8 × 106 1, 3, 4, 5, 9,
10, 11, 12

e− counting – 80 2.4 × 102 3

MEA Twin 1.5 300 4.2 × 106 8

Si, RDF 2 300 2.0 × 107 13

Si, FEM 0.5 200 2.8 × 107 14

Nanotube* 22 80 2.2 × 103 15

Calibration** 2 300 105 6, 7

Dose is given here in units of electrons per probe, rather than electrons per Å2. This choice
avoids an ambiguity inherent in the latter units, namely: do we consider the area associate
with each scan position to be the region illuminated by the probe, or the region constituting
a single real space pixel? The former is defined by the probe size, and the latter by the scan
step size; both result in meaningful physical quantities, but they may be quite different from
one another.
* From Yang et al. (2016b).
** Simulated data.

Fig. 2. py4DSTEM data structures. Data are saved as one of five classes of dataobjects
—DataCube, DiffractionSlice, RealSlice, PointList, and PointListArray objects.
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available on the EMD website. Each HDF5/EMD file generated by
py4DSTEM has a top-level group containing all data, allowing for
the possibility of nesting many py4DSTEM files in a single, larger
file, and version tags to allow for backwards compatibility. Within
the top-level group, a py4DSTEM file contains three high-level
groups: data, metadata, and log. The data group typically con-
tains five subgroups corresponding to the five datastructures dis-
cussed in the previous section, and each subgroup, in turn,
contains any number of nested subgroups, each storing the con-
tents of a single corresponding dataobject, including its raw
data and any relevant metadata (e.g., the length of a PointList,
the dimensions of a DiffractionSlice, etc.). This structure makes
it possible to bundle all elements of one or more data processing
pipelines pertaining to a single raw dataset in a single location
and simplifies reuse between measurements of any shared
datastructures.

Loading data necessarily varies based on the input file type.
For its native HDF5 files, py4DSTEM supports scanning the con-
tents of a file before pulling anything into memory, so the entirety
of large files need not be loaded if only some subset of smaller
dataobjects are required. For very large datasets, the memory
mapping of datacubes is supported, whereby the contents of a
loaded datacube object are left in nonvolatile storage, and individ-
ual diffraction patterns are pulled into RAM only as they
are accessed, enabling analysis of datasets that are larger than
available system RAM. For non-native files, py4DSTEM makes
use of the i/o module of openNCEM to handle various filetypes
produced by electron microscopy experiments. Binning during
loading is supported for some file formats.

For non-native files, many of the file types used in electron
microscopy are proprietary and the contents are not publicly
described, which hinders scientific progress within electron
microscopy. py4DSTEM, therefore, relies on the i/o components
of two other open-source projects, hyperspy and openNCEM.

The metadata group contains six subgroups: microscope,
sample, user, calibration, comments, and original. The micro-
scope group contains information related to the microscope
setup and acquisition parameters, such as the accelerating voltage

of the beam, the camera length, the convergence angle, and so
forth. The sample group stores information such as the material
imaged, synthesis information, and any sample preparation. The
user group is for information related to the scientist or scientists
who obtained the data, including names, institutions, and contact
information. The calibration group contains the pixel sizes (in
real and diffraction space), as well as any additional calibration
information such as rotational offsets, diffraction shifts, and ellip-
tical distortions, which will be discussed in more detail in the sec-
tion “Calibration.” The comments group is for any miscellaneous
comments. The original group contains any raw metadata
scraped from the original data file.

More details about the program structure, interface, imple-
mentation, and usage, including its data handling, modules, the
4D-STEM HDF5 file structure, logging, and metadata handling
is available in the py4DSTEM documentation, or in the
py4DSTEM repository.

Basic Processing

In this section, we discuss the basic processing required for most
datasets, namely: preprocessing in the section “Preprocessing,”
Bragg disk detection (for crystalline samples) in the section “Bragg
disk detection,” calibration in the section “Calibration,” polar trans-
formations (for amorphous samples) in the section “Polar transfor-
mation,” and classification in the section “Classification”. These
processing steps are basic in the sense of underpinning all subse-
quent analyses, rather than in the sense of simplicity; these methods
are not aimed at producing a final measurement or plot, but rather
are the necessary preparatory work to ensure such ultimatemeasure-
ments are possible, and are optimally accurate. Measurements and
applications are addressed in the next section.

Preprocessing

This section discusses several preprocessing steps that may be
performed on a 4D-STEM dataset. None of these steps are univer-
sally required; however, care in preprocessing can significantly
speed up subsequent processing and lead to higher accuracy
and precision in final analyses. Preprocessing should, in general,
be tailored to the individual dataset, as the dominant forms of
noise will typically depend on the camera used, as well as
acquisition parameters; here, we focus on a single example of
the preprocessing performed to remove deleterious artifacts pre-
sent in the GTO dataset, acquired on a Gatan K2 camera. This
preprocessing was applied before all other analysis preformed
on this dataset (see Table 1 for relevant figures).

Figure 3a shows a position-averaged diffraction pattern from
the GTO dataset. Vertical streaks resulting from gain differences
in the columns of detector pixels are apparent in the image.
This is due to the gain and dark reference images on the camera
being imperfect; here, we demonstrate correcting this imperfec-
tion in post-processing. There are also a handful of individual sat-
urated pixels, likely resulting from stray X-rays. Hot pixels were
identified and zeroed using median filtering. The background
was determined by identifying edges of the detector which were
beyond the high-angle annular dark-field (HAADF) detector
and should ideally have no counts, then using this region
(shown in yellow) over many diffraction patterns to calculate
the average background streaking. This assumes that the streaking
is constant across the images. Alternatively, one or many dark

Fig. 3. Preprocessing. (a) A position averaged diffraction pattern of raw 4D-STEM
data. (b) The same position averaged diffraction pattern after subtracting a back-
ground determined from the yellow regions in (a). As the focus here is preprocessing,
both (a) and (b) have been scaled logarithmically and their histograms clipped iden-
tically in both images on the high end to enable visualization of background noise
and streaking; this also results in apparent saturation of the central beam in this visu-
alization. There is no saturation in the raw dataset. (c,d) The initial step of an electron
counting procedure, in which minimum and maximum thresholds (black and red
dashed lines, respectively) of the pixel intensities are used to rule out background
pixels and X-ray strikes. (e,f) Binning and cropping. Scale is arbitrary in these images,
which are shown for bin/crop demonstration purposes.
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reference images can be recorded directly. The new average dif-
fraction image after background subtraction is shown in Figure 3b.

In 4D-STEM data with a sufficiently low electron dose and a
suitably low noise direct electron detector, it is possible to detect
individual electron strike events. Electron counting, that is, deter-
mining and recording the diffraction space positions of each elec-
tron incident on the detector, is beneficial for both noise
reduction and data compression. Many direct electron detectors
automatically perform the electron counting at the hardware
level. However, most detectors with a reasonably small point
spread function and good quantum efficiency can be used as a
counting detector, provided that the electron fluence is low
enough. We have, therefore, included an electron counting rou-
tine in py4DSTEM, which estimates the location of individual
electron strikes. For more information on the benefits of electron
counting, we refer the readers to Li et al. (2013).

Our electron counting implementation begins by first calculat-
ing a dark reference for the detector. A histogram of pixel intensity
values is then generated from a random sampling of detector
frames and is used to calculate an upper intensity threshold (for
excluding X-ray strikes) and a lower intensity threshold (for
excluding the background). In Figure 3, the histograms in panels
(c,d) correspond to the low-dose dataset shown in panels (e,f).
These diffraction patterns were recorded by placing an “amplitude
plate” aperture in a condenser aperture, as described in Zeltmann
et al. (2020). Looping through each scan position, the dark refer-
ence is subtracted and the thresholds are applied to each detector
frame, and the local maxima of the resulting image are identified.
These local maxima are considered electron strike events.
Optionally, their positions can be refined to subpixel precision.
Counted data are stored as a PointListArray, that is, for each scan
position, we save a list of detector positions of electron strike
events. If data is required in the form of 2D images during subse-
quent analysis, these can then be generated directly from the asso-
ciated PointList. The compression level achieved will vary with the
individual dataset and depends strongly on dose. Lower dose data
will contain electron strike events in a lower the fraction of pixels,
and thus allow for greater compression; see also Nord et al. (2020)
and Ercius et al. (2020). For the dataset shown in the figure,
electron counting compresses the data by a factor of ∼6,000.

The most basic preprocessing functions include reshaping,
binning, and cropping data. Binning and cropping can be per-
formed in either real or diffraction space and allow large datasets
to be reduced to more manageable sizes. For selected file formats,
py4DSTEM also supports data binning on import. Figures 3e and
3f show an electron beam which has been shaped using a struc-
tured condenser aperture; from panels (e) to (f), this data has
been cropped and binned by a factor of three. Reshaping the
data may be necessary in some cases, for instance, some file
formats do not contain complete information about the real
space scan shape, and thus can be initially loaded as 3D arrays
(with the two real space dimensions collapsed into one) before
being correctly reshaped into 4D arrays.

Bragg Disk Detection

For crystalline or semi-crystalline data, analysis generally begins
by identifying the locations of all the Bragg disk reflections in
each diffraction pattern, which correspond to the reciprocal lattice
points of the crystal. In py4DSTEM, we find the Bragg disk posi-
tions in two steps: first, we extract a 2D image of the probe pattern
over vacuum in diffraction space to use as a template. This can be

thought of as the image of the aperture in diffraction space. We
then find the Bragg disks by determining all the positions in
each diffraction pattern that match the structure of this template
(Pekin et al., 2017). The Bragg disk detection procedure is
illustrated in Figure 4 for the GTO dataset.

py4DSTEM includes three methods for generating vacuum
probes. Ideally, we use an image or averaged image stack of the
probe over vacuum. Alternatively, if an experimental 4D-STEM
scan contains a vacuum region, or a region with only very thin
material (e.g., amorphous carbon support), this thin region can
be used to generate a vacuum probe. In this case, the probes
from each vacuum scan position should be aligned, to correct
the translation of the diffraction patterns as the beam is scanned,
and then averaged. Alignment is performed by cross-correlating
pairs of vacuum template images, determining their relative offset,
then shifting the second image to align with the first. Finally,
if neither of these options are possible, a synthetic probe can be
generated—see Appendix C.

Once a vacuum probe has been obtained, two additional pro-
cessing steps are applied, with the purpose of generating a kernel
for cross-correlative template matching with the individual diffrac-
tion patterns. First, the central diffraction disk is located and its cen-
ter is shifted to the origin. Without this step, all measurements will
have an offset, leading to incorrect results. Second, a Gaussian wider
than the probe is subtracted, leading to a region of negative intensity
surrounding the probe itself, such that the total integrated intensity
of the kernel is zero. This has two advantages. First, it ensures that
the cross-correlation of noisy data is, on average, zero where there
are no Bragg disks. Second, the negative kernel intensity penalizes
the cross-correlation values where a Bragg disk and a template are
slightly misaligned, enhancing the detectability of correlation max-
ima where disk/template alignment is perfect. The method of sub-
traction of a Gaussian reported here is found to be a useful heuristic
and has a similar effect to other edge filtering methods such as
Laplacian of Gaussian filtering or pre-filtering with a Sobel filter;
other similar approaches are described elsewhere (Williamson
et al., 2015; Grieb et al., 2017, 2018; Pekin et al., 2017; Mahr
et al., 2019; Padgett et al., 2019). Adding structure to the electron
probes using an amplitude mask in the condenser aperture has
also been shown to significantly enhance the precision of Bragg
disk detection (Zeltmann et al., 2020).

The Bragg disks are located by calculating the cross-correlation
of the probe kernel with each diffraction pattern, and then locating
the correlation maxima. The disk positions can be located with sub-
pixel precision via local Fourier upsampling in the region about
each maximum (Soummer et al., 2007; Guizar-Sicairos et al.,
2008). The correlations are here performed on the raw (unnormal-
ized) data, which is beneficial as it means that the resulting cross-
correlation intensity of each Bragg disk will roughly reflect its scat-
tering intensity. This also enable global thresholding across the data-
set. In contrast, normalizing the data first may be useful in the case
of samples containing different regions which give rise to signifi-
cantly different diffracted intensities. py4DSTEM allows for stan-
dard cross-correlations, as well as phase or hybrid correlations, to
be performed at this stage; see Appendix B for detailed discussion.

The detected Bragg disks in each diffraction pattern are stored
in a PointList instance with three coordinates specifying the disk
position in the diffraction plane and its cross-correlation intensity
(qx, qy, I ). The Bragg disks from the complete datacube are stored
in a PointListArray instance, with one such PointList for each
scan position. For many analyses, such as strain or orientation
mapping, all subsequent computation can be performed on this
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PointListArray alone, as it contains the most crucial scattering
information. The data compression here is significant, as only
three numbers are now required to store each Bragg disk. For a
datacube consisting of 512 × 512 pixel diffraction patterns with a
bit depth of 16, 20 detected disks in an average diffraction pattern,
and using 64-bit floating point numbers for the disk coordinates,
this scheme compresses the data by a factor of approximately 1,000.

Once the Bragg disks have been detected, all peaks from all scan
positions may be collapsed into a single image in the shape of the
diffraction plane. The resulting object is roughly interpretable as a
position averaged probability distribution of reciprocal lattice
points and is defined carefully in Appendix D. Figure 5 shows an
example using the GTO dataset. We refer to this object as a
Bragg vector map (BVM). Figure 5a shows the BVM of the com-
plete GTO 4D-STEM scan, while Figures 5c–5f show the BVMs
generated from subsets of the scan region indicated in the virtual
image shown in Figure 5b. The BVM of the single-crystal region
in Figure 5c shows sharp reciprocal lattice peaks of the orthorhom-
bic crystal in the 〈01�1〉 projection. The BVM of Figure 5d also
contains sharp peaks, now oriented isotropically about the origin,
indicating many small, randomly oriented crystal grains. Figure 5d
also shows a faint ring resulting from amorphous scattering in this
mixed cystalline/amorphous region. In principle, this ring could
also result from small, randomly oriented crystallites; in this case,
comparison with the raw data indicates these result from nonzero
cross-correlation with the amorphous signal. Note that ideally the
BVM would be insensitive to amorphous scattering because it
should only contain counts where Bragg scattering occurs,
however, false-positive Bragg disk detection can occur in the

amorphous halo, resulting the ring here as well as in Figure 5f.
False positives are also apparent near the aperture edge in
Figure 5a. Figure 5e shows little amorphous signal, sharp peaks
indicating crystal scattering, and fewer peaks than in Figure 5d,
suggesting that this layer of the sample may contain fewer, larger
crystallites. Figure 5f shows little or no crystalline signal, suggesting
a purely amorphous layer. Phase mapping, found in the section
“Structural phase mapping,” confirms these hypotheses about the
sample structure. In general, some number of false positives are
to be expected, with their exact numbers and origins depending
on the data and on how the cross-correlation is performed. Note
that the number of false positive in, for instance, Figure 5f is rela-
tively small but is visually enhanced here by the choice of logarith-
mic scaling. Raising the minimum intensity of cross-correlation
maxima to identify with a Bragg peak can help minimize false
positive. Using pure cross-correlations, rather than phase or hybrid
correlations which aremore sensitive to noise (see Appendix B) can
also help, as can alternate template matching approaches using
pre-filtering or structured probes, as discussed previously.

BVMs are a useful tool in 4D-STEM data processing. In
py4DSTEM, they are used in processing pipelines including
calibration (see Fig. 6), classification (see Fig. 8), strain mapping
(see Fig. 11), and others.

Calibration

Calibration is the single most important step of any quantitatively
meaningful 4D-STEM data analysis, as all subsequent measure-
ments hinge on the accuracy of the calibration. In 4D-STEM, a

Fig. 4. Bragg disk detection in GTO. (a) The vacuum probe. The bright rim visible at the disk edge is the result of slight defocus, resulting in Fresnel diffraction at the
sharp edges. (b) A virtual bright-field image. (c) Disk detection is accomplished by the cross-correlation of the probe template with each diffraction pattern, illus-
trated schematically here. (d–g) Diffraction patterns corresponding to the four scan positions indicated in (b). (h–k) The detected Bragg peaks for these four dif-
fraction patterns. The size of each circle indicates the cross-correlation intensity, a rough approximation for disk intensity.
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Fig. 5. Bragg vector maps (BVMs) of GTO. (a) The BVM from the complete dataset. (b) Virtual bright-field image with boxes indicating four regions of interest. (d–f)
BVMs generated from the four corresponding regions shown in (b). All these BVMs are shown in a single logarithmic scale.
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Fig. 6. Calibration. (a–d) The recommended data to collect in order to fully calibrate a 4D-STEM dataset. Data shown here have been simulated. (a) A 4D-STEM
dataset of a sample of interest, here a strained, single-crystal gold nanoparticle. (b) A 4D-STEM dataset of a standard calibration sample, here a distribution of gold
nanoparticles. In both (a) and (b), a virtual bright-field image and three selected diffraction patterns of the 4D-STEM datasets are shown. (c) An image or 3D image
stack of the probe over vacuum. Here, simulated tilt in the projector and condenser systems yields a slightly elliptical probe shape. (d) An image of the probe over
the sample and defocused until a shadow image is visible. (e–u) A complete set of 4D-STEM calibrations. (e–p) Measurement and correction of translations of the
diffraction patterns with the beam raster. (q–r) Measurement and correction of elliptical distortions. Shown here are the BVM before and after correction. (s,t)
Measurement of the rotational offset of the electron beam between the real and diffraction planes. (u) Measurement of the detector pixel size.
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number of calibrations are typically desirable. These include
correcting shifts of the diffraction pattern from the raster of the
beam, correcting elliptical distortions of the diffraction patterns,
calibrating the rotational offset between real and diffraction
space, and calibrating the pixel sizes. The type of calibrations
required will generally depend on the sample being imaged, the
measurements being made, and the required precision.

The data required to perform calibrations are similarly contin-
gent and depend on the structure of the sample, as well as which
calibrations need to be performed. An image or a 3D stack of
images of the STEM probe over vacuum should always be
acquired and is important for analyses including Bragg disk detec-
tion, calibration of the convergence semi-angle, and deconvolu-
tion of the probe. Scanning a standard calibration sample of
known structure at the beginning or end of a microscope session
is highly recommended and will typically ensure the most accu-
rate calibration of pixel sizes. Using a polycrystalline standard
calibration sample is also highly recommended, to facilitate calibra-
tion of inevitable elliptical stretching of the diffraction patterns due
to imperfect optics and alignments (Mahr et al., 2019). Obtaining
an image of the probe, positioned over the sample and then highly
defocused to create a shadow image in the diffraction plane, is the
recommended data for calibrating the real/diffraction space rota-
tional offset. In some cases, it is possible to obtain the necessary
calibrations directly from the experimental 4D-STEM scan;
however, the viability of this approach is not guaranteed and is
especially dubious for samples of unknown structure.

Figure 6 shows the complete calibration of a simulated dataset
(Ophus & Savitzky, 2019). We simulated two 4D-STEM datasets:
one scan of the sample under inquiry and one scan of a calibration
sample. For the inquiry dataset, we simulated a large single-
crystalline gold nanoparticle under differing amounts of strain in
various areas of the sample (Fig. 6a). For the calibration dataset,
we simulated gold small nanoparticles oriented randomly on a
thin support (Fig. 6b). We additionally simulated an image of
the STEM probe in the diffraction plane (Fig. 6c) and an image
of the probe after defocusing to form a shadow image (Fig. 6d).
Simulations were performed using the PRISM algorithm (Ophus,
2017; Pryor et al., 2017), using a 300 kV beam, 0.2 Å pixels, a 10
Å slice thickness, a 2 mrad convergence semi-angle, a 10 Å probe
step size, and a PRISM interpolation factor of 12 in x and y. We
post-processed the data by applying a large Gaussian centered on
the probe to simulate an inelastic background, and a beam shift
and elliptic distortion to all patterns. We used Poisson statistics
to calculate images with 105 electrons per pattern.

Diffraction shifts—overall translation of the diffraction pat-
terns resulting from the scanning of the electron beam—yield
apparent shifts of the position optic axis from one diffraction pat-
tern to the next (Craven & Buggy, 1981). The size of the diffrac-
tion shifts depends on the real space field-of-view of the scan, on
the camera length, and on the particular instrument used; gener-
ally speaking, we recommend measuring diffraction shifts in scans
larger than a few tens of nanometers, and then applying correc-
tions if deemed necessary. In py4DSTEM, this calibration is per-
formed by identifying the unscattered beam at each scan position
and measuring the shifts in its position. These shifts are then fit to
a plane or low-order polynomial, which can be used to correct the
diffraction shifts. For correcting the shifts, it is possible to shift
each diffraction pattern by the measured amount to generate a
new, corrected datacube; however, this is slow, resource intensive
and often unnecessary. Instead, it is often possible to simply use
the measured shift values to set the origin of coordinates in any

subsequent measurements made on individual diffraction
patterns. Figures 6e–6p show BVMs before (e,f) and after (k,l)
diffraction shift corrections have been applied to the measured
Bragg peak positions. The zoomed in images centered on the cen-
tral peak (Figs. 6f, 6l) illustrate that the blurred peak of Figure 6f
collapses to a sharp peak in Figure 6l after shift correction. In
Figures 6g–6p, we show the initial measurement of shifts of the
central disk, a masking step to ignore some subset of data points,
a smooth fit to the data, and the residuals, which are all much less
than a single pixel.

Elliptical distortions, in which circular features about the optic
axis are stretched into ellipses, are generally experimentally
unavoidable (Mahr et al., 2019). These result from imperfect
alignments, including off-axis illumination on the probe-forming
condenser aperture, stigmation in the post-specimen optics, and
finite tilt of the detector plane relative to the plane normal to
the optic axis. Even in a well-aligned system, these distortions
may be significant and are, therefore, important to correct in
many quantitatively sensitive experiments. In py4DSTEM, ellipti-
cal distortions can be measured by fitting an elliptical function to
data within some specified annular region, as shown in Figures 6q
and 6r. The functional forms of the fits are discussed in more
detail in Appendix E. With elliptical fits in hand, the elliptical dis-
tortions can be corrected. For crystalline data in which the Bragg
peaks have been measured and subsequent analysis will be per-
formed on the measured peak positions only, correction may be
accomplished by shifting the peak positions while leaving the
raw data untouched. Figure 6r shows a BVM after such correction
has been performed. An alternate approach to elliptical correction
is to take a polar-elliptical transform, effectively re-sampling the
data into a coordinate system which shares the data’s ellipticity.
This latter approach is frequently useful in analysis of amorphous
datasets and is discussed further in the section “Polar transforma-
tion.” Note that higher-order elliptical distortions may also be
present in diffraction data. At the time of writing these are not
corrected, however, the modular nature of the package makes
adding these additional calibrations simpler.

In general, there is some angle of rotation between the electron
beam in the sample plane and in the detector plane. Thus, in
order to correctly map orientations measured in the diffraction
plane into real space, it is necessary to measure and account for
this rotational offset. The simplest and most robust way to mea-
sure the offset is to compare a STEM image to an overfocused
probe shadow image. Any STEM image will suffice, provided
that the same features are visible in the STEM and shadow
images, and in Figure 6, the bright-field virtual image is used.
Note that if a shadow image is formed with an underfocused
probe instead, the image orientation will be flipped. Two identical
points in each of the two images are identified in Figures 6s and 6t
and are then used to calculate the rotational offset. If a shadow
image has not been obtained, other methods to determine the
rotational offset are possible; however, these methods will neces-
sarily be less robust. Two additional techniques for rotational cal-
ibration are provided in py4DSTEM, both based on the principles
of differential phase contrast imaging. As a result, these methods
tend to work well when the assumptions of differential phase
contrast hold. They are discussed further, along with the relevant
caveats, in the section “Differential phase contrast.”

The calibration of the diffraction space pixel size minimally
requires measuring a single diffraction vector with a known spac-
ing. More accurate measurement is possible by fitting to several
known spacings. Figure 6u shows a radial integral (see Section
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“Polar transformation”) of the elliptically corrected BVM shown
in Figure 6r. By indexing the peaks observed and using the
known lattice spacing of gold, we use the measured peak positions
to calculate the detector pixel size. The horizontal axis of these
plots can then be written in physical units of Å−1.

Ideally, the real space pixel size is determined by the distance
and the electron probe is rastered by the scan coils between detec-
tor frames. It is, therefore, equivalent to the size calibration of the
instrument’s STEM scan. For this reason, processing tools for
re-calibration of the real space pixel size are not provided.
However, should such calibration be desired, it is straightforward
to edit the py4DSTEM metadata based on independent measure-
ment of the real space pixel sizes. When specimen drift leads to
large deviations of the pixel size and scan direction angles, further
pixel size measurements and drift correction may be required
(Sang & LeBeau, 2014; Ophus et al., 2016a; Savitzky et al.,
2018; Wang et al., 2018).

Polar Transformation

Transformation fromCartesian to polar coordinates is an important
operation in many 4D-STEM analyses, especially of amorphous
data. Sections “Radial distribution functions” and “Fluctuation
electron microscopy” discuss two examples, fluctuation electron
microscopy and radial distribution function analysis.
Polar-elliptical transformations are useful for correcting elliptical
distortions, as discussed in the section “Calibration.” This also
enables the calculation of elliptically corrected radial integrals.

Figure 7 shows the transformation of the BVM of the simu-
lated calibration sample of gold nanoparticles described in the
section “Calibration.” Both a polar (Figs. 7a, 7c) and polar-
elliptical (Figs. 7b, 7d) transformation have been performed, in
the latter case using elliptical parameters fit from the image. In
the polar case, we see that just as the circular coordinate axes
poorly align with the data in Figure 7a, so too do the rings turn
into vertical sinusoids in Figure 7c. In contrast, in Figure 7b,
the axes and data are well aligned, and in Figure 7d, the rings
turn into vertical lines rather than sine curves.

The radial integration of a single or averaged diffraction pattern
is an important operation, providing higher signal-to-noise (SNR)
information about electron scattering at each spatial frequency, at
the expense of losing any orientation information. The polar-
elliptical transform makes elliptically corrected radial integration
easy—just sum along the angular axis of the transformed data.
Figure 7e shows an example, with the radial integral calculated
from the calibrated polar-elliptical transform in red and the radial
integral from the simple polar transform in black. Note that the
simple radial integral broadens peaks and, in the case of the first
peak, splits a single peak into two apparent, but spurious, peaks.

Classification

In the context of 4D-STEM, classification refers to assigning one
or more integer values to each scan position, which identify this
position with associated classes. Ideally, each class corresponds
to a type of diffraction pattern, or to structurally meaningful
features or motifs, such that a scan position will be included in
a given class if and only if its diffraction pattern contains these
features. Virtual imaging, and thoughtful combination of virtual
images and colormaps, is often the easiest way to visually differ-
entiate distinct structural regions and can be a powerful tool for
microanalysis (Tao et al., 2009; Gammer et al., 2015; Zhang

et al., 2017; Shukla et al., 2018). By identifying each pixel with dis-
crete class types, classification goes a step further, facilitating sub-
sequent analyses as well as enabling the generation and
identification of class diffraction patterns (Brunetti et al., 2011;
Gallagher-Jones et al., 2019).

Figure 8 shows a simple classification example. A 4D-STEM
scan was taken of a medium entropy alloy containing a twin
boundary, which is about three quarters of the way up the virtual
image in Figure 8a. Figures 8b–8d show average diffraction pat-
terns, generated by averaging 100 individual patterns, from the
regions shown with red, green, and blue squares in Figure 8a.
Inspection reveals that the reciprocal lattice in Figure 8b is
twinned with respect to that of Figures 8c and 8d. This dataset
is, therefore, an excellent testbed for a classification algorithm
because the correct answer is immediately apparent: each diffrac-
tion pattern in this dataset should be assigned to one of two
classes, according to the side of the twin boundary where it falls.

The algorithm proceeds as follows. First, all Bragg disks are
located, as described in the section “Bragg disk detection.” Next,
the BVM is calculated, after any relevant calibrations such as
diffraction shift correction have been performed—see Figure 8e.
The N maxima of the BVM are then located. A Voronoi tessela-
tion of the diffraction plane is constructed using these maxima as
the initial points, which carves the diffraction plane into a set of
N regions, each of which is defined as the set of all points closest
to one BVM maximum (Barber et al., 1996)—see Figure 8f. Each
of these N regions is assigned an integer value. Next, the set of
Bragg peaks which has been detected at each scan position is
retrieved, and each peak is assigned a label according to which
Voronoi region it falls in—see Figures 8g–8i. At this stage, the
complexity of the data has been reduced significantly—for each
scan position, we have a small set of integers encoding where
Bragg scattering occurred, rather than an entire 2D diffraction
pattern. Initial classes are identified by determining which
Bragg peaks co-occur with the highest frequency, and these
classes may then be refined, for instance, via non-negative matrix
factorization. Here, the final result is shown in Figure 8j, with the
data cleanly separated along the twin boundary. More detailed
discussion of the algorithm can be found in Appendix F, and
more complex classification example can be found in the section
“Structural phase mapping.”

Like all approaches, this algorithm has both benefits and draw-
backs. Its primary benefit is efficient and physically motivated
handling of often complex data, leveraging the prior knowledge
that Bragg scattering is the most physically salient observable in
crystalline data in order to reduce the data complexity. For large
or complicated datasets, this can make classification possible
when it otherwise might be untenable or computationally prohib-
itive. One drawback is that the resulting classes have no a priori
mapping to particular physical states (aside from sharing certain
Bragg scattering), and therefore require human interpretation to
be physically meaningful. Another is that all scan positions may
or may not be unambiguously classified in this way, depending
on the data; see the example of GTO in the section “Structural
phase mapping.”

Measurements and Applications

In this section, we build on the techniques described in the sec-
tion “Basic processing” to make various measurements of physical
interest from 4D-STEM datasets. In the section “Virtual
Imaging,” we generate virtual images. In the section “Structural
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Fig. 7. Polar and polar-elliptical transforms. (a) Bragg vector map of the simulated gold nanoparticle calibration dataset, overlaid with a polar coordinate grid. (b)
Identical data to (a), but overlaid with a polar-elliptical grid calibrated to this data. (c) The polar transform corresponding to (a). Note that the rings have been
mapped to sinusoids, due to elliptical distortions. (d) The polar-elliptical transform corresponding to (b). The rings now map to lines, indicating that the elliptical
calibration is correct. (e) Radial integrals calculated from the polar (black) and polar-elliptical (red) transforms.
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phase mapping,” we apply the classification algorithm discussed
in the section “Classification” to the GTO dataset to retrieve
maps of various crystalline and amorphous phases present in
the complex, nanostructured sample. In the sections “Crystalline
strain mapping” and “Amorphous strain mapping,” we calculate
strain maps from crystalline data and from amorphous data,
respectively. In the sections “Radial distribution functions” and
“Fluctuation electron microscopy,” we further analyze amorphous
samples, calculating radial distribution functions in the former
section and performing fluctuation electron microscopy analysis
in the latter section. We conclude with two phase retrieval
methods for reconstructing the sample potential, demonstrating
differential phase contrast imaging in the section “Differential
phase contrast” and ptychography in the section “Ptychography.”

Virtual Imaging

In a traditional STEM experiment, many imaging modalities are
possible, by placing detectors of different geometries in different
positions in the diffraction plane (Pennycook, 2011). 4D-STEM
enables the virtual recreation of a wide swath of such imaging
modalities in post-processing (Fundenberger et al., 2003;
Zaluzec, 2003; Lupini et al., 2015; Fatermans et al., 2018; see
Appendix A).

Figures 9a and 9b show an averaged diffraction pattern from
the single-crystalline region of the GTO sample, overlaid with var-
ious virtual detectors which were used to generate the images in
Figures 9c–9g. Figure 9a shows annular dark-field detectors of
various inner and outer collection angles, and their corresponding
virtual images are shown in Figure 9c. The Miller indices of each

Bragg reflection in the 〈110〉 projection are shown in Figure 9b,
and virtual images corresponding to a detector placed about
each of these peaks are shown in Figure 9d. Here, a single
4D-STEM scan is used to virtually recreate images analogous to
45 distinct traditional dark-field TEM images, similar to
Gammer et al. (2015).

Figure 9b shows three detectors colored green, yellow, and red,
corresponding to the three virtual images shown in Figures 9e–9g.
The first is a virtual bright-field image, while the latter two use
virtual detectors which would be challenging to realize physically,
but which are of particular interest because of the structural
significance of the yellow and red peaks to the two crystalline
phases in this system: the red peaks are present in both of the
two expected single-crystal phases (pyrochlore and fluorite),
while the yellow peaks vanish in the higher symmetry fluorite
phase. Thus, with 4D-STEM, it is possible to virtually recreate
images corresponding to every possible integrating STEM detec-
tor geometry and also to generate complex, bespoke detectors
matched to the sample structure and properties of interest.

Structural Phase Mapping

An important problem in many applications is mapping distinct
structural phases, and potentially many phases, present within a
single sample (Rauch et al., 2010; Brunetti et al., 2011; Kobler
et al., 2013; Gallagher-Jones et al., 2019). In this section, we dem-
onstrate mapping regions of a 4D-STEM scan in which the
diffraction patterns are sufficiently similar to be considered a sin-
gle type, using the classification algorithm discussed in the section
“Classification.” This, therefore, constitutes “phase” mapping in

Fig. 8. A 4D-STEM classification algorithm. (a) Virtual bright-field image of a 4D-STEM dataset of a twin boundary, with a 60 mrad camera angle. (b–d) Averages of
100 diffraction patterns each from the regions shown in (a). (e) The Bragg vector map. (f) BVM maxima have been located, labeled, and used to segment the
diffraction plane. (g,h) The segmentation in (f) is used to label the Bragg peaks in each diffraction pattern. ( j) Co-occurrence of Bragg peaks is used as a criterion
to assign scan positions to classes, resulting in a classification which clearly identifies the twin boundary.
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the sense of distinguishing regions of structural similarity, defined
in terms of differences in the measured diffraction patterns. These
differences may result from the presence of distinct crystal struc-
tures, crystal grains of various orientations, amorphous regions,
and so on. The meaning of any one of these phases must be inter-
preted in the context of the particular sample, and the details of
each phases’ average diffraction pattern (Schwarzer & Sukkau,
1998). Common confounding factors in such interpretation
include the possibility of multiple grains along the beam direction
in thicker samples and finite probe size in real space relative to
grain sizes.

We return to the GTO dataset as an example. The results are
shown in Figure 10. The classification algorithm identifies 82 dis-
tinct crystalline diffraction pattern types, including 5 single-crystal
diffraction patterns (Figs. 10b and 10e) and 77 patterns correspong-
ing to smaller crystallites (Figs. 10d and 10g). We then additionally
identified two amorphous phases (Figs. 10c and 10f). Amorphous
classification was accomplished by masking away all detected
Bragg peaks, calculating radial integrals of the masked diffraction
patterns, then using these curves as inputs to a non-negative matrix
factorization algorithm (Pedregosa et al., 2011). Masking Bragg
peaks is not required for purely amorphous data but is essential
for mixed amorphous/crystalline specimens, as Bragg scattering
even from small crystallites in a primarily amorphous matrix
would otherwise dominate the radially integrated signal.

In this dataset, we find a single-crystal region which appears to
transition smoothly from a pyrochlore structure (Fig. 10b, dark
purple, and Fig. 10e, upper left) to a fluorite structure in which
the superlattice reflections vanish (Fig. 10b, yellow, and Fig. 10e,
lower right). Below the single-crystal region is a mixed crystal-
line/amorphous region (Fig. 10c, lighter green, and Fig. 10f,
right). Below this region is a layer of larger crystallites (Figs. 10d
and 10g), followed by a pure amorphous region (Fig. 10c, darker
green, and Fig. 10f, left). With a phase map in hand, any number
of additional analyses, such as the orientation or size distribution
of the crystallites, or the strain in the single crystal (see Fig. 11),
become readily calculable.

As noted in the section “Classification,” the classification algo-
rithm reported here need-not identify a distinct class for each scan
position, and some scan positions may be identified with many

different classes, each with some relatively small weight associated
with them. This latter case may represent diffraction patterns
which contain elements of several different identified classes,
either because the sample in this area is in fact of mixed structure,
or because the data is ambiguous, or because the relevant diffrac-
tion patterns simply have not been successfully captured by the
approach. For visualization purposes, in Figures 10a–10d, each
region is colored according to whichever class associated with
this scan position has the greatest weight. If no classes have weight
above a threshold value, the pixel is left black.

Crystalline Strain Mapping

The diffraction pattern of a crystalline sample from a low-index
zone axis contains a grid of Bragg disks given by the reciprocal
lattice of the sample. Therefore, the spacing of the Bragg disks
is inversely proportional to the real space atomic spacing.
Precise measurements of the reciprocal lattice vectors can, there-
fore, be used to map the local strain present in a crystalline sam-
ple, given by the deviations of the lattice from the ideal spacing
and angles (Usuda et al., 2004; Liu et al., 2008; Béché et al.,
2009; Sourty et al., 2009; Favia et al., 2010; Uesugi et al., 2011).

In Figure 11, we map the strain of the single-crystal regions of
the GTO data. Obtaining a strain map begins with Bragg peak
detection as discussed in the section “Bragg disk detection” and
data calibration as discussed in the section “Calibration.”
Beginning from the calibrated BVM of the region of interest
(Fig. 11a), the average reciprocal lattice vectors are extracted by
taking its Radon transform, and then finding the projection
angles at which the peaks of the BVM align (Fig. 11b). With
the lattice vectors in hand, the BVM peaks are indexed
(Fig. 11c). We then refine the reciprocal lattice vectors for each
diffraction pattern by performing a fit to its set of detected
Bragg peaks, using the average lattice vectors as an initial guess
and weighting the fit according to the cross-correlation intensities
of the detected peaks. A reference lattice is chosen, and the infin-
itesimal strain tensor is computed at each beam position by exam-
ining the deviation of its local lattice vectors from the reference
lattice. For further discussion, see Appendix G.

Fig. 9. Virtual imaging. (a) Virtual annular dark-field detectors. (b) Virtual bright-field (green) and dark-field ( yellow, red) detectors. (c) Virtual annular dark-field
images. (d) Virtual dark-field images corresponding to circular detectors about each of the indexed Bragg peaks. (e) Virtual bright-field image. (f,g) Virtual images
corresponding to the yellow and red detectors shown in (b), respectively. The inner, yellow peaks are only present in one of the two expected crystal structures in
this system.
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We note that the method of disk detection by cross-correlation
can suffer from apparent shifts due to redistribution of intensity
within the Bragg disks. From the perspective of strain mapping,
this is not as problematic as it may seem, as the best-fit lattice vec-
tors are determined from the measured positions of all disks, and
thus may not be altered significantly by erroneous shifts in the
measured positions of some subset of the disks. Still, this is a
meaningful source of error. Edge-enhancement methods during
disk detection may help some. Even better is to use a structured
electron probe, which all but eliminates this problem (Zeltmann
et al., 2020).

The results of this analysis are shown in Figures 11e–11h.
Here, the x- and y-directions are shown in both real and diffrac-
tion space with red and orange arrows, respectively. ϵxx and ϵyy
refer to the compressive/tensile (negative/positive) strain of the
lattice along the x- and y-directions shown, while ϵxy and θ are
the shear strain and the rotation of the lattice, respectively.
Among other revealing features, the ϵxx map in this data shows
a sharp horizontal line near the top of the image. This line occurs
at the interface between the parent lattice which was originally
present in this sample, and a region which recrystallized after
ion bombardment and annealing. The data indicates stretching
of the crystal perpendicular to this interface.

The choice of reference lattice is crucial to obtaining meaning-
ful strain maps. In the simplest case, the experimental 4D-STEM
scan contains a region of known undeformed lattice, which can be
used directly to define the reference lattice. Alternatively, it is pos-
sible to obtain a separate scan of unstrained material to use as a
reference; however, in this case, good calibrations are essential—
see the section “Calibration.” With good calibrations and a
known crystal structure, it is also possible to define a reference lat-
tice by hand. In the case of the GTO dataset, in which there is a
parent crystal at the top of the image and a region of recrystalli-
zation below, the parent crystal can be used as a reference.

Strain tensor values depend, in general, on the choice of coordi-
nate system. It is, therefore, necessary to specify coordinates;

without this specification, for example, by including the coordinate
axes on the plots, strain maps are not physically interpretable.
Because there is some arbitrary rotation between real and diffraction
space in 4D-STEM data, it is also important to show the orientation
of the axes in both real and diffraction space. In Figure 11h, two sets
of yellow axes show the chosen coordinate with respect to which
the strain maps are measured, in real space and diffraction space,
respectively. In this data, the rotation between the two was small
(∼2°), however, note that in general it need not be and will vary
between microscopes. The best coordinate system to use for a
given strain map depends on the sample and the relevant material
questions. Typically, orienting one of the principle axes along
some important crystallographic direction is best, and in
Figure 11, the strain x-direction has been oriented along the 〈1�10〉
direction, which is also direction of ion bombardment and of recrys-
tallization. In a strainmapping workflow in py4DSTEM, calculating
the strain from the reference lattice produces a strain map with
respect to a coordinate system oriented along the detector frame
(Fig. 11i, top row); typically, some coordinate orientation which is
sensible for the system and questions under study should then be
chosen, and the strain map rotated into this coordinate system
(Fig. 11i, bottom row).

Amorphous Strain Mapping

Electron diffraction experiments of amorphous materials, or
materials containing a substantial fraction of an amorphous
phase, will typically include ring-like features with a radius
given by a characteristic scattering length. Similarly to crystalline
materials, a local increase or decrease in the average atomic spac-
ing (i.e., strain) in amorphous materials will cause a decrease or
increase, respectively, in the amorphous ring radius. By fitting
an elliptical function to each diffraction image, we can directly
measure these deviations due to local strain. This has been dem-
onstrated both in individual TEM diffraction images (Ebner et al.,

Fig. 10. Phase mapping. (a) All of the structurally distinct phases identified in this system, using the classification algorithm described in the section
“Classification.” (b,e) The single-crystal phases and their class diffraction patterns. (c,f) The amorphous phases and their class diffraction patterns. (d,g) The poly-
crystalline phases and their class diffraction patterns.
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2016) and in in situ 4D-STEM experiments (Gammer et al.,
2018).

In py4DSTEM, we have implemented the strain measurements
of amorphous materials using the same elliptic fitting routines
described in the section “Calibration” and Appendix E. Figures
12a–12c show the elliptical fits. In each of the three plots
shown, the data being displayed alternates in a pinwheel pattern
between the data and the fit, for easy visual assessment of the
fit quality. In the average diffraction pattern of the pure amor-
phous region (Fig. 12a), the data (shaded blue) are in excellent
agreement with the fit. Using this fit as an initial guess, noisier
individual diffraction patterns like Figures 12b and 12c can then
be fit as well. To obtain good elliptical fits in data containing

mixed amorphous and crystalline material, it is important to
mask off any Bragg scattering. In Figures 12b and 12c, the smaller
black circles represent such masked regions.

Figures 12d–12g show the strains computed beginning from
these fits, then finding the deviation of the elliptical distortions
from a reference. Here, the median of the fully amorphous region
is used. As with crystalline strain mapping, the choice of reference
is important and should be selected carefully based on the indi-
vidual experiment. Figures 12d–12f, showing the compressive/
tensile strains along the shown x- and y-directions as well as
the shear strain, are comparable to the crystalline ϵxx, ϵyy, and
ϵxy plots from Figure 11. Figure 12g additionally shows
1
2 (exx + eyy), representing the local dilation of the structure.

Fig. 11. Crystalline strain mapping. (a) Bragg vector map of the crystalline region of the GTO sample. (b) Automated detection of the lattice vectors, using the
Radon transform. (c) The indexed Bragg vector map. (e–h) Strain maps of the single-crystal region. The upper color bar applies to (e–g), and the lower colorbar
to (h). (i) The relevant coordinate systems in real and diffraction space.
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Across the four shown amorphous strain plots, we observe local
structural changes, especially at the crystalline–amorphous
interfaces.

Radial Distribution Functions

The radial distribution function (RDF), or g(r), describes the
relative density of atoms some distance r from a given atomic
position. Thus, the RDF characterizes the distribution of distances
between atoms in a given material. It can serve as an important
fingerprint for amorphous materials, as it gives information
about the distance and density of neighboring shells of atoms,
which depend on the material’s structure, chemistry and defect
density (Srolovitz et al., 1981). In this section, we qualitatively dis-
cuss the calculation of the RDF, and the structure of the resulting
plot. The formal discussion of our methods, which follow
Mitchell & Petersen (2012) and Mu et al. (2016), are found in
Appendix H.

The RDF can be directly determined from the average diffrac-
tion pattern of an amorphous material, as long as enough counts/
images are collected to average out any local density fluctuations,
and the probe convergence semi-angle is sufficiently small to not
blur out the diffraction pattern (Egami & Billinge, 2003). An
example of the mean diffraction pattern from amorphous silicon
is shown in Figure 13a. A radial integral is then calculated, here

using a polar-elliptical methods of the section “Polar transforma-
tion,” yielding the diffracted intensity as a function of distance
from the optic axis. The resulting curve, I(k), is shown in
Figure 13c. The important elements of this signal are (1) thermal
diffuse background, resulting from thermal motion of the atoms
and which dominates the behavior shown here at low k values,
(2) the single atom scattering factors, describing the scattered
intensity profiles which result from individual atoms and which
dominate the behavior at high k values, and (3) the structure fac-
tor Φ(k), which describes the arrangement of atoms relative to
one another in the material. By fitting the thermal background
and atomic scattering factors, it is possible to calculate the struc-
ture factor, and from the structure factor, it is possible to calculate
the RDF. Figures 13d and 13e show the computed structure factor
and RDF, respectively. In gathering data for RDF analysis, it is
important to capture high scattering angles to use in fitting the
atomic scattering factors; therefore, fairly short camera lengths
are recommended.

We ultimately invert the structure factor, a diffraction space
quantity, to retrieve the RDF, a real space quantity. Bandpass fil-
tering the structure factor before inversion may be used to cut off
high- and low-frequency noise; here, we used a bandpass filter
with sigmoidal cutoffs at low and high frequencies centered at
0.2 and 0.8 Å−1, respectively. The sampling of the RDF is deter-
mined by the maximum k values in the experimental data. In

Fig. 12. Amorphous strain. (a–c) Elliptical fits to the average amorphous diffraction pattern, and two selected diffraction patterns. In (a), blue wedges show the
data, while clear wedges show the fit function. In (b) and (c), the data and the fit are similarly interleaved, and Bragg scattering has been masked away to ensure
good fitting. (d,e) The compressive/tensile strains ϵxx and ϵyy, the shear strain γxy, and the dilation 1

2 (exx + eyy ).
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py4DSTEM, we therefore enable optional upsampling by padding
the structure factor with zeros before inversion, which allows
extraction of an RDF which is in principle arbitrarily smooth,
to aid in visualizing the data. Importantly, that smoothness is
for visualization purposed only and should not be over-

interpreted: the highest frequencies at which true information
has been transferred is set by the maximum k from the experi-
mental data. In Figure 13e, the interpolated data is shown as
the red curve, and the non-interpolated data which reflects the
plot’s true resolution are shown as black points.

Fig. 13. Radial distribution function of amorphous silicon. (a) An average diffraction pattern. (b) The polar-elliptical transform of (a). (c) The radial intensity profile,
calculated from (b). (d) The structure factor, calculated by determining and subtracting off the single atom scattering factor, and applying a bandpass mask to cut
off high- and low-frequency noise. (e) The radial distribution function, calculated using the structure factor, showing the first few shells of Si atoms. Dashed lines
show the first two RDF peak distances from a similar study on amorphous Si (Laaziri et al., 1999). Our nearest neighbor spacing and next-nearest neighbor spacing
measurements are each somewhat smaller than the literature values, by 9 and 2%, respectively.
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Importantly, the measured and computed RDF will never be a
perfect reflection of the true RDF. The algorithm used to convert
raw data to a g(r) curve is part of the story here—incremental
improvements can be achieved by optimizing various aspects,
such as the polar-elliptical fitting and transformation, the back-
ground fitting, or the bandpass filtering. In addition to these,
there are also limitations of the experiment itself, such as the finite
size of the beam and inelastic scattering. One clear and important
resulting difference between our measured RDF and what we
expect from a true, physical RDF is the structure of the nearest-
neighbor peak, that is, the first maximum in g(r). Physically,
the RDF must be zero close to r = 0. Typically, as r increases, g
(r) is expected to climb fairly sharply at the onset of the nearest-
neighbor peak, then decay more slowly toward the first trough
and the second shell. However, the first shell in our measured g
(r) shows no such asymmetry, and instead resembles a smooth
sinusoid. This is unsurprising, as it reflects insufficient high fre-
quency information to capture the true structure of the initial
peak. Collecting energy filtered data, minimizing the probe size,
and capturing high SNR data out to large scattering angles are
a few steps that might lead to more realistic measured RDFs.

Finally, we note that the background fit shown here is incor-
rect. This can be seen in Figures 13c and 13d. Here, we see that
our background is above the first peak in the median intensity
(Fig. 13c), and correspondingly the first maximum in the struc-
ture factor remains below zero (Fig. 13d). Fortunately, the modu-
lar, open-source design of py4DSTEM enables ongoing
improvements, and we anticipate correcting these shortcomings
in the RDF analysis module in a future version of the code.

Fluctuation Electron Microscopy

Fluctuation electron microscopy (FEM) is a method which, like
RDF analysis, is used to characterize the structure of amorphous
materials. In RDF analysis, the structure is typically considered
out to distances of perhaps the first few shells of neighboring
atoms, considered the “short-range order” regime. However,
many amorphous materials have a substantial degree of structural
ordering beyond the first few shells (Phillips, 1979). This property
is referred to as “medium-range order” in materials science (Treacy
& Gibson, 1996; Gibson et al., 2000; Nakhmanson et al., 2001).
When using 4D-STEM to study amorphous materials, the STEM
probe size (set by the convergence semi-angle and/or probe defo-
cus) can be tuned to match the size of atomic clusters. When
these clusters deviate from a fully random distribution, Bragg scat-
tering leads to “speckles” in the amorphous halo. The technique of
quantifying the degree of variability as a function of scattering
angle and probe size is called FEM (Voyles & Muller, 2002). In
this section we qualitatively discuss FEM, and a mathematical
treatment is in Appendix I.

Our approach follows the methods of Bogle et al. (2010). The
idea is to calculate the variance V(k) of the diffraction patterns as
a function of scattering angle. With an appropriate normalization
based on the radial intensity profiles (see the Appendix), the var-
iance can be thought of as a metric of order. Consider the limiting
cases: in a minimally ordered sample, the atomic distribution is
completely homogeneous, leading to perfectly smooth diffracted
rings and thus zero variance at a given scattering angle. In a max-
imally ordered sample, that is, a perfect crystal, the rings resolve
into Bragg disks, so that the variance at some fixed k containing
peaks will be maximized. The RDF is primarily sensitive to the
two-body atomic pair correlations, whereas the FEM variance is

more sensitive to four-body pair-pair correlations (Treacy &
Gibson, 1996; Rodenburg, 1999), hence its utility in examining
medium-range order.

Figure 14 shows an FEMmeasurement of an amorphous silicon
sample, performed in py4DSTEM. Figure 14a shows the mean
diffraction pattern of the dataset, with two strong amorphous
rings visible. However, plotting the maximum intensity across all
probe positions, shown in Figure 14b, shows clear Bragg disk fea-
tures. This is due to small regions of crystallinity, present in some
small fraction of probe positions. This is important because which
sample features dominate, or are apparent at all, is highly sensitive
to exactly what signal is being examined; and in FEM analysis, there
are several similar but distinct ways of extracting the FEM signal
(Voyles & Abelson, 2003). Here, we demonstrate this sensitivity,
and show that using median statistics can be beneficial in targeting
the amorphous signal in FEM analysis.

Figures 14c–14e respectively show the radial intensity profile,
the variance, and the FEM signal, in each case using both mean
and median statics. The presence of crystalline regions barely
effects the mean intensity, but strongly modulates the variance V
(k). The end result is the FEM signal in Figure 14e. This shows a
strong signal at k = 0.318 Å−1 that corresponds to the distribution
of nearest neighbor atoms in amorphous Si, with a mean scattering
vector approximately equal to the crystalline Si [111] lattice spac-
ing, and which is approximately the same using both mean and
median statistics. In contrast, the FEM signal at higher scattering
angles differs substantially using mean versus median statistics.
With mean statistics, there are two strong peaks at k = 0.53 Å−1

and k = 0.62 Å−1, corresponding to the [220] and [311] crystalline
Si diffraction peaks. Using median statistics, these two peaks are
suppressed, revealing a lower intensity, broad amorphous peak hid-
ing underneath them. This example highlights that the oversized
impact even a small amount of Bragg scattering can have on
FEM analysis, even in predominantly amorphous samples contain-
ing small amounts of crystal. In the particular use-case of small
crystallites masking an amorphous signal of interest, median statis-
tics are likely the simplest solution; note that other options, such as
identifying and masking off Bragg scattering, are also possible.
More broadly, this discussion suggests the importance of careful
inspection of the diffraction images and careful choice of statistical
methods in performing FEM data analysis.

Electron Phase Retrieval

py4DSTEM includes two methods for reconstruction of the sam-
ple potential: differential phase contrast (DPC) and ptychography.
Broadly, the idea in both methods is to extract the phase factor
that has been added to the electron beam wavefunction at each
scan position. That phase is then taken to be the total (i.e., pro-
jected) sample potential at this scan position times a constant
which encodes electron–charge interaction strength. Figure 15
shows the results of the py4DSTEM phase retrieval algorithms
applied to a carbon nanotube, from Yang et al. (2016b).

These methods make the transmission function approximation
as well as the projection approximation, and thus can be expected
to bemost reliable for thin, low-Z samples. In cases where these con-
ditions do not hold, phase retrieval should be interpreted cautiously.

Differential Phase Contrast
DPC uses the fact that, for a sufficiently thin object, the mean
deflection of the electron probe at each scan position in the
STEM raster is related to the specimen electric and magnetic
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field components transverse to the beam propagation direction.
Examples of material science applications of this technique
include the study of built-in electric fields in semiconductor
devices (Shibata et al., 2015), magnetic skyrmions (Matsumoto
et al., 2016) and domain structures (Chapman et al., 1978) and
as a technique for efficient visualization of light atoms in materials
(Song et al., 2019). The technique, first suggested by Dekkers &
De Lang (1974), was extensively applied to the study of magnetic
materials from the 1970s onward by Chapman and colleagues and
has seen more ubiquitous use with the increased uptake of more
sophisticated segmented detectors (Shibata et al., 2012) and the
advent of fast-readout electron cameras in STEM (Krajnak
et al., 2016).

Figure 15a shows the DPC reconstruction of the sample. The
mean probe deflections are shown in Figures 15c and 15d at
each scan position in the x- and y-directions, respectively. Once
these are calculated, optionally after defining some mask to cut
off high-angle scattering, DPC considers this vector field of
deflections to be the gradient of some scalar function. The pri-
mary task of DPC is, thus, to reconstruct the scalar field (a.k.a.
the DPC image) which has as its gradient the measured probe

deflections. In py4DSTEM, this inversion is accomplished by
Fourier integration of the probe deflections (Arnison et al.,
2004; Close et al., 2015). This is performed iteratively; the conver-
gence curve is shown in Figure 15e and shows that the computa-
tion has completed after 15 iterations. In the phase object regime
(also known as the multiplicative approximation), the resulting
scalar field is proportional to the sample potential. Appendix J
derives the relation between the beam deflections and the sample
potential and discusses the Fourier integration approach used. A
consequence of Fourier integration is that it implicitly assumes
periodic boundary conditions, which can be problematic for non-
periodic electron microscopy specimens. Boundary condition
handling is important to a high-quality DPC reconstruction,
and in py4DSTEM, we used an iterative boundary condition cor-
rection algorithm which is discussed in detail in Appendix J.

The rotational offset between real and diffraction space needs
to be correctly calibrated to perform the Fourier integration step.
One possibility is to use the method discussed in the section
“Calibration” to determine the real/reciprocal rotational offset—
that is, perform the calibration manually. Alternative approaches
to automate this calibration are also possible using DPC methods
—two are discussed here. In one method, we begin by observing
that if the assumptions of DPC hold (primarily a thin enough
specimen for the phase object approximation to be valid—see
Appendix J), then the beam deflections scale with the gradient
of the potential, and should therefore be a conservative vector
field. In the presence of a relative rotation between real and recip-
rocal space, however, the measured beam deflections will all be
similarly rotated, in general resulting in an apparently nonconser-
vative field. The correct rotational offset can therefore be identi-
fied by finding the relative rotation which results in beam
deflections which are conservative. Algorithmically this can be
accomplished by calculating the curl as a function of the real/
reciprocal rotation, then identifying the rotation which minimizes
the curl as the correct rotational offset. In the second method, we
note that the contrast of a DPC reconstruction is maximized
when the rotational offset is correct. Thus, the calibration may
also be performed by maximizing the DPC contrast as a function
of real/diffraction space rotation. Note that this latter method per-
mits a 180 degree ambiguity in the rotational offset, correspond-
ing to a contrast reversal in the DPC image.

The DPC reconstruction is a scalar field which is calculated by
Fourier integration of the beam deflections. We note that Fourier
integration effectively applies a low-pass filter. Some amount of
low-pass filtering is, therefore, inherent in DPC imaging as imple-
mented in py4DSTEM.

Finally, we note that while DPC provides useful image contrast
in a fairly wide array of contexts, physical interpretation, and in
particular interpretation in terms of the local sample potential,
should be undertaken with care. Under optimal conditions, the
DPC image is a reflection of the phase added to the electron
beam, which in turn reflects the sample potential. However, in
many datasets under realistic experimental conditions, the signal
in the DPC image result from any number of other effects and
should not be conflated with the sample potential. The most com-
mon such effect is sample thickness—for thick samples, the phase
object approximation does not apply, and the DPC signal is
almost certainly not a representation of the true “phase” of the
specimen due to strong multiple electron scattering. Additional
important factors include the convergence angle, and the real
space step size. With respect to the convergence angle, any sample
structure smaller than the probe size cannot be resolved and will

Fig. 14. Fluctuation electron microscopy of predominantly amorphous silicon. (a) An
average diffraction pattern of the 4D-STEM scan, using median statistics. (b) A diffrac-
tion image generated by selecting the maximum value at each pixel across all scan
positions, and revealing the presence of some amount of Bragg scattering, and there-
fore crystallinity, in this sample. (c) The radial intensity profiles of the dataset using
median (red) and mean (blue) statistics, respectively. (d) The variance over all angles
versus radial position. (e) V(q)/〈I(q)〉2, a measure of short and medium range order
which becomes larger with increasing order. Note the two peaks in blue (mean sta-
tistics) which become a single broad peak in red (median statistics). These peaks
come from Bragg scattering, suggesting that the median statistics are superior for
evaluating the amorphous structure.

Microscopy and Microanalysis 731

https://doi.org/10.1017/S1431927621000477 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621000477


not be reflected in a DPC image—thus, if α is smaller than the
Bragg angle, any atomic structure will be lost in the DPC
image. With respect to the real space pixel size, if the spatial sam-
pling is larger than the probe width, any variation in the potential
in between sampling points will be effaced in the reconstruction.

A DPC image for thicker samples, or samples with small con-
vergence angles or large step sizes, may still be physically informa-
tive. In these cases, DPC is a convenient technique for creating a
high contrast map of the field of view and may be thought of as
another flavor of virtual imaging. Images in this category might be
referred to as “pseudo-DPC.” The DPC image in Figure 1 is a
good example of this—the sample is thick, α is smaller than the
Bragg angle, the beam step size is larger than the probe. This
DPC image almost certainly does not reflect the sample potential;
it does generate a high contrast image of a complex sample. In
contrast, the DPC image shown in Figure 15a was generated
from a very thin sample such that the phase object approximation
is reasonable, with a large convergence angle and a real space step
size smaller than the probe width. This is, therefore, a "true” DPC
image and may be interpreted in terms of the sample potential.
See Appendix J for further discussion.

Ptychography
Phase retrieval is difficult because phase is never directly
recorded; instead, the detector only captures the square modulus
of the electron wavefunction. In electron ptychography of crystals,
the idea is that with a large enough convergence angle, the central
disk will begin to overlap with other Bragg disks. In the overlap
regions, the phases of the two beams add coherently, and conse-
quently, phase reconstruction is possible by analyzing these
regions. The method is analogous to holography, which combines
a scattered beam and a reference beam to create an interference
pattern, except that the “scattered” and “reference” beams are
now the central beam and the Bragg reflected beams. Variations
in these regions of interference as the beam is scanned enable
phase retrieval. Ptychography was first suggested as a method to
solve the crystallographic phase problem by Hoppe (Hoppe,
1969a, 1969b; Hoppe & Strube, 1969), and later extended to
solve the phase problem for arbitrary specimens by Rodenburg
(Rodenburg & Bates, 1992).

py4DSTEM includes a ptychographic reconstruction algo-
rithm which calculates the phase in a single step, based on the
single-side band approach and discussed in detail in Appendix K.
Figure 15b shows the results for the carbon nanotube discussed
above, and clearly reveals both the walls of the tube as well as
the tortuous structure of carbon inside the tube. In general, direct
solvers tend to be fast, however, better reconstruction quality is
usually achieved with iterative algorithms.

Conclusion

In this paper, we presented the py4DSTEM software package
written in Python, for analysis of 4D-STEM experiments. We
described the program’s purpose and structure, including an
HDF5-based file standardization for 4D-STEM. We described
how py4DSTEM can be used for preprocessing and calibrating
data, finding Bragg disk positions, transformation into polar-
elliptical coordinates, and for classifying diffraction patterns
based on commonalities in their diffraction patterns. We demon-
strated measurements including virtual imaging, phase mapping,
mapping strain in crystalline and amorphous materials, RDF and
FEM analyses, and phase reconstruction with DPC and with pty-
chography. The analysis here spans eight datasets, including seven
experimental and one synthetic dataset.

The py4DSTEM code and many examples are freely available
in the py4DSTEM repository on Github. As an open-source pro-
ject, both new users and new contributors are enthusiastically
encouraged to try the code, use it in their own work, or make a
contribution.
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Appendix A. Basic Formalism for 4D-STEM

Figure A.1 shows the geometry of an STEM experiment. We define the follow-
ing probe wavefunctions:

C0(k) = initial probe formed in diffraction space,

c0(r) = probe focused onto sample surface,

c(r) = probe at the exit plane of sample,

C(k) = far-field probe in the detector plane,

where r and k denote coordinates in the real space image and diffraction space
planes, respectively, and the diffraction plane coordinate |k| = α/λ for scatter-
ing angle α and relativistically corrected electron wavelength λ. In an STEM
experiment, scan coils are used to move the probe to a given position R,
denoted by ψ0(r−R). In this appendix, we first describe a simple model for
4D-STEM datasets, which primarily refers to the diffraction plane wavefunc-
tion Ψ(R, k). We then briefly discuss the more general question of how the
wavefunction evolves from the initial probe Ψ0 to the final probe Ψ on the
detector.

A 4D-STEM dataset typically takes the form of a four-dimensional array of
intensity values,

I = Ii,j,n,m

= I(Rx , Ry , kx , ky)

= I(R, k).

Here, each Ii,j,n,m is a scalar and (i, j, n, m) [ N, that is, the dataset is a discrete
4D grid of numbers. The correspondences between (i, j) and scan position R =
(Rx, Ry) and between (n, m) and diffraction coordinate k = (kx, ky) are deter-
mined by the real and diffraction space pixel size calibrations. The value of
each Ii,j,n,m is given by the electron flux passing through the appropriate detec-
tor pixel, or by the square modulus of the beam wavefunction integrated over
the detector pixel at k when the beam raster position is R. Thus, the 4D-STEM
dataset may be modeled by

I(R, k) =
∫kx+Dk

kx

∫ky+Dk

ky

|C(R, k)|2 dkx dky

≈ |C(R, k)|2,
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where the approximation is exact in the limit of infinitesimally small detector
pixels. Note that this simple model does not account for finite information
transfer in the microscope, which could be included with a multiplicative
transfer function M(k).

In an STEM experiment with an integrating detector (ADF, BF, etc.), the
image I(R) can be modeled as

I(R) =
∫
|C(R, k)|2D(k) dk, (A.1)

where D(k) reflects the detector geometry. For some 4D-STEM signal I(R, k),
we can write down an equivalent virtual image Iv(R) as:

Iv(R) =
∫
I(k, R)D(k) dk. (A.2)

If equations (A.1) and (A.2) look similar, it is because they are. The key differ-
ence is in the meaning of the integration over D(k): in the former equation, it
describes the action of the detector, and the integration occurs in hardware
during data acquisition; in the latter equation, it is a prescription for which
pixels of the 4D datacube need to be summed in post-processing.

The evolution of the probe is comparatively simple from the probe-
forming aperture to the sample plane, and from the sample plane to the detec-
tor—both are given by Fourier transforms:

c0(r) = F k�rC0(k),
C(k) = F r�kc(r),

(A.3)

where F r�k is the forward transform from the real to diffraction domain, and
F k�r is the inverse transform from the diffraction to real domain. The most
common initial condition for the electron probe in 4D-STEM is given by a

circular aperture in a condenser plane

C0(k) = A(kmax),

= 1, if |k| ≤ kmax,

0, otherwise,

{ (A.4)

where A(kmax) is the 2D “top hat” function, and kmax is the maximum scatter-
ing vector of the probe. The probe incident on the sampe is then an Airy disk
function

c0(r) =
J1(2pkmax|r|)��

p
√ |r| , (A.5)

where J1 is a Bessel function of the first kind, and the peak amplitude is equal
to

��
p

√
kmax. This function is shown graphically in the upper right corner of

Figure A.1. More complex STEM probes can be formed by using amplitude-
patterned apertures (Guzzinati et al., 2019; Zeltmann et al., 2020), phase plates
(McMorran et al., 2011; Ophus et al., 2016b; Yang et al., 2016a; Verbeeck et al.,
2018), or other methods (Blackburn & Loudon, 2014; Pozzi et al., 2017). In a
vacuum, ψ0(r) = ψ(r), so that Ψ(k) and Ψ0(k) are identical up to scaling and
phase factors, so that without a sample the image on the detector directly
reflects the electron beam passing through the probe-forming aperture.

The change in the wavefunction from ψ0(r) to ψ(r), as the beam passes
through a sample is, in general, analytically intractable, so numerical methods
are typically used. Using some approximations described in Kirkland (2010),
and omitting the scan coordinate R for clarity, the interaction of the STEM
probe with the sample is governed by the time-independent Schrödinger
equation

∂c(r)
∂z

= il

4p
∂2c(r)
∂x2

+ ∂2c(r)
∂y2

[ ]
+ isV(r)c(r), (A.6)

where i is the imaginary constant, σ is the relativistically corrected electron–
matter interaction constant, and V(r) is the electrostatic potential inside the

Fig. A.1. Schematic of STEM experimental geometry, showing initial probe focused onto sample surface, propagating through sample, exiting the sample, and
finally being imaged in the far-field detector plane.
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sample. The interaction constant σ is given by

s = 2pgmeqel

h2
,

where γ, me, qe, λ, and h are the relativistic correction factor, the electron mass,
the electron charge, and the relativistically corrected electron wavelength, and
the Planck constant. Because the two operators on the right-hand side of equa-
tion (A.6) do not commute, it is typical to use a split-step method to numer-
ically solve this equation called the multislice method, first derived in Cowley
& Moodie (1957). To use the multislice method to solve the interaction of the
electron beam with the sample, we first divide up the sample into a series of N
slices, Vn(r), which are 2D arrays that integrate all of the electrostatic potential
contained in a given slice of thickness Δz, given by

Vn(r) =
∫z+Dz/2

z−Dz/2
V(r) dz. (A.7)

By assuming that each slice has infinitesimal thickness, the solution to the
transmission operator is given by

c(r) = T(r)c0(r) = eisVn(r)c0(r). (A.8)

Between each slice, we assume zero electrostatic potential and can, therefore,
advance the electron wave by using the free-space propagation operator,
which can be efficiently applied in Fourier space (Kirkland, 2010)

c(r) = F k�r{e
ilDz|k|2 [F r�kc0(r)]}. (A.9)

Note that the propagation operator eilDz|k|
2
uses the 2D inverse spatial

coordinate k = kx
2 + ky

2. We alternate the application of the transmission
and propagation operators to calculate the final wavefunction after interacting
with the sample,

c(r) =
∏N

n=1

{F k�r[e
ilDz|k|2 {F r�k[e

isVn(r)]}]}c0(r), (A.10)

which is typically referred to as the exit wave. This method requires N

transmission operations and N− 1 propagation operations. The multislice
method is often used for modeling 4D-STEM experiments but can require a
prohibitively high amount of computation time for very large simulations.
Recently, a more efficient method has been developed to simulate 4D-STEM
experiments called PRISM (Ophus, 2017), which has been made available as
a simulation code (Pryor et al., 2017), and extended to simulate electron
energy-loss spectroscopy (STEM-EELS) inelastic scattering as well (Brown
et al., 2019).

Appendix B. Cross, Phase, and Hybrid Correlations

Cross-correlative template matching is a standard tool in image processing and
is widely used in computational analysis for electron microscopy (Frank, 1975;
Modersitzki, 2004). The purpose of this appendix is to outline the formalism
for these methods and to briefly discuss the effects of and appropriate uses
cases for so-called hybrid correlations.

For functions f and g, written in one dimension for simplicity, the cross-
correlation is defined as

(f w g)(x) =
∫
1

1

f (y)∗g(x + y) dy, (B.1)

where w indicates a cross-correlation and * indicates complex conjugation.
The key idea here is that if f(x− a) = g(x), then (f w g)(x = a) will be a
maximum, because the integrand then becomes |f( y)|2 and two functions
are perfectly overlapped. Therefore, the cross-correlation of the vacuum
probe template with a diffraction pattern can be used to extract the Bragg
disk positions simply by identifying the cross-correlation maxima.

Computationally, this is implemented via the cross-correlation theorem,
which states that

(f w g)(x) = F−1((F f )∗(Fg)), (B.2)

where F is the Fourier transform. This follows directly from the Fourier trans-
form of equation (B.1) and the change of variables x′ = x + y. Equation (B.2)
therefore allows the integral of equation (B.1) to be computed efficiently via
a few FFT operations, which is important because performing the cross-
correlation on each diffraction pattern (often 10,000 or more) is the most
computationally intensive step of many analysis workflows.

In contrast to equation (B.2), the so-called phase correlation normalizes by
the amplitude in Fourier space before applying the inverse transform:

(f w g)phase(x) = F−1 (F f )∗(Fg)
|(F f )∗(Fg)|

( )
. (B.3)

This leads to an analytically pleasing result: now, if f (x− a) = g(x), then
(f w g)phase(x) = d(x − a). The result follows directly from substituting f (x
− a) = g(x) into equation (B.3) and making use of the Fourier shift theorem.
Thus, where the cross-correlation simply has a maximum where f and g best
overlap, the phase correlation yields a delta function which selects the point
of interest. As a practical matter, however, phase correlations are also highly
sensitive to noise, and this application tend to lead to many false positives
when used with real data.

An intermediate approach is possible using a hybrid correlation, in which a
normalization somewhere in between a phase and cross-correlation is used, as
follows:

(f w g)n(x) = F−1 (F f )∗(Fg)

|(F f )∗(Fg)|1−n

( )
. (B.4)

Here, n∈ [0, 1]. For n = 1, the result is a cross-correlation, and for n = 0, the
result is a phase correlation. Intermediate values may be thought of is applying
intermediate weighting to the amplitude versus phase components of the sig-
nals in Fourier space. Note that computationally we implement equation (B.4)
in the more numerically stable form (f w g)n(x) = |m|n eiarg(m), where
m = (F f )∗(Fg). While the hybrid correlation is a heuristic approach, it is
often effective. Giving more weight to the phase components (lower values
of n) increases sensitivity to edges and can do a better job of identifying
faint Bragg disks, however, the trade off is typically an increase in false-
positives. Experience with many datasets indicates that an n value in the neigh-
borhood 0.85 or 0.9—similar to a cross-correlation, but with a slightly
increased sensitivity to edges—frequently yields good results. The noisier the
data, the more caution is in order in using lower n values, and for very
noisy data pure cross-correlations are recommended. Figure B.1 shows cross,
hybrid (for several n values), and phase correlations in one dimension for
simulated data with and without noise.

Appendix C. Synthetic Probes

Synthetic probes generated in py4DSTEM take the form of a flat disk with an
edge that decays to zero sigmoidally according to

c(k) = 1

1+ exp 4(k−k0)
w

. (C.1)

Here, k0 is the radius of the disk, and w is the width over which the edge of the
probe decays, falling from 88 to 12% of its maximum value of 1 in this span.

Appendix D. Bragg Vector Map Formalism

Let us refer to the ith Bragg disk detected in the diffraction pattern at scan
position (Rx, Ry) as BRx ,Ry ,i . In computer memory, this might be thought of
as a length 3 tuple: BRx ,Ry ,i = (kx,i, ky,i, Ii), where the subscript i indicates the
ith peak, and the three values are the coordinates of the disk center in
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diffraction space and the disk’s intensity. Analytically, we can think of the
BRx ,Ry ,i as Kronecker deltas of strength Ii:

BRx ,Ry ,i(k) = Iid(kx − kx,i)d(ky − ky,i). (D.1)

The delta function specifies where the Bragg condition is met for parallel
illumination; Bragg disks are formed by translating each point in the central
disk by this vector and may be thought of as the convolution of the aperture
function with equation (D.1).

Let us denote the set of all Bragg disks detected at a scan position (Rx, Ry)
as BRx ,Ry

. For N disks in BRx ,Ry
, we can write

BRx ,Ry
(k) =

∑N

i=1

Iid(kx − kx,i)d(ky − ky,i). (D.2)

Taking a summation over all scan positions gives

B(k) =
∑

rx[Rx

∑

ry[Ry

Brx ,ry (k), (D.3)

=
∑

rx ,ry ,i

Irx ,ry ,id(k − krx ,ry ,i), (D.4)

B is the Bragg vector map. Physically, is interpretable as a (unnormalized)
distribution of measured Bragg vector directions found within the sample
over the area of the 4D-STEM scan.

Appendix E. Elliptical Fitting and Transforms

In this appendix, we describe various elements of py4DSTEM that make use of
or relate to elliptical coordinates. First, we discuss elliptical fitting, which is
important for correction of elliptical distortions. We then briefly describe
and relate the two elliptical parametrizations used in the code. Finally, we
describe polar-elliptical transformations and radial integration.

Two primary elliptical fitting routines are available in py4DSTEM. The
first is appropriate for data that is well-described by a 1D elliptical curve—
for instance, a Bragg vector map from a sample with many randomly oriented
grains will typically contain elliptical rings associated with each characteristic
spacing of the material. The second is a sum of two Gaussian functions, a

simple Gaussian and a “double-sided” Gaussian, and is appropriate for fitting
amorphous diffraction patterns, and is a two-dimensional fit designed to
capture the first amorphous halo.

For 1D elliptical curve fitting, we first define some annular region of our
2D dataset containing pixels (kxi , kyi ), each with intensity Ii. We then deter-
mine the ellipse that most closely fits this data by computing

argmin
kx0 , ky0 , A, B, C

∑

i

[A(kxi − kx0 )
2

+ B(kxi − kx0 )(kyi − ky0 )

+ C(kyi − ky0 )
2 − 1]Ii.

The double-sided Gaussian function for amorphous halo fitting is defined as

f (kx , ky ; I0, I1, s0, s1, s2, c, R, kx0 , ky0 , B, C)

= N (r; 0, s0, I0, )

+N (r; R, s1, I1)Q(r − R)

+N (r; R, s2, I1)Q(R− r),

where (kx, ky) are the coordinates and (I0, I1, s0, s1, s2, c, R, kx0 , ky0 , B, C) are
parameters, where N (r; R, s, I) is a Gaussian centered at R with standard devi-
ation σ and with maximum amplitude I, where Θ is the Heaviside step function,
and where r is the radial coordinate of an elliptical system given by
r2 = (kx − kx0 )

2 + B(kx − kx0 )(ky − ky0 )+ C(ky − ky0 ). When performing a
fit, as before we first define an annular region in the dataset to fit, typically
about the first amorphous halo. The first term is meant to fit the decaying back-
ground, while the second and third terms fit the amorphous halo, while allowing
for an asymmetrical shape on the inner/outer sides of the ring.

When fitting ellipses, we use the parametrization

1 = A(kx − kx0 )
2 + B(kx − kx0 )(ky − ky0 )+ C(ky − ky0 )

2 (E.1)

for numerical stability. However, the parameters of this form are not the most
easily geometrically interpretable, so for this reason, we also make use of the
alternate parametrization

kx = kx0 + A′r cos (u) cos (f)− B′r sin (u) sin (f),
ky = ky0 + B′r cos (u) sin (f)+ A′r sin (u) cos (f)

, (E.2)

Fig. B.1. Cross-correlation, phase correlation, and hybrid correlation. A 1D vacuum probe has been correlated with a 1D comb of Bragg disks without (left) and with
(right) noise. Various values of n are used, where n = 1 is a cross-correlation, n = 0 is a phase correlation, and intermediate values are “hybrid” correlations—see
equation (B.4). Hybrid correlations increase sensitivity to edges and narrow the central maxima relative to a cross-correlation, but also increase sensitivity to noise.
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where (kx, ky) are cartesian coordinates, (r, θ) are polar-elliptical coordinates,
and (A′ , B′, ϕ) are parameters corresponding to the two semi-axis, and the tilt of
the A′-axis with respect to the kx-axis. Equations (E.1) and (E.2) are related by

A′ =
������������

2
A+ C + j

√
,

B′ =
������������

2
A+ C − j

√
,

j = (A− C)

����������������
1+ B

A− C

( )2
√

,

f = 1
2
tan−1 B

A− C

( )
.

Once the appropriate elliptical parameters are known, polar-elliptical
transformations may be performed. After specifying a range and sampling
the new polar coordinates, each point (r, θ) is mapped to some (kx, ky) position
in Cartesian space, from which a bilinear interpolation is then used to compute
the value at (r, θ). In py4DSTEM, arrays returned after polar-elliptical trans-
formation are numpy masked arrays, to ensure that coordinates beyond the
frame of the raw data are correctly handled, as well as to facilitate masking
data where necessary, for example, from a beamstop. Radial integrals are cal-
culated by first computing the polar-elliptical (or polar) transformation then
summing along the θ-direction.

Appendix F. Classification

The underlying principle of the classification scheme described in the section
“Classification” is the definition of a particular feature vector, which is useful
because it efficiently encodes the key physical features of crystalline electron
scattering—the Bragg vectors. It therefore massively reduces the size of the
data before classification, while honing in on the most physically relevant ele-
ment of the diffraction data. For a calibrated Bragg vector map containing N

delta-like peaks, we associate with each such peak an integer i∈ {0, …, N−

1}. For each diffraction pattern, we generate a length-N vector v. The ith ele-
ment of v is defined in one of two ways: (1) a Boolean value indicating whether
this diffraction patterns contains this Bragg peak or (2) a floating point value of
the intensity of this Bragg peak in this diffraction pattern.

With these feature vectors in hand, we use matrix factorization methods to
complete the classification. First, we construct the matrix X which has the fea-
ture vectors v as its columns. For data with RN = RNx × RNy diffraction patterns,
X has dimensions N × RN. X is then written as

X = WH, (F.1)

where W has shape N × C, H has shape C × RN, and C is the number of classes.
W may be thought of as a collection of C column vectors, each describing a
class in terms of weights for the various possible Bragg vectors observed
over the entire dataset. H may be thought of as a set of column vectors
which describe how to obtain, through linear combination of the classes,
good approximations for each of the observed diffraction patterns.
Alternatively, the row vectors of H may be thought of as an image (albeit
reshaped): there are C of them, and each describes how much to weight the
corresponding class in each of the RN positions of the electron beam.

A crucial question is: how to initialize the classes? In particular, the final
result is generally quite sensitive to the number of classes. In the sections
“Classification” and “Structural phase mapping,” we use an algorithm based
on the frequency of co-occurrence of Bragg peaks across diffraction patterns
to set initial values forW and H. The initialization algorithm begins by finding
the pair of diffraction patterns with the most shared Bragg peaks. Then, we
determine the fraction of those shared peaks which are contained in every
other diffraction pattern, find the one with the greatest co-occurrence, and
choose to add it or not add it to the group if its fraction of shared peaks is
above a threshold. This process continues, adding more diffraction patterns
to the group, until the best candidate pattern shares an insufficient fraction
of its Bragg peaks with the group. At this point, a new group is seeded, by

examining only those diffraction patterns which have not already been
assigned to a group, and again finding the pair with the most co-occurring
peaks. These groups are then converted into the W matrix using Boolean val-
ues to represent each diffraction pattern being in or out of a class in a given
column, and H is calculated using X and W with a non-negative least squares
solver. Finally, these initial classes may be optimized using non-negative
matrix factorization (Pedregosa et al., 2011).

This initialization algorithm is simple and can assuredly be improved
upon. Still, we have found it to be effective in a number of use cases, including
the twin boundary shown in Figure 8 and the complex Gd2Ti2O7 shown in
Figure 10.

Appendix G. Strain

In this appendix, we discuss how the crystalline and amorphous strains are cal-
culated in the sections “Crystalline strain mapping” and “Amorphous strain
mapping.”

We are interested in the infinitesimal strain matrix, where the deformed
lattice differs very little from the undeformed lattice. For a material with a
deformed state characterized by some displacement field u, and considering
the system in a coordinate system with abscissa and ordinate (x1, x2), the infin-
itessimal strain matrix is

e = e11 e12
e21 e22

( )
=

∂u1
∂x1

1
2

∂u1
∂x2

+ ∂u2
∂x1

( )

1
2

∂u1
∂x2

+ ∂u2
∂x1

( )
∂u2
∂x2

⎛
⎝

⎞
⎠ (G.1)

and is typically accompanied by uR = 1
2 (∂u1/∂x2 − ∂u2/∂x1). The ϵii terms

represent the compressive/tensile strain along the x̂i directions, with positive
values corresponding to tension. ϵ12 represents the shear strain, and our
sign convention is chosen such that positive values correspond to the angle
spanned from x̂1 to x̂2 becoming more obtuse in the deformed body. θR rep-
resents the rotation of the material, with positive values corresponding to
counterclockwise rotation of a right-handed coordinate system.

For both crystalline and amorphous strain, the strain matrix is calculated at
each beam position by comparing two comparable measurements: one of the
local structure and one of an undeformed reference structure. For crystalline
strain, the measurement we use is a pair of reciprocal lattice basis vectors.
For amorphous strain, the measurement is a transformation of the ellipse fit
to the (first) amorphous halo.

For crystalline strain, consider a real space lattice with reference basis vec-
tors a0 = (a01, a

0
2) and local, deformed lattice vectors a = (a1, a2). The transfor-

mation matrix Ta0�a describes the linear deformation of the space, and given
the lattice vectors is calculable via

a = Taa0.

The strain matrix in equation (G.1) is defined with respect to some arbitrary
area element of the material under study, so we consider a square unit area
element with sides (̂e01, ê

0
2) = (̂x1, x̂2). The transformation Ta maps these to

a new set of vectors (e1, e2). In the limit of small area elements, the relevant
derivatives are then expressible as

∂u1
∂x1

= (e1 − e01) · ê01 = Ta
11 − 1,

∂u1

∂x2
= (e1 − e01) · ê02 = Ta

21,

∂u2
∂x1

= (e2 − e02) · ê01 = Ta
12,

∂u2

∂x2
= (e2 − e02) · ê02 = Ta

22 − 1,

ϵ can then be retrieved from Ta.
In practice, we calculate basis lattice vectors of the reciprocal lattice g = (g1,

g2), by performing an intensity-weighted fit to measured Bragg peak positions
at each scan position. The corresponding reference vectors g0 = (g01, g

0
2) can be
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determined several ways, including defining a reference region, dataset, or
using a known crystal structure. At this point, it is possible to use g to deter-
mine a, then compute ϵ with the methods above. Alternatively, assuming suf-
ficiently small deformations that we may discard terms of second order and
higher in a Taylor expansion in both rotation and scaling, it is possible to com-
pute ϵ directly from the transformation Tg0�g , describing the linear deforma-
tion of reciprocal space, with remarkably little alteration to the above
equations. In this case, the final expressions for the strain are

e11 = 1− T
g
11,

e22 = 1− T
g
22,

e12 = − 1
2 (T

g
12 + T

g
21),

uR = 1
2 (T

g
12 − T

g
21).

(G.2)

To measure strain from the diffraction pattern of an amorphous material,
we fit ellipses at each probe position using the methods described in Appendix E.
After shifting the origin of each ellipse to k = (0, 0), we have

q2ref = Akx
2 + Bkxky + Cky

2
, (G.3)

where qref is a reference radius, which defines an undeformed (circular) amor-
phous halo given by

q2ref = kx
2 + ky

2
. (G.4)

Because the measurement takes place in reciprocal space, it is more conve-
nient to define the transformation matrix from the measured ellipse given by
equation (G.4) to the reference circle given by equation (G.3), which is given
by

kx
′

ky
′

[ ]
= T

kx
ky

[ ]
, (G.5)

where

T = 1�������������
A+ C +W

√ A+ 1
2W B/2

B/2 C + 1
2W

[ ]
,

where

W =
�����������
4AC − B2

√
.

This expression is valid as long as the roots are real, that is, 4 A C− B2 > 0. To
calculate the strain deformation tensor, we proceed in a similar manner to
(G.2), although we note the direction of the transformation has already been
changed to the real space transformation directions,

e11 = T11 − 1,
e22 = T22 − 1,
e12 = 1

2 (T12 + T21).
(G.6)

The full expressions for the strain tensor components are

e11 = A+1
2W��������

A+C+W
√ − 1,

e22 = C+1
2W��������

A+C+W
√ − 1,

e12 = B
2
��������
A+C+W

√ .

(G.7)

Taking a first order Taylor expansion about A = 1, C = 1, and B = 0 yields the
linear strain approximation

e11 = 1
2 (A− 1),

e22 = 1
2 (C − 1),

e12 = 1
2B.

(G.8)

Note that when using the linear approximation above, it is important to use a
value for qref that is very close to the reference lattice average scattering radius,
as the accuracy of the above expressions will suffer as the approximations A≈ 1
and C≈ 1 become worse.

An alternative method of determining the real space strains corresponding
to an ellipse can be done using the matrix notation. In the matrix form, the
ellipse equation (G.3) can be represented as

M = A B/2
B/2 C

[ ]
, (G.9)

where the major and minor axis directions are the eigenvectors of M, and their
lengths are the square root of the eigenvalues. In the eigenbasis reference frame
then, the transformation matrix, T, is simply the square root of the diagonal-
ized eigenvalues, aligned with the corresponding eigenvectors. However, this
must be rotated back to the traditional xy reference frame, or another chosen
reference frame, via tensor rotation

T′ = RTRT, (G.10)

where R is a standard rotation matrix and the superscript T represents trans-
pose. The angle with respect to the xy-axis can be found by taking the
two-argument arctangent (atan2) of an eigenvector. Finally, once T′ is in
the correct orientation, the strains are simply

e11 = T11 − 1,
e22 = T22 − 1,
e12 = (T12 + T21)/2.

(G.11)

We also note that most experiments will contain some degree of ellipticity
even when no strain is present. In these cases, we will subtract the reference
strain state from all measurements.

Appendix H. Radial Distribution Functions

We compute the radial distribution function following the methods of Mitchell
& Petersen (2012) and Mu et al. (2016). Beginning from an amorphous diffrac-
tion pattern, often averaged over many probe positions to increase the SNR, we
measure the radial intensity 〈I(k)〉f averaged over the angular direction ϕ.
Figures 13a–13c show such data for amorphous silicon. Next, we estimate
the structure factor using the expression

F(q) = 〈I(q)〉f − IBG(q)− N〈 f (q)2〉
N〈 f (q)2〉 qM(q), (H.1)

where IBG(q) is a background intensity estimate, 〈f (q)2〉 is the mean-square of
the parameterized single-atom scattering factors for all atomic species present,
multiplied by N total atoms in the probe volume, and M(q) is a masking func-
tion. The single-atom scattering term is typically fit to the high scattering angle
region, past the region where oscillating structure factor peaks are visible. The
background IBG(q) can be an additional constant offset, a more complex fitting
function, or just neglected. A masking envelope function M(q) is required to
zero the structure factor Φ(q) at low scattering angles due to residual intensity
from the central beam. This function can also be used to zero the structure
factor Φ(q) at high scattering angles as well, due to residual fitting errors in
N〈f (q)2〉 and IBG(q). Figure 13c shows the single-atom scattering fit, and
Figure 13d shows the masked structure factor.

Next, we obtain the reduced RDF g(r) by taking the discrete (type II) sine
transform of Φ(q), equal to

g(r) =
∑qmax

q=0

F(q) sin
p

qmax

q

Dq
+ 1
2

( )
r

Dr
+ 1

( )[ ]
, (H.2)

where qmax is the maximum q where Φ(q) is nonzero, and Δq and Δr are the
pixel sizes in diffraction and real space, respectively. g(r) should ideally
approach 0 as r→ 0 within the nearest-neighbor shell, and approach 1 as
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r→∞, but errors in the above fitting procedure can cause deviations from
these results. Other authors recommend subtracting a 4th order polynomial
from Φ(q) in order to reduce low spatial frequency artifacts (Mu et al.,
2016). Here, we add a sigmoidal damping mask which clamps the RDF to
zero as r→ 0. Figure 13e shows the final result of the calculation, g(r).

Finally, we can also compute the atomic density ρ(r) of our sample using
the expression

r(r) = r[g(r)+ 4prr0], (H.3)

where ρ0 is the bulk atomic density of the sample. This expression can be used
to determine the coordination number of neighboring shells of atoms, by inte-
grating over the distances r corresponding to a specific shell.

Appendix I. Fluctuation Electron Microscopy

The FEM computation here follows the methods of Bogle et al. (2010). The
first steps are identical to an RDF study, namely calibrating the elliptic distor-
tions, performing the polar transformation, and measuring the average inten-
sity as a function of scattering angle 〈I(q)〉ϕ,R from all diffraction patterns at
probe positions R. Next, we measure the variance V(q) of the intensity as a
function of scattering angle over all diffraction patterns

V(q) = 〈[〈I(q)〉f − 〈I(q)〉f,R]2〉R. (I.1)

In order to reduce the effect of thickness when comparing multiple datasets,
we then compute the normalized variance Vnorm(q) as

Vnorm(q) =
V(q)

〈I(q)〉2f,R
, (I.2)

The RDF measurement described above is primarily sensitive to the two-body
atomic pair correlations, whereas the FEM variance is more sensitive to
four-body pair-pair correlations (Treacy & Gibson, 1996).

Appendix J. Differential Phase Contrast

The notion of DPC is to select the detector function D(k) = k, referred to
variously as a first moment or center-of-mass detector. Under this choice, in
combination with the transmission function and weak object approximations,
the center-of-mass image is related to the projected potential of the sample
V(r) by

I(R) = s

2p
∇V(r)∗|c0(R)|2. (J.1)

In this appendix, we derive equation (J.1), following Waddell & Chapman
(1979), then summarize our own implementation. Note that in traditional
DPC, a segmented detector is used to approximate I(R). In 4D-STEM, the
center-of-mass of each diffraction pattern is computed instead. Comparison
of these approaches can be found in Müller-Caspary et al. (2019).

Following Appendix A, let us first substitute in D(k) = k into (A.1), giving
the (vector) image

I(R) =
∫
|C(k, R)|2k dk. (J.2)

Invoking that the real and diffraction planes are related by Fourier transforms

[equation (A.3)], we can write

I(R) =
∫
|F r�k(c(r, R))|2k dk

=
∫
F r�k(c(r, R))F ∗

r�k(c(r, R))kdk

= 1
2pi

∫
F r�k(∇rc(r, R))

×F ∗
r�k(c(r, R)) dk,

where * indicates a complex conjugation, and in the last line, the derivative
property of the Fourier transform has been invoked.2

So far, no assumptions have been made. We now model the probesample
interaction as multiplication of the electron wave function with a specimen
transmission function T(r)3 so that

I(R) = 1
2pi

∫
dk

∫
dre−2pik·r

× (c0(r− R)∇T(r)+ T(r)∇c0(r− R))

×
∫
dr′ e2pik·r

′
c∗
0(r− R)T∗(r′)

= 1
2pi

∫
dr(|c0(r− R)|2∇T(r)T∗(r)

+∇rc0(r− R)c∗
0(r− R)|T(r)|2).

(J.3)

Taking the phase object approximation, that is, T(r) = eiσV(R), the second
half of the sum in equation (J.3) becomes

1
2pi

∫
dr∇rc0(r− R)c∗

0(r− R)

= h−
2p

∫
drc∗

0(r− R) p̂c0(r− R)

= h−
2p

〈p〉,

where 〈p〉 is the expectation value of the probe momentum, and we made use
of the fact that the momentum operator is p̂ = 1

ih− ∇. But 〈p〉 is independent of
R and thus provides some constant offset to I(R), and can be neglected.
Meanwhile, the first half of equation (J.3) gives

I(R) = 1
2pi

∫
dr|c0(r− R)|2(is∇V(r))

= − s

2p

∫
dr|c0(r− R)|2E(r),

where the second line uses E = −∇V . Letting * denote a convolution, we
arrive at

I(R) = s

2p
∇V(r)∗|c0(R)|2

= − s

2p
E(R)∗|c0(R)|2.

The first line is recognized as equation (J.1).
To solve for V given I(R) requires that we integrate equation (J.1).

Following Arnison et al. (2004), Close et al. (2015), Lazić et al. (2016), and

2That is, F r�k(∇f (r)) = 2pikF r�k(f (r))
3Wise only for sufficiently thin samples; a necessary but not sufficient condition is that

the probe depth of field (equal to 1.7λ/α2) is much greater than the specimen thickness.
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assuming a delta function probe wavefunction, we find

I(R) = s
2p∇V(R)

FR�k(I(R)) = isk · FR�k(V(R))
V(R) = F−1

k�R
k·FR�k {I(R)}

k2

[ ] /
is.

(J.4)

In Figure 15a, the DPC reconstruction shown is in units of radians, corre-
sponding to the quantity σV(R). We note that instead of assuming a delta-like
probe, the probe wavefunction may be deconvolved from the image (Brown
et al., 2017), however, we neglect this step because it serves to amplify noise
in most experimental datasets. Computationally, when we compute the DPC
image we modify equation (J.4) slightly by adding low- and high-pass regular-
ization terms:

V(R) = F−1
k�R

k · FR�k{I(R)}
l1 + k2 + l2k4

[ ]/
is.

An additional challenge is the implicit assumption of periodic boundary
conditions in the use of fast Fourier transforms to solve equation (J.4). This
is demonstrated in Figure J.1 for reconstruction of a test image, a holographic
reconstruction of a biological cell in saline from Müller et al. (2018), shown in
Figure J.1a. The x and y numerical derivatives of a cropped region (indicated
by a white dashed outline) of Figure J.1a are shown in Figures J.1b and J.1c,
respectively, and the result of the solution proposed in equation (J.4) is
shown in Figure J.1d. An artifact of the implicit periodic boundary conditions
can be seen in part of the white cell on the right-hand side of the frame
appearing on the opposite left-hand side as indicated by a red arrow in
Figure J.1d. The approach used in py4DSTEM to remedy this is to solve equa-
tion (J.4) on a larger grid that has been “padded” with zeros, as shown in
Figure J.1e. The original grid corresponding to the input derivatives in
Figure J.1 is indicated by a white dashed outline in Figure J.1. The gradient
of the solution in Figure J.1e is taken and the result subtracted from the
input derivatives shown in Figures J.1b and J.1c. The result of this subtraction
(the residual) forms the input for another solution of equation (J.4) on a pad-
ded grid which is added to the phase solution as a correction. This processes is

iterated upon until convergence. The result of just 10 iterations is shown in
Figure J.1f, a more faithful reproduction of Figure J.1a than Figure J.1d.

Appendix K. Ptychography

In this appendix, we summarize the mathematics of the ptychographic recon-
struction method implemented in Figure 15. Beginning from the transmission
function approximation, the measured intensity I at a spatial frequency k and a
probe position R is given by

I(k, R) =
∫
c0(r− R)T(r) e2pir·k dr

∣∣∣∣
∣∣∣∣
2

. (K.1)

The goal is to retrieve T from I.
We first consider the transformed datacube I(k, K) = FR�KI(k, R), where

K is the reciprocal coordinate to scan position R. Thus, this is the datacube has
been written in terms of scan frequencies. Assuming that the sample is a weak
phase object, this may be written as Rodenburg et al. (1993)

I(k, K) = |C0(k)|2d(k)
+C0(k)C

∗
0(k + K)T(− k)∗

−C∗
0(k)C0(k − K)T(k),

(K.2)

where T(k) = F r�kT(r). The latter two terms in this expression each contain
two copies of the aperture function, one centered at the optic axis and one
shifted by the scan frequency K. For some given K, these terms can each be
nonzero only at values of k where both disks are nonzero; that is, in the overlap
between the shifted and unshifted disks. By looking only at the nonzero over-
lap between two disks, it is possible to simplify and solve equation (K.2) by
eliminating one of its terms.

To eliminate the third term, define the set of pixels

K = {k : (|k| , k0) ^ (|k + K| , k0) ^ (|k − K| . k0)},

where ^ is the logical and operation and the maximum disk size is k0 = α/λ for
convergence semi-angle α and electron wavelength λ. Here, the first line

Fig. J.1. Boundary condition handling for DPC. (a) A test image, an optical holographic reconstruction of a biological cell in saline from Müller et al. (2018) along
with the numerical derivatives of a cropped region (white dashed line) of the image in (b) and (c). (b,c) The DPC images. A DPC reconstruction from these produces
(d), which has artifacts, most noticeably where indicated with a red arrow. The artifacts result from the boundary conditions implicitly assumed by the use of fast
Fourier transforms. (e) The approach implemented in py4DSTEM, discussed in the body text, is to reconstruct on a padded grid [the original grid of (b) and (c) is
indicated by the dashed outline]. The result of 10 iterations is shown in (f) which does not exhibit the same artifacts as (d).
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requires that k is inside the central disk, the second line requires that k is inside
the disk shifted by −K, and the third line requires that k is also outside the
disk shifted by K. Thus, K selects a region of double overlap while also exclud-
ing the region of triple overlap.

If only data from k [ K is used, the third term in equation (K.2) vanishes,
so that

T(− k)∗ =
∑

k[K

I(k, K)
C0(k)C

∗
0(k + K)

, (K.3)

and T(r) can be obtained with a subsequent inverse Fourier transform. Since
this uses only data from a single double-overlap region, this method has been
dubbed single-side band reconstruction.

This approach can be extended to include data from the whole bright-field
in the reconstructions. If the sample is a weak phase object, it obeys Friedel
symmetry, so that T(k) = T(− k) * (Rodenburg et al., 1993). Inserting this
into equation (K.2) and solving gives (Yang et al., 2016a)

T(k) =
∑

k : |k|,k0
I(k, K) · G∗(k, K)

|G(k, K)|2 , (K.4)

where Γ is the disk-overlap function

G(k, K) = C0(k)C
∗
0(k + K)−C∗

0(k)C0(k − K). (K.5)
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