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Abstract. Software reusability has proven to be an effective practice
to speed-up the development of complex high-performance scientific and
engineering applications. We promote the reuse of high quality software
and general purpose libraries through the Advance CompuTational Soft-
ware (ACTS) Collection. ACTS tools have continued to provide solu-
tions to many of today’s computational problems. In addition, ACTS
tools have been successfully ported to a variety of computer platforms;
therefore tremendously facilitating the porting of applications that rely
on ACTS functionalities. In this contribution we discuss a high-level user
interface that provides a faster code prototype and user familiarization
with ACTS tools. The high-level user interfaces have been built using
Python. Here we focus on Python based interfaces to ScaLAPACK, the
PyScaLAPACK component of PyACTS. We briefly introduce their use,
functionalities, and benefits. We illustrate a few simple example of their
use, as well as exemplar utilization inside large scientific applications.
We also comment on existing Python interfaces to other ACTS tools.
We present some comparative performance results of PyACTS based
versus direct LAPACK and ScaLAPACK code implementations.

1 Introduction

The development of high performance engineering and scientific applications is
an expensive process that often requires specialized support and adequate infor-
mation about the available computational resources and software development



tools. The development effort is increased by the complexity of the phenom-
ena that can be addressed by numerical simulation, along with the increase and
evolution of computing resources. We promote high-quality and general purpose
software tools that provide a plethora of computational services to the growing
computational sciences community.
The Advanced CompuTational Software (ACTS) Collection [1, 2, 3] is a set
of computational tools developed primarily at DOE laboratories and is aimed
at simplifying the solution of common and important computational problems.
The use of the tools reduces the development time for new codes and the tools
provide functionality that might not otherwise be available. All this potential
cannot be achieved, however, if the tools are not used effectively or not used at
all. For this reason, we look at creating didactic frameworks to help scientists
and engineers deploy the ACTS functionality. Thus, our intent with PyACTS is
not to substitute tool interfaces but rather provide a self-learning mechanisms
for tool users to familiarize themselves with ACTS tools, their interfaces and
functionality.
In this article, we will focus on PyScaLAPACK by introducing its use in simple
ScaLAPACK calls, and also in large scientific applications. These examples are
followed by some performance results. We later reference other Python imple-
mentations that interface tools in the ACTS Collection.

1.1 Why Python?

Python [4] is an interpreted, interactive, object-oriented programming language.
Python combines remarkable power with very clear syntax. It has modules,
classes, exceptions, very high level dynamic data types, and dynamic typing.
There are interfaces to many system calls and libraries, as well as to various
windowing managing systems. New built-in modules are easily written in C or
C++. Early performance numbers on some components of PyACTS [5] have
demonstrated a low overhead induced by the use of the Python-based high-level
interface. However, there is a substantial gain in the simplification of tool inter-
faces because call to the PyACTS interfaces contain only high-level objects that
are familiar to the user, for instance a matrix A associated with a linear system
Ax = b, rather than the matrix A and all the computational parameters asso-
ciated with the performance of the algorithm. In fact, the PyACTS interfaces
generate all the other extra information necessary to actually call the ACTS
tool and exploit the tools high-performance capabilities. This extra information
includes data pertaining to the parallel environment, tool optimization, specific
data distributions and storage techniques, etc.
Notice that the use of Python allows not only for a user friendlier environment
but also to easily implement interoperable interfaces between these tools, and
easily maintain different versions of the tools as the tools continue to evolve
independently. In summary, PyACTS aims at easing the learning curve, hide
performance and tuning parameters from beginner users while supporting inter-
operable interfaces as individual tools continue to evolve.
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Fig. 1. Main components of PyACTS. The flexible infrastructure allows for
easily addition of new modules or versions of the different ACTS Tools

2 Software Tools

ACTS tools tackle a number of common computational issues found in many
applications, mainly implementation of numerical algorithms, and support for
code development, execution and optimization. The ever increasing number of
users of Python has motivated tool developers to include Python interfaces. In
this article we focus on the PyACTS interface to ScaLAPACK [6]. Figure 1 illus-
trates the overall structure of the PyACTS Framework which includes interfaces
to other tools in the Collection (the reader is referred to http://acts.nersc.gov
for a full list of tools in the ACTS Collection).
In its current implementation, PyACTS uses Numeric and RandomArray

from Numpy [7] to implement and handle array objects. In addition, we use
pyMPI [8] to implement and handle the parallelism.
Another relevant aspect of PyACTS is that it facilitates high-level interoperable
interfaces between the different tools in the ACTS Collection since objects (e.g.,
a given matrix in a particular storage format) from one library can be internally
converted to objects that are used by another library. Some developers of ACTS
tools have also implemented their own Python interfaces, and in the future Py-
ACTS will interface with them. Instances of such implementations include the
Python interface to PETSc [9], PyTrilinos [10], a Python based interface to se-
lected packages in the Trilinos framework, and a Python interface to ODE solvers
in SUNDIALS [11].

2.1 Introduction to PyScaLAPACK

ScaLAPACK is a library of high-performance linear algebra routines for dis-
tributed memory message-passing computers. It complements the LAPACK li-



brary [12], which provides analogous software for workstations, vector supercom-
puters, and shared-memory parallel computers. ScaLAPACK contains routines
for solving systems of linear equations, least squares, eigenvalue problems and
singular value problems. It also contains routines that handle many computa-
tions related to those, such as matrix factorizations or estimation of condition
numbers. We refer the reader to [6] for a comprehensive list of references, in-
cluding working notes that discuss implementation details.
PyScaLAPACK is our Python based high-level interface to ScaLAPACK. In
order to implement the PyScaLAPACK interface, we have also implemented
PyBLACS and PyPBLAS [5]. Notice that PyBLACS, PyPBLAS and PyScaLA-
PACK are only interfaces to the original BLACS, PBLAS and ScaLAPACK, re-
spectively. We did not rewrite the original versions of these libraries, but instead
aggregated high-level interfaces that hides some of the complexities encountered
by users of the original libraries that are not familiar with parallel computing,
linear algebra or matrix computations. Additionally, ScaLAPACK users can call
other ACTS Tools using PyACTS.
PyScaLAPACK, PyBLACS and PyPBLAS user interfaces do not directly in-
clude arguments like the leading dimensions or manipulations to the processor
grids. These are generated automatically for the user, along with the corre-
sponding block-cyclic distributions and then passed to the ScaLAPACK library.
Therefore, it significantly simplifies the interface for the scientific or engineering
application developer.

3 Examples of PyScaLAPACK Utilization

In this section we will look at how to use the PyScaLAPACK interface through
a set of simple calls to ScaLAPACK (we assume the reader is familiar with the
ScaLAPACK library or refer to [6] for more information).
We begin with our simple example in ScaLAPACK. To show the performance,
we present in Figure 2 the results for the routines PSGESV and PDGESVD. We
have used the routine PSGESV to compute the solution of a simple precision
system of linear equations Ax = b, where A ∈ IRn×n and x, b ∈ IRn. The
routine PDGESVD has been used to compute the singular value decomposition
(SVD) of a square double precision matrix. ScaLAPACK users need to define
the different variables and descriptors that are associated with the parallel data
layout and environment used by ScaLAPACK. Then, there is sequence of calls
to BLACS and ScaLAPACK to initialized the environment. In PyScaLAPACK
this is simplified by the use of

PyACTS.gridinit() # Initializes the process grid.

ACTS_LIB = 1 # 1 Identifies ScaLAPACK in PyACTS,

# 2 is SuperLU, and so on..

A = num2PyACTS(A, ACTS_lib) # Converts a Numeric Array into

# PyScaLAPACK array; A was previously

# defined as 2D NumArray.
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Fig. 2. Performance of PyScaLAPACK vs ScaLAPACK for the ScaLAPACK
routines PSGESV and PDGESVD. (a) uses REAL arithmetic and (b) uses
DOUBLE PRECISION.

The call to PyACTS.gridinit resolves automatically to the corresponding ScaLA-
PACK and BLACS routines. Parameters are taken from the input data (e.g.,
number of processor, and command line argument) entered by the user. The
invocation to num2PyACTS resolves in the creation of the descriptors associ-
ated with A, and they handled internally by PyACTS, and this includes all the
data distribution. Thus the actual call to PDGESVD using ScaLAPACK and
PyScaLAPACK are as follow:

CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO)

and

x,info = PyScaLAPACK.pvgesv(A,B)

Figures 2(a) and 2(b) present an example of performance results obtained in
a Linux Cluster consisting of Pentium IV processors and connected through a
1 Gbit network switch. In both graphs, we compared the straight Fortran 77
version of ScaLAPACK vs PyScaLAPACK. As it can be seen in the graph,
the overhead induced by the Python infrastructure is rather nominal. Thus,
PyScaLAPACK does not hinder the performance deliverance of ScaLAPACK.

3.1 Examples of Large Scientific Applications

We introduce a few examples of real scientific application codes that can be easily
prototyped or extend its functionality with the use of PyACTS. For each appli-
cation we present a summary of the highlights of the PyACTS implementation
and performance results.



PyClimate: A Set Climate Analysis Tools. PyClimate [13] is a Python
based package that provides support to common tasks during the analysis of
climate variability data. It provides functions that range from simple IO oper-
ations and operations with COARDS-compliant netCDF files to Empirical Or-
thogonal Function (EOF) analysis, Canonical Correlation Analysis (CCA) and
Singular Value Decomposition (SVD) analysis of coupled data sets, some linear
digital filters, kernel based probability-density function estimation and access
to DCDFLIB.C library from Python. PyClimate uses functionality available in
LAPACK.
There has been a growing need for PyClimate to scale-up its functionality to
support parallel and scalable algorithms. Rather than implementing these new
functions from scratch, we collaborate with the PyClimate team to provide
PyScaLAPACK. In this case, PyScaLAPACK integrates well with all the Py-
Climate development and application environment. Here we present an example
concerning a meteorological study by means of the EOF and SVD analysis.
The EOF analysis is widely used to decompose a long-term time series of spa-
tially observed data set into orthogonal spatial and temporal modes. EOF can
be calculated in a single step using singular value decomposition (SVD) with-
out constructing either version of the covariance matrix as shown by Kelly in
[14]. Concretely, EOFs can be computed, via SVD, after removing the spatial
(i.e., column) mean from the data matrix at each time step. In this case, the
EOFs decompose the variability of the spatial property gradients rather than
variability of the property itself. These spatial variance EOFs are useful when
the purpose is to investigate the variance associated with features that do not
vary strongly over time. In practice, EOFs are a means of reducing the size of a
data set while retaining a large fraction of the variability present in the original
data.
PyClimate implements these features in the routine “svdeofs”. An example of
use of this routine can be found in www.pyclimate.org (script: example 1). This
script performs the SVD decomposition after removing the column mean from
the data matrix at each time step. Some other computations are accomplished
after the SVD decomposition.
We have parallelized the aforementioned script by using both PyScaLAPACK
(for the SVD) and PyPBLAS (for the extra computation). We would like to em-
phasize that the parallel PyScaLAPACK script resembles the coding structure
of the serial PyClimate one. Moreover, the PyScaLAPACK version is semanti-
cally the parallel implementation of the serial version, just like the relationships
between ScaLAPACK and LAPACK. All this is done in a manner that is almost-
transparent to the user.
The data sets used in our experiments correspond to air temperature in a 2.5◦

latitude × 2.5◦ longitude global grid with 144 × 73 points. The first data set
measures the air temperature over 365 days (referred as air.day), and the sec-
ond one contains measures over the mean of 694 months (referred as air.mon),
obtained both from the Climate Diagnostics Center.
In Figure 3 we show the computational times obtained for the sequential version
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Fig. 3. EOF analysis using PyClimate and its parallel version.

(using PyClimate) and for the parallel version (using our proposed interfaces)
for different number of processors. Figure 3(a) corresponds to the air.day data
set, and Figure 3(b) corresponds to the air.month. These results have been ob-
tained on a cluster of 28 nodes with two Intel Xeon processors (2.4 GHz, 1 GB
DDR RAM, 512 KB L2 cache) per node connected via a Myrinet network (2.0
Gigabit/s). As it can be appreciated, we obtain a substantial reduction of time
when our proposed parallel interfaces are used.

3.2 Large Inverse Problems in Geo-Physics

In this application we are interested in using singular values and singular vectors
in the solution of large inverse problems that arise in the study of physical mod-
els for the internal structure of the Earth [15, 16]. The Earth is discretized into
layers and the layers into cells, and travel times of sound waves generated by
earthquakes are used to construct the corresponding physical models. Basically,
we deal with an idealized linear equation relating arrival time deviations to per-
turbations in Earth’s structure. The underlying discretization lead to very large
sparse matrices whose singular values and singular vectors are then computed
and used in the solution of the associated inverse problems. They are also used
to estimate uncertainties. In one phase of these calculations we need to solve a
(block) symmetric tridiagonal eigenvalue problem that arises in the context of
a (block) Lanczos-based algorithm. This is done in a post processing phase us-
ing ScaLAPACK, which requires the block-cyclic distribution of the tridiagonal
matrix and the corresponding eigenvectors.
First, Table 1 presents some results of interactive runs comparing the PyScaLA-
PACK version of the code against the original Fortran implementation that uses
the original ScaLAPACK. The runs were performed in an IBM SP Power 3, 350
MHz per processors, and each node has 16 processors. In the tests shown in
Table 1, we noticed the slight influence of the Python interpreter in the timings.



Table 1. Performance Results Earth Science applications using ScaLAPACK (right)
and PyScaLAPACK (left)

Number of Matrix Size
Processors 1000 5000 7500

4 9.00 10.22 671.79 816.67 - -

8 6.72 9.05 339.39 428.72 - -

16 6.41 8.19 188.37 195.10 713.05 850.12

In this example we have called the ScaLAPACK subroutine P
¯
SSYEV, which

computes the eigenvalues and corresponding eigenvectors of a symmetric matrix
A. In Table 1, we show the results for three different sizes of A, 1000, 5000 and
7500. The overhead introduced by Python is currently under study and we will
try to use a different MPI-Python implementation on the IBM system. Never-
theless, if we take a look at the original calls to ScaLAPACK from the Fortran
code versus the PyScaLAPACK, we observe a significant simplification of the
user interface. As in the previous examples, there is already a simplification at
the level of declarations of variables, data distribution and initialization of the
parallel environment. The Fortran call to PSSYEV

¯
looks like this:

CALL PSSYEV(’V’,’L’,N,A,1,1,DESCA,S,X,1,1,DESCY,WORK,LWORK,INFO)

and the PyScaLAPACK version:

s,x,info= PyScaLAPACK.pvsyev(a_ACTS,jobz=’V’)

Further, there are two calls to P
¯
SSYEV in the original Fortran code. The first

one precomputes the size of the work array. In the PyScaLAPACK all these
details are hidden from the user and performed internally by PyScaLAPACK.
Comparing the PyClimate and the Earth Sciences application we notice that in
the case of PyClimate, not only we obtain a simplified and friendlier interface
but also a parallel version of the code. In the Earth Sciences case, the Fortran
code already calls ScaLAPACK and as shown in Table 1 the code shows some
speed ups even for the small problem sizes. The benefit in the latter application
is seen at the level of the interface.

4 Conclusions

PyACTS aims at easing the learning curve, hide performance and tuning param-
eters from beginner users while supporting interoperable interfaces as individual
tools continue to evolve. In addition, PyACTS reduces the time users spend
prototyping and deploying high-end software tools like the ones in the ACTS



Collection. At the same time, PyACTS guides its users via a scriber that pro-
duces Fortran or C language code from the PyACTS high-level commands. Then,
the user can use the PyACTS generated Fortran or C language code pieces for
generating production codes in either language.
The results shown in the previous graphs and examples show not only the many
advantages of using the simplified interfaces but also that there are no major
performance degradations by using the PyScaLAPACK interface. An item in
our agenda for future work is to replace the MPI interface with a more scalable
version of MPI for Python.
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