
PyClone‑VI: scalable inference of clonal
population structures using whole genome data

Sierra Gillis1 and Andrew Roth1,2,3*

Background

Cancer is an evolutionary process driven by ongoing somatic mutation within the malig-

nant cell population [1, 2]. �e combination of mutation, drift, and selection lead to het-

erogeneity within the population of cancer cells. Identifying population structure and

quantifying the amount of heterogeneity in tumours is an important problem which

has been extensively studied [3–8]. High throughput sequencing (HTS) provides a pow-

erful approach to solve the problem with both bulk and single cell approaches being

employed. While single cell sequencing approaches can more accurately resolve clonal

population structure, they are not widely available and have limitations both technical

and due to cost. Using bulk sequencing to study heterogeneity thus remains the pre-

dominate approach, and methods for studying heterogeneity using bulk sequencing will

become even more important as HTS is increasingly used in translational and clinical

work [9–12].

Identifying population structure and quantifying heterogeneity from bulk sequencing

data is a computationally challenging problem. �e core issue is to deconvolve sequence

Abstract

Background: At diagnosis tumours are typically composed of a mixture of genomi-

cally distinct malignant cell populations. Bulk sequencing of tumour samples coupled

with computational deconvolution can be used to identify these populations and

study cancer evolution. Existing computational methods for populations deconvolu-

tion are slow and/or potentially inaccurate when applied to large datasets generated

by whole genome sequencing data.

Results: We describe PyClone-VI, a computationally efficient Bayesian statistical

method for inferring the clonal population structure of cancers. We demonstrate the

utility of the method by analyzing data from 1717 patients from PCAWG study and 100

patients from the TRACERx study.

Conclusions: Our proposed method is 10–100× times faster than existing methods,

while providing results which are as accurate. Software implementing our method is

freely available https ://githu b.com/Roth-Lab/pyclo ne-vi.

Keywords: Cancer, Tumour heterogeneity, Cancer evolution, Bayesian statistics

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Gillis and Roth BMC Bioinformatics (2020) 21:571

https://doi.org/10.1186/s12859‑020‑03919‑2

*Correspondence:

aroth@bccrc.ca
3 Department of Pathology

and Laboratory Medicine,

University of British

Columbia, 2211 Wesbrook

Mall, Vancouver V6T 1Z7,

Canada

Full list of author information

is available at the end of the

article

http://orcid.org/0000-0003-3422-8823
https://github.com/Roth-Lab/pyclone-vi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03919-2&domain=pdf

Page 2 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

data generated from a mixture of cell populations. �is task is challenging because nei-

ther the genotypes of the populations nor the number of populations is known. In addi-

tion, factors such as tumour cellularity and copy number variation co-incident to small

nucleotide variants (SNVs) further complicate the analysis.

�e past decade has seen a number of methods to deconvolve bulk data and infer

clonal population structure, in particular to identify populations using SNV data. One

of the first approaches developed was PyClone, which remains widely used. PyClone was

originally developed for use with small panels of deeply sequenced mutations as input

[4]. While the PyClone method can in principle be applied to genome scale analysis,

the computational cost becomes prohibitive. �is deficiency has limited the utility of

PyClone for the analysis of genome scale datasets with 10,000–100,000 s of mutations.

In this work we present a new tool, which we refer to as PyClone-VI, which is orders

of magnitudes faster than the original PyClone method, while providing comparable

accuracy.

Related work

A number of other methods have been developed to efficiently infer clonal population

structure from genome scale data. We provide a brief, non-extensive, review of some of

the most popular methods.

SciClone uses Bayesian mixture models and variational inference (VI) like our pro-

posed approach PyClone-VI [6]. However, because SciClone fails to correct for coinci-

dent copy number variation, it is only applicable to clustering mutations in regions with

no copy number variation or with single copy deletions. It follows that in practice Sci-

Clone cannot be applied to many tumours, especially when multi-region sequencing is

performed, as few mutations will fall in such regions.

EXPANDS is based on the principle of clustering probability distributions of cancer

cell fractions (CCFs) using a multi-stage optimization procedure [5]. It has been applied

to whole genome studies alongside PyClone and shown to perform similarly [13]. One

key difference between EXPANDS and PyClone is that mutations are clustered indepen-

dently in each sample and then the clusters are combined in a post-processing step. As a

result of post-hoc analysis, statistical strength cannot be shared between samples when

inferring population structure using EXPANDS.

QuantumClone is a Bayesian mixture model that is fit to the data using expectation

maximization (EM) to find the maximum a posteriori (MAP) estimate [8]. MAP esti-

mation for mixture models is prone to overfitting, in the sense that the model will tend

to use all possible clusters (clones). To address the model selection problem Quantum-

Clone uses the Bayesian Information Criterion (BIC) to select the number of clusters.

QuantumClone can correct for genotype effects and jointly analyse multi-region data.

�e use of the BIC for model selection requires that multiple runs of the method be per-

formed with varying numbers of clusters. QuantumClone is conceptually similar to our

proposed method, however our approach avoids the expensive model complexity search

across varying number of clusters. As we demonstrate in the experiments, avoiding

restarts for the model complexity search can lead to a considerable reduction in runtime.

PhyloWGS is a popular approach which attempts to solve a more challenging prob-

lem of identifying not only clonal populations, but the phylogeny that relates them [7].

Page 3 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

PhyloWGS adopts a very similar model to PyClone, but substitutes the Dirichlet process

prior for clustering with a tree structured stick breaking prior [14]. Like PyClone, Phy-

loWGS relies on Markov Chain Monte Carlo (MCMC) methods and can be computa-

tionally expensive to run with large datasets.

Results

PyClone-VI is as accurate as PyClone but faster

PyClone-VI introduces two levels of approximation to the original PyClone model. First,

we alter the model to make it more tractable to perform variational inference. Second,

we use variational inference which is an approximate method to infer a posterior dis-

tribution. To assess the impact these approximations have and investigate whether they

lead to tangible performance gains, we compared PyClone-VI to PyClone using syn-

thetic data. We simulated data from the PyClone model with varying numbers of muta-

tions. We generated datasets with 50, 100 and 1000 mutations. Each simulated dataset

had four samples each with a tumour content of 1.0. Total copy number for each loci

ranged from one to four and major copy number was allowed to vary from one to the

total copy number. Genotypes were simulated by selecting whether mutations were late

events which affected only one copy or early events which occurred on either the major

or minor allele before the copy number change. We simulated the depth of coverage

from a Poisson distribution with mean 100. We repeated the simulation for each number

of mutations 100 times to generate 300 datasets in total.

�e results of this analysis are summarized in Fig. 1. Clustering accuracy was assessed

using the V-Measure metric with a value of 1.0 indicating perfect accuracy (Fig. 1a)

[15]. �e mean difference in V-Measure between PyClone and PyClone-VI was 0.011 in

favour of PyClone. To assess the accuracy of the CCF estimates we computed the mean

absolute deviation of the predicted CCF from truth for each mutation (Fig. 1b). �e

mean difference in CCF error was 0.00036 in favour of PyClone-VI. �ese results sug-

gest there is a negligible performance difference between the two approaches. We note

that we would expect PyClone to have a slight performance advantage in this experi-

ment as we simulated the data from the PyClone model rather than the PyClone-VI

model. Finally, we sought to quantify the computational performance of both methods.

Figure 1c, d show the runtime and maximum memory used by both methods. PyClone-

VI outperforms PyClone in terms of runtime by nearly two orders of magnitude regard-

less of the number of mutations (Fig. 1c). PyClone-VI also uses significantly less memory

than PyClone (Fig. 1d). �eoretical memory usage for the original PyClone method

scales as O(n2) where n is the number of mutations. In contrast, memory usage for

PyClone-VI scales as O(n) . �e empirical results in Fig. 1d appear to support this.

We performed additional simulated data experiments (Additional files 2–4) to test

the performance of both methods as we varied tumour content (Additional file 2),

error rate (Additional file 3), and number of samples (Additional file 4). V-measure

scores and inferred CCF acurracy were similar for PyClone and PyClone-VI across

all simulation regimes. Running time and memory usage was significantly less

for PyClone-VI in all cases. General trends for both methods were: a decrease in

Page 4 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

accuracy as tumour content decreased; a decrease in accuracy as error rate increased;

an increase in accuracy as more samples were analyzed.

PyClone-VI is signi�cantly faster than existing methods

We next sought to compare the performance of PyClone-VI against other state

of the art methods. In addition to comparing against PyClone, we also considered

PhyloWGS and QuantumClone. We downloaded synthetic data used in the ICGC-

TCGA DREAM Somatic Mutation Calling - Tumour Heterogeneity Challenge, an

open competition to benchmark methods for studying clonal heterogeneity [16]. We

limited the analysis to tumours with 10,000 mutations or fewer due to issues relat-

ing to runtime (PyClone, PhyloWGS and QuantumClone) and memory (PyClone and

QuantumClone). As in the previous experiment, we consider two metrics to assess

performance: V-measure (Fig. 2a) and mean absolute deviation error in predicted

CFF per mutation (Fig. 2b).

When comparing methods we applied the Friedman test to see if there were any signif-

icant differences in performance between the methods (p-value < 0.01). If the Friedman

test was significant we then applied the post-hoc Nemenyi test with a Bonferroni correc-

tion to all pairs of methods to determine which methods showed significantly different

a b

c d

Fig. 1 Comparison of PyClone and PyClone-VI a V-measure as a function of the number of mutations. b

Mean absolute deviation of inferred CCF from truth as a function of the number of mutations. c Runtime of

the methods. d Memory usage

Page 5 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

performance from each other (p-value < 0.01) [17]. All statements of significance are

with respect to this test.

PyClone-VI significantly outperformed PyClone and QuantumClone with respect to

clustering performance. �ough PyClone-VI performed better on average than Phy-

loWGS the difference was not significant (p = 0.46). With respect to accuracy estimat-

ing CCF, both PyClone-VI and PhyloWGS outperformed QuantumClone. �ere were no

other significant differences in accuracy metrics between methods.

In general, the results were quite similar across methods, with the differences in per-

formance being quite small. However, there was a significant difference in runtime

between methods. PyClone-VI was significantly faster and more memory efficient than

all other approaches, finishing 10x-100x times faster than the other approaches while

requiring less memory (Fig. 2c, d). A caveat to this analysis is that runtime is a tune-

able parameter for all these approaches. Fewer MCMC iterations can be performed for

PyClone and PhyloWGS to shorten runtime at the expense of accuracy. Similarly, Quan-

tumClone and PyCloneVI can use fewer random restarts to speed up runtime, again

a b

c d

Fig. 2 Analysis of the DREAM SMC-Het data Analysis of the ICGC-TCGA DREAM Somatic Mutation

Calling—Tumour Heterogeneity Challenge data using PhyloWGS (PWGS), PyClone (PC), PyClone-VI (PCVI)

and QuantumClone (QC). This analysis used the 31 simulated tumours from the competition with fewer

than 10,000 mutations. See Additional file 1: Table S5 for details about the characteristics of the datasets.

a Comparison of V-measure across the methods (higher is better). b Comparison of the mean absolute

deviation of estimated cancer cell fraction across methods (lower is better). c Comparison of runtime across

methods (lower is better). c Comparison of memory usage across methods (lower is better)

Page 6 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

trading accuracy. For this analysis we attempted to select parameters which gave compa-

rable accuracy (see methods). We did not make use of parallel computing in this experi-

ment. Both QuantumClone and PyClone-VI can perform random restarts in parallel to

decrease runtime. �e MCMC based methods cannot be parallelised in the same way.

Analysis of PCAWG cohort

To demonstrate the real life utility of PyClone-VI we analysed the data from the Pan-

Cancer Analysis of Whole Genomes (PCAWG) [18]. We downloaded processed data

from the ICGC data portal and pre-processed it for input into PyClone-VI. �e only

filtering performed was to remove mutations with no copy number information or in

regions with total copy number zero. We analysed the resulting data from 1717 patients

with 28–881,464 mutations. All data was single sample whole genome data. Figure 3a

shows the runtime of PyClone-VI as function of the number of mutations. Runtime

increases linearly with the number of mutations with times ranging from 11 to 28,575 s.

Figure 3b shows the runtime as a function of the number of clones detected and Fig. 3c

shows how the number of clones detected depends on the number of mutations. �e

trend is that more clones are detected as more mutations are included, with runtime

correspondingly increasing with the number of clones. Figure 3d is an illustrative analy-

sis which shows the number of clones normalised by the number of mutations broken

down by ICGC project.

To generate a rough estimate of the running time of other approaches used in the

DREAM benchmark for this dataset, we fit a linear regression to the observed running

a b
c

d

Fig. 3 Analysis of the PCAWG cohort a Runtime of PyClone-VI as a function of the number of mutations. b

Runtime of PyClone-VI as a function of the number of clones inferred. c Comparison between the number

of clones found and number of mutations. d Number of clones normalized by total number of mutations for

each ICGC project

Page 7 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

times on the DREAM data as a function of the number of mutations. We then used the

fitted model to predict running times for each method on the PCAWG data (Additional

file 1: Table S10). For the DREAM dataset we observed total running times of approxi-

mately: 5960 s for PyClone-VI, 38,400 s for QuantumClone, 74,300 s for PyClone and

156,000 s for PhyloWGS. For the PCAWG dataset we predicted total running times of

approximately: 842,000 s for PyClone-VI, 6,740,000 s for QuantumClone, 14,200,000 s

for PyClone and 28,900,000 s for PhyloWGS. �e predicted value of 842,000 s was higher

than the observed value of 560,000 s for PyClone-VI suggesting these predictions may be

pessimistic. We note that this analysis assumes a linear increase in running time with the

number of mutations.

Analysis of TRACERx cohort

As another real world demonstration, this time with multiple samples, we analysed

whole exome data from the 100 lung cancer patients from the TRACERx study [12].

Patients had between 1 and 7 samples sequenced from different regions of their tumours

with between 65 and 3566 mutations detected. Figure 4a shows the runtime of PyClone-

VI as function of the number of mutations. Again runtime increases linearly with the

number of mutations with times ranging from 9 to 1454 s. Figure 4b, c show runtime

and runtime normalised by the number of mutations with varying numbers of sam-

ples. Runtime does not directly increase with the number of samples (Fig. 4b), but once

the runtime is normalised to account for the number of mutations we see an increase

a b c

d e f

Fig. 4 Analysis of the TRACERx cohort a Runtime of PyClone-VI a function of the number of mutations. b

Runtime of PyClone-VI a function of the number of samples. c Runtime normalised by number of mutations

for varying numbers of samples. d Number of mutations detected with varying numbers of samples. e

Number of clones detected with varying numbers of samples. f Comparison of proportion of mutations

deemed clonal when using single versus multiple samples

Page 8 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

(Fig. 4c). In Fig. 4d, e we show the number of mutations and clones that can be resolved

as a function of the number of samples. Interestingly, the number of mutations identi-

fied does not seem to depend strongly on the number of samples, however the num-

ber of clones which can be detected increases as more samples are added. �is result

illustrates the important role that multi-region sequencing plays in determining clonal

population structure. Eight patients in the cohort had only a single sample. We com-

pared the number of mutations in these patients inferred to be clonal to the number

inferred to be clonal from multi-region sequencing (Fig. 4f). �e proportion of detected

clonal mutations decreases in the multi-sample setting suggesting that many apparently

clonal mutations in single sample sequencing may in fact be sub-clonal, consistent with

the findings in [12] which performed a more thorough held out sampling.

Discussion

PyClone-VI achieves significant computational gains over the original PyClone method

by altering the model and changing the approach used for inference. To do so we intro-

duce several approximations on top of those already in the PyClone model.

We assume that CCF values can only take on a finite set of values. �e number of

possible values determines the accuracy of this approximation and the runtime. For the

analyses performed in this paper we used a grid of 100 values, which provides CCFs

accurate to within 0.01. Using a larger grid of values will provide more accurate esti-

mates if the mutations are sequenced to a sufficient depth. In general, large numbers of

mutations are not deeply sequenced, so using relatively sparse grids is appropriate for

the data. If a small panel of mutations is deeply sequenced, then the original PyClone

method maybe more appropriate than PyClone-VI.

Another approximation we make is to use a finite mixture model in place of a Dirichlet

process (DP) for clustering. We rely on the variational inference procedure to automati-

cally perform model selection by only using the number of clusters supported by the

data. �e approach of using more clusters than needed is heuristic, however it is widely

employed and generally performs well [19]. We note neither DP models or using the BIC

are guaranteed to consistently estimate the correct number of clusters.

�e use of VI rather than MCMC for inference means that PyClone-VI will deliver

posterior approximations of unknown accuracy. In contrast, MCMC approaches are

guaranteed to approximate the posterior to arbitrary accuracy given enough samples are

drawn. In practice, VI approaches are typically observed to estimate the mean of the

posterior distribution well, but to underestimate the variance. When inferring clonal

population structure the underestimation of variance would lead to over confident

assignment of mutations to clusters and under-estimates of error bar widths for CCF

values. If accurate estimates of these values are required, then we recommend the use

of the original PyClone model. It is our observation that most users do not make use of

these values, and instead rely on the point estimates generated by PyClone. In this case,

PyClone-VI should be the preferred approach due to reduced runtime.

Like PyClone, PyClone-VI clusters mutations which share the same evolutionary

history. Such mutations originate at the same point in the phylogeny and exhibit the

same pattern of mutation loss. PyClone-VI does not attempt to infer the phylogenetic

tree, in contrast to methods such as PhyloWGS. Ignoring the phylogenetic structure

Page 9 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

is a potential weakness, but it does mean we do not have to make additional assump-

tions such as mutations cannot be lost once gained. Such assumptions are restrictive

and violated in many cancers [20]. We believe that the ability to quickly cluster muta-

tions will be useful for downstream software which attempts to infer phylogenies. By

reducing the size of the input data from the number of mutations to the number of

clonal populations, more sophisticated and computationally expensive tree building

methods can be used [21–23].

Conclusions

We have introduced a new method, PyClone-VI, for inferring clonal population struc-

ture in tumours from point mutations measured using high throughput sequencing.

PyClone-VI is significantly more computationally efficient than existing approaches

and provides comparable accuracy. Tumours with 100,000 s of mutations can eas-

ily be analysed by PyClone-VI in less than a day on a personal computer, a dramatic

reduction in both runtime and memory required for this analysis. PyClone-VI will be

a useful tool for researchers performing large cohort studies of tumour heterogene-

ity. PyClone-VI will also be useful in clinical studies which integrate WGS analysis of

tumours and require timely analysis to inform treatment decisions.

Methods

Inference in the original PyClone package was performed using MCMC sampling [4].

As the number of mutations grows, each iteration of the MCMC sampler becomes

slower which is problematic as large datasets likely need many more iterations of

MCMC sampling than small datasets which further adds to the computational com-

plexity. However, many users do not adjust for this factor, and as result PyClone is

often run with too few iterations for the MCMC chain to converge leading to poor

performance. One widely observed symptom of this problem is the tendency for

PyClone to produce many clusters containing a single mutation [8].

To overcome these limitations we have modified the original PyClone model. �is

modification has allowed us to develop and implement an efficient VI procedure

which is orders of magnitudes faster than the previous MCMC method. We refer to

this new model and software implementation as PyClone-VI. In addition to being sig-

nificantly faster, this approach also removes the need for the user to assess the con-

vergence of the MCMC sampler thus reducing potential for misuse.

PyClone

We provide a brief review of the original PyClone method here to motivate the

changes in Pyclone-VI. More details can be found in the original PyClone paper [4]

which includes additional details such as how to elicit genotype priors and the form

of the emission distributions supported.

�e original PyClone model is a DP mixture model [24]. �e basic hierarchical

model is as follows

Page 10 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

Here we use the distribution H to denote the emission distribution used to generate the

observed variant read counts bij , where i indexes the mutation and j the sample. �is

distribution depends on local hyper-parameters θij which capture information about the

genotype and read depth. �e parameter β represents global hyper-parameters which

are shared across mutations. In the original PyClone paper when using a Beta-Binomial

distribution β would be the precision of the distribution.

�e above model induces a clustering of mutations since the measure G sampled from

the DP is almost surely discrete which implies there is a non-zero probability that muta-

tions share the same CCF. We can define a clustering of the mutations as follows, let

{φ∗
k
}K
k=1

 be the unique set of CCFs used to generate the data. �en for mutation i we

define zi = k if φi = φ∗

k
 . �e introduction of the cluster indicator variable zi is com-

monly used when developing MCMC sampling strategies for DP mixture models [25].

�is formulation is also useful for allowing us discuss how to modify the PyClone model

to derive a more computationally efficient approach.

�e original PyClone model makes use of the DP to solve the model selection prob-

lem. �e model selection problem refers to the fact we do not know the true number of

clusters (clones) in the model. �e DP formulation solves this by positing there exists an

infinite number of clusters, but the observed data will only be generated from a finite

subset of these. While DP mixtures provide an elegant solution to the model selection

problem, they tend to be computationally expensive. �e computational expense pri-

marily due to the need to use MCMC methods to approximate the posterior distribution

and thus infer model parameters [25].

Variational inference

VI is a popular alternative to MCMC methods in the Bayesian statistics and machine

learning literature [26]. VI reformulates the problem of approximating the posterior

as an optimization problem. In the general case, a variational distribution q(θ |�) is

assumed, where θ are the model parameters and � are the variational parameters. �e

goal is to find the variational distribution q(θ |�) that minimizes some notion of distance

from the posterior distribution p(θ |X) . A widely used measure of distance is the exclu-

sive Kullback-Leibler divergence denoted KL(q|p).

VI using KL(q|p) as the objective can lead to efficient inference procedures that pro-

vide adequate approximations to the true posterior for many problems. Mean field VI

(MFVI), often called variational Bayes in the machine learning and statistics literature,

posits the variational distribution decomposes as a product of terms for each model

parameter q(θ |�) =
∏

s q(θs|�s) . For models which obey certain conjugacy constraints,

simple closed form MFVI updates can be derived leading to efficient inference algo-

rithms. �e updates take the form

G0 =

M∏

j=1

Uniform(·|[0, 1])

G|α,G0 ∼DP(·|α,G0)

φi|G ∼G(·)

bij|φi,β , θ i ∼H(·|φij ,β , θij)

Page 11 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

where Eq(θ
−s) denotes the expectation taken over all parameters except θs [27]. �e need

to compute an expectation is what leads to the constraints on conjugacy for MFVI. We

note there has been significant work recently using Monte Carlo methods to compute

these expectations in models that don’t satisfy conjugacy constraints [28, 29]. �ese

approaches could potentially be used as an alternative to our proposed method for per-

forming VI for the PyClone model.

�e original PyClone model does not fall in the class of models for which MFVI is eas-

ily applicable. �ere are two issues. �e most important issue is the emission density H

does not have a conjugate prior distribution. �e second related issue is that while there

are ways to perform VI with DP mixtures, they require that we have a conjugate emis-

sion density [30]. Moreover these approaches impose a finite truncation on the number

of clusters. �is latter point means there is not a major advantage to using the DP when

employing VI [31]. Rather, using over complete finite mixture models is often equally

effective. Here we use over complete to mean we fit a finite mixture model with more

components than we expect to need [32], and allow the inference procedure to perform

model selection [19].

PyClone-VI model

In order to apply VI to fit the PyClone model, we make some modifications to the model.

First, we change the model from a DP mixture model to a finite mixture model. In prin-

ciple the use of a finite mixture model means we must address the model selection prob-

lem and fit the model with a varying number of clusters K. In practice we avoid this issue

by setting K to be large and allowing the inference procedure to only use the number of

clusters required. �is heuristic strategy has been shown to work well in practice [19,

33]. �e second modification is to assume that the CCFs of mutations φij can only take

values in a finite set � =

{

0,
1
F
, . . . ,

F−1

F
, 1

}

 where |�| = F + 1 . �is change is primarily

motivated by computational considerations, but can be justified by noting that we typi-

cally sequence genomes to 50–1000× when performing whole genome or exome

sequencing. �us, it would seem unreasonable to expect to resolve the CCF of a muta-

tion to arbitrary precision. Provided we choose the grid of CCF values to be sufficiently

large, this approximation should yield reasonable results.

�e modified version of the PyClone model which we call PyClone-VI is defined as

follows

where Discrete(·|w,�) indicates the discrete distribution with mass vector w and sup-

port � . We use the uninformative priors α = α1K , where 1K is the vector of ones of

length K, and wkjf =
1

F+1
.

�e joint distribution is thus given by

q(θs|�s) ∝ exp(Eq(θ−s)[log p(θ ,X)])

π |α ∼Dirichlet(·|α)

zi|π ∼Categorical(·|π)

φkj|wkj ∼Discrete(·|wkj ,�)

bij|zi = k , {φℓ}
K
ℓ=1,β , θ i ∼H(·|φkj ,β , θij)

Page 12 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

where we have suppressed the dependence on hyper-parameters for notational clarity.

We let h(·|φkj ,β , θij) denote the emission density and I(zi = k) the indicator function

which is one when zi = k and zero otherwise. As we will show in the next section this

formulation leads to an efficient MFVI procedure.

Inference

We use MFVI to fit the PyClone-VI model. To do so we make the usual mean field assump-

tion for our variational distribution q.

�e distributional assumptions are as follows

�e densities are then given by

�us we need to optimize the variational parameters κ , {ρi}
N

i=1
 and {γ kj}

K ,M
k=1,j=1

 . �e

parameter updates can be derived by applying the standard MFVI update. �us we have

p(X ,π , z, {φℓ}
K
ℓ=1) =p(π)

N
�

i=1

p(zi|π)

K
�

k=1

M
�

j=1

p(φkj)

N
�

i=1

K
�

k=1







M
�

j=1

p(bij|φkj)







I(zi=k)

=p(π)

N
�

i=1

p(zi|π)

K
�

k=1

M
�

j=1

p(φkj)

N
�

i=1

K
�

k=1







M
�

j=1

h(·|φkj ,β , θij)







I(zi=k)

q(π , z, {φk}
K
k=1

) = q(π |κ)

N∏

i=1

q(zi|ρi)

K∏

k=1

M∏

j=1

q(φkj|γ kj)

π |κ ∼Dirichlet(·|κ)

zi|ρi ∼Categorical(·|ρi)

φkj|γ kj ∼Discrete(·|γ kj ,�)

q(π |κ) =
Ŵ

(

∑K
k=1

κk

)

∏K
k=1

κk

K
∏

k=1

π
κk−1

k

q(zi|ρi) =

K
∏

k=1

ρ
I(zi=k)

ik

q(φkj|γ kj) =

F
∏

f =0

γ
I

(

φkj=
f
F

)

kjf

κk =αk +

N
�

n=1

ρik

ρik ∝ exp



ψ(κk) − ψ

�

�

ℓ

κℓ

�

+

M
�

j=1

F
�

f =0

γkjf log h

�

·
�

�

f

F
,β , θij

�





γkjf ∝ exp

�

logwkjf +

N
�

i=1

ρik log h(·|f ,β , θij)

�

Page 13 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

and we have the following normalization constraints

�ese updates are iterated until convergence. Convergence can monitored by comput-

ing the difference in the evidence lower bound (ELBO) after each update [26]. Monitor-

ing the ELBO is also useful to assess that the software implementation is correct, as it

should increase monitonically.

Since we assume the CCFs, φij , can only take a finite set of values we can evaluate

h(·|φkj ,β , θij) for all mutations and samples across this grid as a pre-processing step

during inference. Caching this value leads to a dramatic reduction in runtime for the

method. �is strategy is only applicable if the global parameters β of the emission dis-

tribution h are fixed. In practice, this means we fix the precision term of the Beta-Bino-

mial emission distribution, rather than estimating it as PyClone does. We also treat the

hyper-parameter α as a fixed parameter. �is hyper-parameter weakly controls the num-

ber of clusters used, with values greater than one promoting the use of more clusters,

and values less than one fewer. For all experiments in this work we used a value of one.

Experiments

Synthetic data

For the results shown in the main text we simulated data from the PyClone model with

50, 100 and 1000 mutations using a DP concentration parameter of 1.0. Additional simu-

lation parameters are described in the results.

Additional simulations were performed with varying tumour content (Additional

file 2), error rates for the expected VAF (Additional file 3), and number of samples

(Additional file 4). Parameter settings for these simulations are provided in the file

descriptions.

For all simulations we used PyClone version 0.13.1 run with 10,000 iterations and dis-

carding the first 1000 as burn-in. We ran PyClone-VI using 40 clusters and 100 random

restarts.

DREAM data

We downloaded the ICGC-TCGA DREAM Somatic Mutation Calling—Tumour Het-

erogeneity Challenge [16] from www.synap se.org. To generate realistic data the authors

generated a tree structure relating the clones in the sample and simulated the clonal

prevalence values. BAMSurgeon [34] was used to manipulate a real sequence data set

to introduce mutations in BAM files for each clone. �e clonal BAM files were merged

and then analyzed with the Batterberg [35] for copy number calling and Mutect [36] for

SNV/Indel calling. Summary statistics for the datasets used are provided in Additional

file 1: Table S5.

A custom script was used to process the battenberg TSV and mutect VCF files for

input into PyClone, PyClone-VI and QuantumClone. We used the included PhyloWGS

K∑

k=1

ρik =1

F∑

f =0

γkjf =1

http://www.synapse.org

Page 14 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

parser for these input formats to generate input files for PhyloWGS. Tumour content

values were set to the ground truth values provided for all methods which accept this

argument. PhyloWGS was run for 10 iterations of burn-in and subsequently 100 sam-

ples were collected from the MCMC trace. We selected the maximum a posteriori sam-

ple, that is the sample with the highest joint probability, to compute estimates from

PhyloWGS. PyClone was run for 1000 iterations, discarding the first 100 iterations as

burn-in. We used the PyClone Beta-Binomial emission distribution with the connected

initialization strategy and major copy number prior elicitation method. Default param-

eters were used for post-processing the PyClone MCMC trace. QuantumClone was run

with 2–10 clones and 10 random restarts. PyClone-VI was run with 10 clusters, 100 ran-

dom restarts and used the Beta-Binomial emission distribution.

PCAWG data

We downloaded SNV and CNV data from PCAWG project hosted in the ICGC por-

tal [18]. We used a custom script to pre-process the data into a format compatible with

PyClone-VI, extracting read counts from the input VCF files and allele specific copy

number from the CNV data. We ignored sub-clonal CNVs and removed mutations with

major copy number zero. We fit PyClone-VI using the Binomial emission distribution

with 20 clusters and 100 random restarts.

TRACERx data

We downloaded SNV and CNV data included in the supplementary material of [12]. We

used a custom script to pre-process the data into a format compatible with PyClone-VI.

We fit PyClone-VI using the Binomial emission distribution with 40 clusters and 100

random restarts.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-020-03919 -2.

Additional �le 1. Table S1: Performance results for the comparison of PyClone and PyClone-VI using synthetic

data used in Fig. 1. Table S2: Performance results for the comparison of PyClone and PyClone-VI using synthetic

data used in Additional file 2. Table S3: Performance results for the comparison of PyClone and PyClone-VI using

synthetic data used in Additional file 3. Table S4: Performance results for the comparison of PyClone and PyClone-

VI using synthetic data used in Additional file 4. Table S5: Summary statistics for datasets used in Fig. 2. Table S6:

Performance results for the analysis of DREAM SMC-HET data used in Fig. 2. Table S7: Friedman test results for

comparing methods using the DREAM SMC-HET data. Table S8: Post-hoc Nemenyi test for comparing methods

using the DREAM SMC-HET data. Table S9: Results from the PCAWG data analysis used in Fig. 3. Table S10: Predicted

run time to analyze PCAWG data for programs used in DREAM analysis. Table S11: Results from the TRACERx data

analysis used in Fig. 4.

Additional �le 2. Fig. S1: Comparison of PyClone and PyClone-VI with varying tumour content PDF file with figures

showing the results of running PyClone and PyClone-VI with varying tumour content values. Data was simulated

from the PyClone model with 4 samples, 100 mutations, a mean depth of 100 reads and copy number ranging from

1–4 copies. The same tumour content values were used for all 4 samples for each dataset. a V-measure as a function

of the tumour content of the samples. b Mean absolute deviation of inferred CCF from truth as a function of the

tumour content. c Runtime of the methods. d Memory usage.

Additional �le 3. Fig. S2: Comparison of PyClone and PyClone-VI with varying error rates PDF file with figures

showing the results of running PyClone and PyClone-VI with varying the error rates of the expected variant allele

frequency. Data was simulated from the PyClone model with 4 samples, 100 mutations, a mean depth of 100 reads,

copy number ranging from 1–4 copies and tumour content for each sample randomly selected from [0.4, 0.8]. To

simulate error, the true expected VAF f was computed for each mutation and then a perturbed expected VAF f̃ was

simulated uniformly from [max{0, f − ǫ},min{1, f + ǫ}] where ǫ is the error rate. The perturbed expected VAF f̃ was

https://doi.org/10.1186/s12859-020-03919-2

Page 15 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

then used to simulate read count data. a V-measure as a function of the error rate. b Mean absolute deviation of

inferred CCF from truth as a function of the error rate. c Runtime of the methods. d Memory usage.

Additional �le 4. Fig. S3: Comparison of PyClone and PyClone-VI with varying number of samples PDF file with

figures showing the results of running PyClone and PyClone-VI with varying number of samples. Data was simulated

from the PyClone model with 1–8 samples, 100 mutations, a mean depth of 100 reads, copy number ranging from

1–4 copies and tumour content for each sample randomly selected from [0.4, 0.8]. a V-measure as a function of the

number of samples. b Mean absolute deviation of inferred CCF from truth as a function of the number of samples. c

Runtime of the methods. d Memory usage.

Abbreviations

BIC: Bayesian information criterion; CCF: Cancer cell fraction; CNV: Copy number variant; DP: Dirichlet process; ELBO:

Evidence lower bound; EM: Expectation maximization; HTS: High throughput sequencing; MAP: Maximum a poste-

riori; MCMC: Markov chain Monte Carlo; MFVI: Mean field variational inference; PCAWG : Pan-cancer analysis of whole

genomes; SNV: Single nucleotide variant; VI: Variational inference; WGS: Whole genome sequencing.

Acknowledgements

We would like to thank Hoa Tran for her feedback during manuscript preparation. We would like to thank Alexandre

Bouchard-Côté for helpful discussion about how to develop the approximate inference procedure.

Authors’ contributions

AR conceived and implemented the method, performed the experiments and wrote the text. SG helped with perform-

ing experiments and writing the text. All authors read and approved the final manuscript.

Funding

This project was made possible through funding by the Michael Smith Foundation for Health Research Scholar Award

[18245 to AR]. The funding bodies had no role in the design of the study and collection, analysis, and interpretation of

data, or in writing the manuscript.

Availability of data and materials

Source code for PyClone-VI is available at https ://githu b.com/Roth-Lab/pyclo ne-vi. The script used for generating syn-

thetic data and the input files for all other experiments are available at the following location https ://zenod o.org/recor

d/42688 26.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1 Department of Molecular Oncology, BC Cancer Research Institute, 675 W 10th Ave, Vancouver V5Z 1L3, Canada.
2 Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver V6T 1Z4, Canada. 3 Depart-

ment of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver V6T 1Z7,

Canada.

Received: 17 September 2020 Accepted: 2 December 2020

References

 1. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

 2. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.

 3. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary

triple-negative breast cancers. Nature. 2012;486(7403):395–9.

 4. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population structure in

cancer. Nat Methods. 2014;11(4):396–8.

 5. Andor N, Harness JV, Mueller S, Mewes HW, Petritsch C. EXPANDS: expanding ploidy and allele frequency on nested

subpopulations. Bioinformatics. 2014;30(1):50–60.

 6. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture and track-

ing the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10(8):e1003665.

 7. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. PhyloWGS: reconstructing subclonal composition and

evolution from whole-genome sequencing of tumors. Genome Biol. 2015;16(1):1–20.

 8. Deveau P, Colmet Daage L, Oldridge D, Bernard V, Bellini A, Chicard M, et al. QuantumClone: clonal assessment

of functional mutations in cancer based on a genotype-aware method for clonal reconstruction. Bioinformatics.

2018;34(11):1808–16.

https://github.com/Roth-Lab/pyclone-vi
https://zenodo.org/record/4268826
https://zenodo.org/record/4268826

Page 16 of 16Gillis and Roth BMC Bioinformatics (2020) 21:571

 9. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial Sloan Kettering-Integrated Mutation

Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing

clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251–64.

 10. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immu-

noreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.

 11. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell.

2017;168(4):613–28.

 12. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TB, Veeriah S, et al. Tracking the evolution of non-

small-cell lung cancer. N Engl J Med. 2017;376(22):2109–21.

 13. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-cancer analysis of the extent and conse-

quences of intratumor heterogeneity. Nat Med. 2016;22(1):105–13.

 14. Ghahramani Z, Jordan MI, Adams RP. Tree-structured stick breaking for hierarchical data. Adv Neural Inf Process Syst.

2010;2010:19–27.

 15. Rosenberg A, Hirschberg J. V-measure: a conditional entropy-based external cluster evaluation measure. In: Pro-

ceedings of the 2007 joint conference on empirical methods in natural language processing and computational

natural language learning (EMNLP-CoNLL); 2007 p. 410–20.

 16. Salcedo A, Tarabichi M, Espiritu SMG, Deshwar AG, David M, Wilson NM, et al. A community effort to create stand-

ards for evaluating tumor subclonal reconstruction. Nat Biotechnol. 2020;38(1):97–107.

 17. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7(Jan):1–30.

 18. The I, of Whole TPCA, Consortium G, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82.

 19. Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Artificial intelligence

and statistics, vol. 2001. Waltham, MA: Morgan Kaufmann; 2001. p. 27–34.

 20. McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, et al. Divergent modes of clonal spread and intra-

peritoneal mixing in high-grade serous ovarian cancer. Nat Genet. 2016;48(7):758.

 21. Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality inference in multiple tumor samples using phylogeny.

Bioinformatics. 2015;31(9):1349–56.

 22. Popic V, Salari R, Hajirasouliha I, Kashef-Haghighi D, West RB, Batzoglou S. Fast and scalable inference of multi-sample

cancer lineages. Genome Biol. 2015;16(1):91.

 23. El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ. Reconstruction of clonal trees and tumor composition from

multi-sample sequencing data. Bioinformatics. 2015;31(12):i62–70.

 24. Antoniak CE. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann Sta.

1974;1974:1152–74.

 25. Neal RM. Markov chain sampling methods for Dirichlet process mixture models. J Comput Graph Stat.

2000;9(2):249–65.

 26. Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a review for statisticians. J Am Stat Assoc.

2017;112(518):859–77.

 27. Bishop CM. Pattern recognition and machine learning. Berlin: Springer; 2006.

 28. Kingma DP, Welling M. Auto-encoding variational bayes. Preprint; 2013. arXiv :1312.6114.

 29. Ranganath R, Gerrish S, Blei D. Black box variational inference. In: Artificial intelligence and statistics; 2014. p. 814–22.

 30. Blei DM, Jordan MI, et al. Variational inference for Dirichlet process mixtures. Bayesian Anal. 2006;1(1):121–43.

 31. Kurihara K, Welling M, Teh YW. Collapsed variational Dirichlet process mixture models. In: IJCAI, vol. 7; 2007. p.

2796–801.

 32. Van Havre Z, White N, Rousseau J, Mengersen K. Overfitting Bayesian mixture models with an unknown number of

components. PLoS ONE. 2015;10(7):e0131739.

 33. Roth A, McPherson A, Laks E, Biele J, Yap D, Wan A, et al. Clonal genotype and population structure inference from

single-cell tumor sequencing. Nat Methods. 2016;13(7):573–6.

 34. Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C, Yamaguchi TN, et al. Combining tumor genome simulation with

crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat Methods. 2015;12(7):623–30.

 35. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The life history of 21 breast cancers.

Cell. 2012;149(5):994–1007.

 36. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point

mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/13126114

	PyClone-VI: scalable inference of clonal population structures using whole genome data
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Related work

	Results
	PyClone-VI is as accurate as PyClone but faster
	PyClone-VI is significantly faster than existing methods
	Analysis of PCAWG cohort
	Analysis of TRACERx cohort

	Discussion
	Conclusions
	Methods
	PyClone
	Variational inference
	PyClone-VI model
	Inference
	Experiments
	Synthetic data
	DREAM data
	PCAWG data
	TRACERx data

	Acknowledgements
	References

