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Background

Cancer is an evolutionary process driven by ongoing somatic mutation within the malig-

nant cell population [1, 2]. �e combination of mutation, drift, and selection lead to het-

erogeneity within the population of cancer cells. Identifying population structure and 

quantifying the amount of heterogeneity in tumours is an important problem which 

has been extensively studied [3–8]. High throughput sequencing (HTS) provides a pow-

erful approach to solve the problem with both bulk and single cell approaches being 

employed. While single cell sequencing approaches can more accurately resolve clonal 

population structure, they are not widely available and have limitations both technical 

and due to cost. Using bulk sequencing to study heterogeneity thus remains the pre-

dominate approach, and methods for studying heterogeneity using bulk sequencing will 

become even more important as HTS is increasingly used in translational and clinical 

work [9–12].

Identifying population structure and quantifying heterogeneity from bulk sequencing 

data is a computationally challenging problem. �e core issue is to deconvolve sequence 
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data generated from a mixture of cell populations. �is task is challenging because nei-

ther the genotypes of the populations nor the number of populations is known. In addi-

tion, factors such as tumour cellularity and copy number variation co-incident to small 

nucleotide variants (SNVs) further complicate the analysis.

�e past decade has seen a number of methods to deconvolve bulk data and infer 

clonal population structure, in particular to identify populations using SNV data. One 

of the first approaches developed was PyClone, which remains widely used. PyClone was 

originally developed for use with small panels of deeply sequenced mutations as input 

[4]. While the PyClone method can in principle be applied to genome scale analysis, 

the computational cost becomes prohibitive. �is deficiency has limited the utility of 

PyClone for the analysis of genome scale datasets with 10,000–100,000 s of mutations. 

In this work we present a new tool, which we refer to as PyClone-VI, which is orders 

of magnitudes faster than the original PyClone method, while providing comparable 

accuracy.

Related work

A number of other methods have been developed to efficiently infer clonal population 

structure from genome scale data. We provide a brief, non-extensive, review of some of 

the most popular methods.

SciClone uses Bayesian mixture models and variational inference (VI) like our pro-

posed approach PyClone-VI [6]. However, because SciClone fails to correct for coinci-

dent copy number variation, it is only applicable to clustering mutations in regions with 

no copy number variation or with single copy deletions. It follows that in practice Sci-

Clone cannot be applied to many tumours, especially when multi-region sequencing is 

performed, as few mutations will fall in such regions.

EXPANDS is based on the principle of clustering probability distributions of cancer 

cell fractions (CCFs) using a multi-stage optimization procedure [5]. It has been applied 

to whole genome studies alongside PyClone and shown to perform similarly [13]. One 

key difference between EXPANDS and PyClone is that mutations are clustered indepen-

dently in each sample and then the clusters are combined in a post-processing step. As a 

result of post-hoc analysis, statistical strength cannot be shared between samples when 

inferring population structure using EXPANDS.

QuantumClone is a Bayesian mixture model that is fit to the data using expectation 

maximization (EM) to find the maximum a posteriori (MAP) estimate [8]. MAP esti-

mation for mixture models is prone to overfitting, in the sense that the model will tend 

to use all possible clusters (clones). To address the model selection problem Quantum-

Clone uses the Bayesian Information Criterion (BIC) to select the number of clusters. 

QuantumClone can correct for genotype effects and jointly analyse multi-region data. 

�e use of the BIC for model selection requires that multiple runs of the method be per-

formed with varying numbers of clusters. QuantumClone is conceptually similar to our 

proposed method, however our approach avoids the expensive model complexity search 

across varying number of clusters. As we demonstrate in the experiments, avoiding 

restarts for the model complexity search can lead to a considerable reduction in runtime.

PhyloWGS is a popular approach which attempts to solve a more challenging prob-

lem of identifying not only clonal populations, but the phylogeny that relates them [7]. 
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PhyloWGS adopts a very similar model to PyClone, but substitutes the Dirichlet process 

prior for clustering with a tree structured stick breaking prior [14]. Like PyClone, Phy-

loWGS relies on Markov Chain Monte Carlo (MCMC) methods and can be computa-

tionally expensive to run with large datasets.

Results

PyClone-VI is as accurate as PyClone but faster

PyClone-VI introduces two levels of approximation to the original PyClone model. First, 

we alter the model to make it more tractable to perform variational inference. Second, 

we use variational inference which is an approximate method to infer a posterior dis-

tribution. To assess the impact these approximations have and investigate whether they 

lead to tangible performance gains, we compared PyClone-VI to PyClone using syn-

thetic data. We simulated data from the PyClone model with varying numbers of muta-

tions. We generated datasets with 50, 100 and 1000 mutations. Each simulated dataset 

had four samples each with a tumour content of 1.0. Total copy number for each loci 

ranged from one to four and major copy number was allowed to vary from one to the 

total copy number. Genotypes were simulated by selecting whether mutations were late 

events which affected only one copy or early events which occurred on either the major 

or minor allele before the copy number change. We simulated the depth of coverage 

from a Poisson distribution with mean 100. We repeated the simulation for each number 

of mutations 100 times to generate 300 datasets in total.

�e results of this analysis are summarized in Fig. 1. Clustering accuracy was assessed 

using the V-Measure metric with a value of 1.0 indicating perfect accuracy (Fig.  1a) 

[15]. �e mean difference in V-Measure between PyClone and PyClone-VI was 0.011 in 

favour of PyClone. To assess the accuracy of the CCF estimates we computed the mean 

absolute deviation of the predicted CCF from truth for each mutation (Fig.  1b). �e 

mean difference in CCF error was 0.00036 in favour of PyClone-VI. �ese results sug-

gest there is a negligible performance difference between the two approaches. We note 

that we would expect PyClone to have a slight performance advantage in this experi-

ment as we simulated the data from the PyClone model rather than the PyClone-VI 

model. Finally, we sought to quantify the computational performance of both methods. 

Figure 1c, d show the runtime and maximum memory used by both methods. PyClone-

VI outperforms PyClone in terms of runtime by nearly two orders of magnitude regard-

less of the number of mutations (Fig. 1c). PyClone-VI also uses significantly less memory 

than PyClone (Fig.  1d). �eoretical memory usage for the original PyClone method 

scales as O(n2) where n is the number of mutations. In contrast, memory usage for 

PyClone-VI scales as O(n) . �e empirical results in Fig. 1d appear to support this.

We performed additional simulated data experiments (Additional files 2–4) to test 

the performance of both methods as we varied tumour content (Additional file  2), 

error rate (Additional file  3), and number of samples (Additional file  4). V-measure 

scores and inferred CCF acurracy were similar for PyClone and PyClone-VI across 

all simulation regimes. Running time and memory usage was significantly less 

for PyClone-VI in all cases. General trends for both methods were: a decrease in 
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accuracy as tumour content decreased; a decrease in accuracy as error rate increased; 

an increase in accuracy as more samples were analyzed.

PyClone-VI is signi�cantly faster than existing methods

We next sought to compare the performance of PyClone-VI against other state 

of the art methods. In addition to comparing against PyClone, we also considered 

PhyloWGS and QuantumClone. We downloaded synthetic data used in the ICGC-

TCGA DREAM Somatic Mutation Calling - Tumour Heterogeneity Challenge, an 

open competition to benchmark methods for studying clonal heterogeneity [16]. We 

limited the analysis to tumours with 10,000 mutations or fewer due to issues relat-

ing to runtime (PyClone, PhyloWGS and QuantumClone) and memory (PyClone and 

QuantumClone). As in the previous experiment, we consider two metrics to assess 

performance: V-measure (Fig.  2a) and mean absolute deviation error in predicted 

CFF per mutation (Fig. 2b).

When comparing methods we applied the Friedman test to see if there were any signif-

icant differences in performance between the methods (p-value < 0.01 ). If the Friedman 

test was significant we then applied the post-hoc Nemenyi test with a Bonferroni correc-

tion to all pairs of methods to determine which methods showed significantly different 

a b

c d

Fig. 1 Comparison of PyClone and PyClone-VI a V-measure as a function of the number of mutations. b 

Mean absolute deviation of inferred CCF from truth as a function of the number of mutations. c Runtime of 

the methods. d Memory usage
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performance from each other (p-value < 0.01) [17]. All statements of significance are 

with respect to this test.

PyClone-VI significantly outperformed PyClone and QuantumClone with respect to 

clustering performance. �ough PyClone-VI performed better on average than Phy-

loWGS the difference was not significant ( p = 0.46 ). With respect to accuracy estimat-

ing CCF, both PyClone-VI and PhyloWGS outperformed QuantumClone. �ere were no 

other significant differences in accuracy metrics between methods.

In general, the results were quite similar across methods, with the differences in per-

formance being quite small. However, there was a significant difference in runtime 

between methods. PyClone-VI was significantly faster and more memory efficient than 

all other approaches, finishing 10x-100x times faster than the other approaches while 

requiring less memory (Fig.  2c, d). A caveat to this analysis is that runtime is a tune-

able parameter for all these approaches. Fewer MCMC iterations can be performed for 

PyClone and PhyloWGS to shorten runtime at the expense of accuracy. Similarly, Quan-

tumClone and PyCloneVI can use fewer random restarts to speed up runtime, again 

a b

c d

Fig. 2 Analysis of the DREAM SMC-Het data Analysis of the ICGC-TCGA DREAM Somatic Mutation 

Calling—Tumour Heterogeneity Challenge data using PhyloWGS (PWGS), PyClone (PC), PyClone-VI (PCVI) 

and QuantumClone (QC). This analysis used the 31 simulated tumours from the competition with fewer 

than 10,000 mutations. See Additional file 1: Table S5 for details about the characteristics of the datasets. 

a Comparison of V-measure across the methods (higher is better). b Comparison of the mean absolute 

deviation of estimated cancer cell fraction across methods (lower is better). c Comparison of runtime across 

methods (lower is better). c Comparison of memory usage across methods (lower is better)
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trading accuracy. For this analysis we attempted to select parameters which gave compa-

rable accuracy (see methods). We did not make use of parallel computing in this experi-

ment. Both QuantumClone and PyClone-VI can perform random restarts in parallel to 

decrease runtime. �e MCMC based methods cannot be parallelised in the same way.

Analysis of PCAWG cohort

To demonstrate the real life utility of PyClone-VI we analysed the data from the Pan-

Cancer Analysis of Whole Genomes (PCAWG) [18]. We downloaded processed data 

from the ICGC data portal and pre-processed it for input into PyClone-VI. �e only 

filtering performed was to remove mutations with no copy number information or in 

regions with total copy number zero. We analysed the resulting data from 1717 patients 

with 28–881,464 mutations. All data was single sample whole genome data. Figure 3a 

shows the runtime of PyClone-VI as function of the number of mutations. Runtime 

increases linearly with the number of mutations with times ranging from 11 to 28,575 s. 

Figure 3b shows the runtime as a function of the number of clones detected and Fig. 3c 

shows how the number of clones detected depends on the number of mutations. �e 

trend is that more clones are detected as more mutations are included, with runtime 

correspondingly increasing with the number of clones. Figure 3d is an illustrative analy-

sis which shows the number of clones normalised by the number of mutations broken 

down by ICGC project.

To generate a rough estimate of the running time of other approaches used in the 

DREAM benchmark for this dataset, we fit a linear regression to the observed running 

a b
c

d

Fig. 3 Analysis of the PCAWG cohort a Runtime of PyClone-VI as a function of the number of mutations. b 

Runtime of PyClone-VI as a function of the number of clones inferred. c Comparison between the number 

of clones found and number of mutations. d Number of clones normalized by total number of mutations for 

each ICGC project
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times on the DREAM data as a function of the number of mutations. We then used the 

fitted model to predict running times for each method on the PCAWG data (Additional 

file 1: Table S10). For the DREAM dataset we observed total running times of approxi-

mately: 5960 s for PyClone-VI, 38,400 s for QuantumClone, 74,300 s for PyClone and 

156,000 s for PhyloWGS. For the PCAWG dataset we predicted total running times of 

approximately: 842,000 s for PyClone-VI, 6,740,000 s for QuantumClone, 14,200,000 s 

for PyClone and 28,900,000 s for PhyloWGS. �e predicted value of 842,000 s was higher 

than the observed value of 560,000 s for PyClone-VI suggesting these predictions may be 

pessimistic. We note that this analysis assumes a linear increase in running time with the 

number of mutations.

Analysis of TRACERx cohort

As another real world demonstration, this time with multiple samples, we analysed 

whole exome data from the 100 lung cancer patients from the TRACERx study [12]. 

Patients had between 1 and 7 samples sequenced from different regions of their tumours 

with between 65 and 3566 mutations detected. Figure 4a shows the runtime of PyClone-

VI as function of the number of mutations. Again runtime increases linearly with the 

number of mutations with times ranging from 9 to 1454 s. Figure 4b, c show runtime 

and runtime normalised by the number of mutations with varying numbers of sam-

ples. Runtime does not directly increase with the number of samples (Fig. 4b), but once 

the runtime is normalised to account for the number of mutations we see an increase 

a b c

d e f

Fig. 4 Analysis of the TRACERx cohort a Runtime of PyClone-VI a function of the number of mutations. b 

Runtime of PyClone-VI a function of the number of samples. c Runtime normalised by number of mutations 

for varying numbers of samples. d Number of mutations detected with varying numbers of samples. e 

Number of clones detected with varying numbers of samples. f Comparison of proportion of mutations 

deemed clonal when using single versus multiple samples
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(Fig. 4c). In Fig. 4d, e we show the number of mutations and clones that can be resolved 

as a function of the number of samples. Interestingly, the number of mutations identi-

fied does not seem to depend strongly on the number of samples, however the num-

ber of clones which can be detected increases as more samples are added. �is result 

illustrates the important role that multi-region sequencing plays in determining clonal 

population structure. Eight patients in the cohort had only a single sample. We com-

pared the number of mutations in these patients inferred to be clonal to the number 

inferred to be clonal from multi-region sequencing (Fig. 4f ). �e proportion of detected 

clonal mutations decreases in the multi-sample setting suggesting that many apparently 

clonal mutations in single sample sequencing may in fact be sub-clonal, consistent with 

the findings in [12] which performed a more thorough held out sampling.

Discussion

PyClone-VI achieves significant computational gains over the original PyClone method 

by altering the model and changing the approach used for inference. To do so we intro-

duce several approximations on top of those already in the PyClone model.

We assume that CCF values can only take on a finite set of values. �e number of 

possible values determines the accuracy of this approximation and the runtime. For the 

analyses performed in this paper we used a grid of 100 values, which provides CCFs 

accurate to within 0.01. Using a larger grid of values will provide more accurate esti-

mates if the mutations are sequenced to a sufficient depth. In general, large numbers of 

mutations are not deeply sequenced, so using relatively sparse grids is appropriate for 

the data. If a small panel of mutations is deeply sequenced, then the original PyClone 

method maybe more appropriate than PyClone-VI.

Another approximation we make is to use a finite mixture model in place of a Dirichlet 

process (DP) for clustering. We rely on the variational inference procedure to automati-

cally perform model selection by only using the number of clusters supported by the 

data. �e approach of using more clusters than needed is heuristic, however it is widely 

employed and generally performs well [19]. We note neither DP models or using the BIC 

are guaranteed to consistently estimate the correct number of clusters.

�e use of VI rather than MCMC for inference means that PyClone-VI will deliver 

posterior approximations of unknown accuracy. In contrast, MCMC approaches are 

guaranteed to approximate the posterior to arbitrary accuracy given enough samples are 

drawn. In practice, VI approaches are typically observed to estimate the mean of the 

posterior distribution well, but to underestimate the variance. When inferring clonal 

population structure the underestimation of variance would lead to over confident 

assignment of mutations to clusters and under-estimates of error bar widths for CCF 

values. If accurate estimates of these values are required, then we recommend the use 

of the original PyClone model. It is our observation that most users do not make use of 

these values, and instead rely on the point estimates generated by PyClone. In this case, 

PyClone-VI should be the preferred approach due to reduced runtime.

Like PyClone, PyClone-VI clusters mutations which share the same evolutionary 

history. Such mutations originate at the same point in the phylogeny and exhibit the 

same pattern of mutation loss. PyClone-VI does not attempt to infer the phylogenetic 

tree, in contrast to methods such as PhyloWGS. Ignoring the phylogenetic structure 
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is a potential weakness, but it does mean we do not have to make additional assump-

tions such as mutations cannot be lost once gained. Such assumptions are restrictive 

and violated in many cancers [20]. We believe that the ability to quickly cluster muta-

tions will be useful for downstream software which attempts to infer phylogenies. By 

reducing the size of the input data from the number of mutations to the number of 

clonal populations, more sophisticated and computationally expensive tree building 

methods can be used [21–23].

Conclusions

We have introduced a new method, PyClone-VI, for inferring clonal population struc-

ture in tumours from point mutations measured using high throughput sequencing. 

PyClone-VI is significantly more computationally efficient than existing approaches 

and provides comparable accuracy. Tumours with 100,000  s of mutations can eas-

ily be analysed by PyClone-VI in less than a day on a personal computer, a dramatic 

reduction in both runtime and memory required for this analysis. PyClone-VI will be 

a useful tool for researchers performing large cohort studies of tumour heterogene-

ity. PyClone-VI will also be useful in clinical studies which integrate WGS analysis of 

tumours and require timely analysis to inform treatment decisions.

Methods

Inference in the original PyClone package was performed using MCMC sampling [4]. 

As the number of mutations grows, each iteration of the MCMC sampler becomes 

slower which is problematic as large datasets likely need many more iterations of 

MCMC sampling than small datasets which further adds to the computational com-

plexity. However, many users do not adjust for this factor, and as result PyClone is 

often run with too few iterations for the MCMC chain to converge leading to poor 

performance. One widely observed symptom of this problem is the tendency for 

PyClone to produce many clusters containing a single mutation [8].

To overcome these limitations we have modified the original PyClone model. �is 

modification has allowed us to develop and implement an efficient VI procedure 

which is orders of magnitudes faster than the previous MCMC method. We refer to 

this new model and software implementation as PyClone-VI. In addition to being sig-

nificantly faster, this approach also removes the need for the user to assess the con-

vergence of the MCMC sampler thus reducing potential for misuse.

PyClone

We provide a brief review of the original PyClone method here to motivate the 

changes in Pyclone-VI. More details can be found in the original PyClone paper [4] 

which includes additional details such as how to elicit genotype priors and the form 

of the emission distributions supported.

�e original PyClone model is a DP mixture model [24]. �e basic hierarchical 

model is as follows
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Here we use the distribution H to denote the emission distribution used to generate the 

observed variant read counts bij , where i indexes the mutation and j the sample. �is 

distribution depends on local hyper-parameters θij which capture information about the 

genotype and read depth. �e parameter β represents global hyper-parameters which 

are shared across mutations. In the original PyClone paper when using a Beta-Binomial 

distribution β would be the precision of the distribution.

�e above model induces a clustering of mutations since the measure G sampled from 

the DP is almost surely discrete which implies there is a non-zero probability that muta-

tions share the same CCF. We can define a clustering of the mutations as follows, let 

{φ∗
k
}K
k=1

 be the unique set of CCFs used to generate the data. �en for mutation i we 

define zi = k if φi = φ∗

k
 . �e introduction of the cluster indicator variable zi is com-

monly used when developing MCMC sampling strategies for DP mixture models [25]. 

�is formulation is also useful for allowing us discuss how to modify the PyClone model 

to derive a more computationally efficient approach.

�e original PyClone model makes use of the DP to solve the model selection prob-

lem. �e model selection problem refers to the fact we do not know the true number of 

clusters (clones) in the model. �e DP formulation solves this by positing there exists an 

infinite number of clusters, but the observed data will only be generated from a finite 

subset of these. While DP mixtures provide an elegant solution to the model selection 

problem, they tend to be computationally expensive. �e computational expense pri-

marily due to the need to use MCMC methods to approximate the posterior distribution 

and thus infer model parameters [25].

Variational inference

VI is a popular alternative to MCMC methods in the Bayesian statistics and machine 

learning literature [26]. VI reformulates the problem of approximating the posterior 

as an optimization problem. In the general case, a variational distribution q(θ |�) is 

assumed, where θ are the model parameters and � are the variational parameters. �e 

goal is to find the variational distribution q(θ |�) that minimizes some notion of distance 

from the posterior distribution p(θ |X) . A widely used measure of distance is the exclu-

sive Kullback-Leibler divergence denoted KL(q|p).

VI using KL(q|p) as the objective can lead to efficient inference procedures that pro-

vide adequate approximations to the true posterior for many problems. Mean field VI 

(MFVI), often called variational Bayes in the machine learning and statistics literature, 

posits the variational distribution decomposes as a product of terms for each model 

parameter q(θ |�) =
∏

s q(θs|�s) . For models which obey certain conjugacy constraints, 

simple closed form MFVI updates can be derived leading to efficient inference algo-

rithms. �e updates take the form

G0 =

M∏

j=1

Uniform(·|[0, 1])

G|α,G0 ∼DP(·|α,G0)

φi|G ∼G(·)

bij|φi,β , θ i ∼H(·|φij ,β , θij)
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where Eq(θ
−s) denotes the expectation taken over all parameters except θs [27]. �e need 

to compute an expectation is what leads to the constraints on conjugacy for MFVI. We 

note there has been significant work recently using Monte Carlo methods to compute 

these expectations in models that don’t satisfy conjugacy constraints [28, 29]. �ese 

approaches could potentially be used as an alternative to our proposed method for per-

forming VI for the PyClone model.

�e original PyClone model does not fall in the class of models for which MFVI is eas-

ily applicable. �ere are two issues. �e most important issue is the emission density H 

does not have a conjugate prior distribution. �e second related issue is that while there 

are ways to perform VI with DP mixtures, they require that we have a conjugate emis-

sion density [30]. Moreover these approaches impose a finite truncation on the number 

of clusters. �is latter point means there is not a major advantage to using the DP when 

employing VI [31]. Rather, using over complete finite mixture models is often equally 

effective. Here we use over complete to mean we fit a finite mixture model with more 

components than we expect to need [32], and allow the inference procedure to perform 

model selection [19].

PyClone-VI model

In order to apply VI to fit the PyClone model, we make some modifications to the model. 

First, we change the model from a DP mixture model to a finite mixture model. In prin-

ciple the use of a finite mixture model means we must address the model selection prob-

lem and fit the model with a varying number of clusters K. In practice we avoid this issue 

by setting K to be large and allowing the inference procedure to only use the number of 

clusters required. �is heuristic strategy has been shown to work well in practice [19, 

33]. �e second modification is to assume that the CCFs of mutations φij can only take 

values in a finite set � =

{

0,
1
F
, . . . ,

F−1

F
, 1

}

 where |�| = F + 1 . �is change is primarily 

motivated by computational considerations, but can be justified by noting that we typi-

cally sequence genomes to 50–1000× when performing whole genome or exome 

sequencing. �us, it would seem unreasonable to expect to resolve the CCF of a muta-

tion to arbitrary precision. Provided we choose the grid of CCF values to be sufficiently 

large, this approximation should yield reasonable results.

�e modified version of the PyClone model which we call PyClone-VI is defined as 

follows

where Discrete(·|w,�) indicates the discrete distribution with mass vector w and sup-

port � . We use the uninformative priors α = α1K  , where 1K  is the vector of ones of 

length K, and wkjf =
1

F+1
.

�e joint distribution is thus given by

q(θs|�s) ∝ exp(Eq(θ−s)[log p(θ ,X)])

π |α ∼Dirichlet(·|α)

zi|π ∼Categorical(·|π)

φkj|wkj ∼Discrete(·|wkj ,�)

bij|zi = k , {φℓ}
K
ℓ=1,β , θ i ∼H(·|φkj ,β , θij)
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where we have suppressed the dependence on hyper-parameters for notational clarity. 

We let h(·|φkj ,β , θij) denote the emission density and I(zi = k) the indicator function 

which is one when zi = k and zero otherwise. As we will show in the next section this 

formulation leads to an efficient MFVI procedure.

Inference

We use MFVI to fit the PyClone-VI model. To do so we make the usual mean field assump-

tion for our variational distribution q.

�e distributional assumptions are as follows

�e densities are then given by

�us we need to optimize the variational parameters κ , {ρi}
N

i=1
 and {γ kj}

K ,M
k=1,j=1

 . �e 

parameter updates can be derived by applying the standard MFVI update. �us we have

p(X ,π , z, {φℓ}
K
ℓ=1) =p(π)

N
�

i=1

p(zi|π)

K
�

k=1

M
�

j=1

p(φkj)

N
�

i=1

K
�

k=1







M
�

j=1

p(bij|φkj)







I(zi=k)

=p(π)

N
�

i=1

p(zi|π)

K
�

k=1

M
�

j=1

p(φkj)

N
�

i=1

K
�

k=1







M
�

j=1

h(·|φkj ,β , θij)







I(zi=k)

q(π , z, {φk}
K
k=1

) = q(π |κ)

N∏

i=1

q(zi|ρi)

K∏

k=1

M∏

j=1

q(φkj|γ kj)

π |κ ∼Dirichlet(·|κ)

zi|ρi ∼Categorical(·|ρi)

φkj|γ kj ∼Discrete(·|γ kj ,�)

q(π |κ) =
Ŵ

(

∑K
k=1

κk

)

∏K
k=1

κk

K
∏

k=1

π
κk−1

k

q(zi|ρi) =

K
∏

k=1

ρ
I(zi=k)

ik

q(φkj|γ kj) =

F
∏

f =0

γ
I

(

φkj=
f
F

)

kjf

κk =αk +

N
�

n=1

ρik

ρik ∝ exp



ψ(κk) − ψ

�

�

ℓ

κℓ

�

+

M
�

j=1

F
�

f =0

γkjf log h

�

·
�

�
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F
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�
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N
�
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and we have the following normalization constraints

�ese updates are iterated until convergence. Convergence can monitored by comput-

ing the difference in the evidence lower bound (ELBO) after each update [26]. Monitor-

ing the ELBO is also useful to assess that the software implementation is correct, as it 

should increase monitonically.

Since we assume the CCFs, φij , can only take a finite set of values we can evaluate 

h(·|φkj ,β , θij) for all mutations and samples across this grid as a pre-processing step 

during inference. Caching this value leads to a dramatic reduction in runtime for the 

method. �is strategy is only applicable if the global parameters β of the emission dis-

tribution h are fixed. In practice, this means we fix the precision term of the Beta-Bino-

mial emission distribution, rather than estimating it as PyClone does. We also treat the 

hyper-parameter α as a fixed parameter. �is hyper-parameter weakly controls the num-

ber of clusters used, with values greater than one promoting the use of more clusters, 

and values less than one fewer. For all experiments in this work we used a value of one.

Experiments

Synthetic data

For the results shown in the main text we simulated data from the PyClone model with 

50, 100 and 1000 mutations using a DP concentration parameter of 1.0. Additional simu-

lation parameters are described in the results.

Additional simulations were performed with varying tumour content (Additional 

file  2), error rates for the expected VAF (Additional file  3), and number of samples 

(Additional file  4). Parameter settings for these simulations are provided in the file 

descriptions.

For all simulations we used PyClone version 0.13.1 run with 10,000 iterations and dis-

carding the first 1000 as burn-in. We ran PyClone-VI using 40 clusters and 100 random 

restarts.

DREAM data

We downloaded the ICGC-TCGA DREAM Somatic Mutation Calling—Tumour Het-

erogeneity Challenge [16] from www.synap se.org. To generate realistic data the authors 

generated a tree structure relating the clones in the sample and simulated the clonal 

prevalence values. BAMSurgeon [34] was used to manipulate a real sequence data set 

to introduce mutations in BAM files for each clone. �e clonal BAM files were merged 

and then analyzed with the Batterberg [35] for copy number calling and Mutect [36] for 

SNV/Indel calling. Summary statistics for the datasets used are provided in Additional 

file 1: Table S5.

A custom script was used to process the battenberg TSV and mutect VCF files for 

input into PyClone, PyClone-VI and QuantumClone. We used the included PhyloWGS 

K∑

k=1

ρik =1

F∑

f =0

γkjf =1

http://www.synapse.org
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parser for these input formats to generate input files for PhyloWGS. Tumour content 

values were set to the ground truth values provided for all methods which accept this 

argument. PhyloWGS was run for 10 iterations of burn-in and subsequently 100 sam-

ples were collected from the MCMC trace. We selected the maximum a posteriori sam-

ple, that is the sample with the highest joint probability, to compute estimates from 

PhyloWGS. PyClone was run for 1000 iterations, discarding the first 100 iterations as 

burn-in. We used the PyClone Beta-Binomial emission distribution with the connected 

initialization strategy and major copy number prior elicitation method. Default param-

eters were used for post-processing the PyClone MCMC trace. QuantumClone was run 

with 2–10 clones and 10 random restarts. PyClone-VI was run with 10 clusters, 100 ran-

dom restarts and used the Beta-Binomial emission distribution.

PCAWG data

We downloaded SNV and CNV data from PCAWG project hosted in the ICGC por-

tal [18]. We used a custom script to pre-process the data into a format compatible with 

PyClone-VI, extracting read counts from the input VCF files and allele specific copy 

number from the CNV data. We ignored sub-clonal CNVs and removed mutations with 

major copy number zero. We fit PyClone-VI using the Binomial emission distribution 

with 20 clusters and 100 random restarts.

TRACERx data

We downloaded SNV and CNV data included in the supplementary material of [12]. We 

used a custom script to pre-process the data into a format compatible with PyClone-VI. 

We fit PyClone-VI using the Binomial emission distribution with 40 clusters and 100 

random restarts.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-020-03919 -2.

Additional �le 1. Table S1: Performance results for the comparison of PyClone and PyClone-VI using synthetic 

data used in Fig. 1. Table S2: Performance results for the comparison of PyClone and PyClone-VI using synthetic 

data used in Additional file 2. Table S3: Performance results for the comparison of PyClone and PyClone-VI using 

synthetic data used in Additional file 3. Table S4: Performance results for the comparison of PyClone and PyClone-

VI using synthetic data used in Additional file 4. Table S5: Summary statistics for datasets used in Fig. 2. Table S6: 

Performance results for the analysis of DREAM SMC-HET data used in Fig. 2. Table S7: Friedman test results for 

comparing methods using the DREAM SMC-HET data. Table S8: Post-hoc Nemenyi test for comparing methods 

using the DREAM SMC-HET data. Table S9: Results from the PCAWG data analysis used in Fig. 3. Table S10: Predicted 

run time to analyze PCAWG data for programs used in DREAM analysis. Table S11: Results from the TRACERx data 

analysis used in Fig. 4.

Additional �le 2. Fig. S1: Comparison of PyClone and PyClone-VI with varying tumour content PDF file with figures 

showing the results of running PyClone and PyClone-VI with varying tumour content values. Data was simulated 

from the PyClone model with 4 samples, 100 mutations, a mean depth of 100 reads and copy number ranging from 

1–4 copies. The same tumour content values were used for all 4 samples for each dataset. a V-measure as a function 

of the tumour content of the samples. b Mean absolute deviation of inferred CCF from truth as a function of the 

tumour content. c Runtime of the methods. d Memory usage.

Additional �le 3. Fig. S2: Comparison of PyClone and PyClone-VI with varying error rates PDF file with figures 

showing the results of running PyClone and PyClone-VI with varying the error rates of the expected variant allele 

frequency. Data was simulated from the PyClone model with 4 samples, 100 mutations, a mean depth of 100 reads, 

copy number ranging from 1–4 copies and tumour content for each sample randomly selected from [0.4, 0.8]. To 

simulate error, the true expected VAF f was computed for each mutation and then a perturbed expected VAF f̃  was 

simulated uniformly from [max{0, f − ǫ},min{1, f + ǫ}] where ǫ is the error rate. The perturbed expected VAF f̃  was 

https://doi.org/10.1186/s12859-020-03919-2
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then used to simulate read count data. a V-measure as a function of the error rate. b Mean absolute deviation of 

inferred CCF from truth as a function of the error rate. c Runtime of the methods. d Memory usage.

Additional �le 4. Fig. S3: Comparison of PyClone and PyClone-VI with varying number of samples PDF file with 

figures showing the results of running PyClone and PyClone-VI with varying number of samples. Data was simulated 

from the PyClone model with 1–8 samples, 100 mutations, a mean depth of 100 reads, copy number ranging from 

1–4 copies and tumour content for each sample randomly selected from [0.4, 0.8]. a V-measure as a function of the 

number of samples. b Mean absolute deviation of inferred CCF from truth as a function of the number of samples. c 

Runtime of the methods. d Memory usage.
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