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Abstract

We have implemented in Python the COmparative GENomic Toolkit, a fully integrated and
thoroughly tested framework for novel probabilistic analyses of biological sequences, devising
workflows, and generating publication quality graphics. PyCogent includes connectors to remote
databases, built-in generalized probabilistic techniques for working with biological sequences, and
controllers for third-party applications. The toolkit takes advantage of parallel architectures and
runs on a range of hardware and operating systems, and is available under the general public license

from http://sourceforge.net/projects/pycogent.

Rationale

The genetic divergence of species is affected by both DNA
metabolic processes and natural selection. Processes contrib-
uting to genetic variation that are undetectable with intra-
specific data may be detectable by inter-specific analyses
because of the accumulation of signal over evolutionary time
scales. As a consequence of the greater statistical power, there
is interest in applying comparative analyses to address an

increasing number and diversity of problems, in particular
analyses that integrate sequence and phenotype. Significant
barriers that hinder the extension of comparative analyses to
exploit genome indexed phenotypic data include the narrow
focus of most analytical tools, and the diverse array of data
sources, formats, and tools available.
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Theoretically coherent integrative analyses can be conducted
by combining probabilistic models of different aspects of gen-
otype. Probabilistic models of sequence change underlie
many core bioinformatics tasks, including similarity search,
sequence alignment, phylogenetic inference, and ancestral
state reconstruction. Probabilistic models allow usage of like-
lihood inference, a powerful approach from statistics, to
establish the significance of differences in support of compet-
ing hypotheses. Linking different analyses through a shared
and explicit probabilistic model of sequence change is thus
extremely valuable, and provides a basis for generalizing
analyses to more complex models of evolution (for example,
to incorporate dependence between sites). Numerous studies
have established how biological factors representing meta-
bolic or selective influences can be represented in substitu-
tion models as specific parameters that affect rates of
interchange between sequence motifs or the spatial occur-
rence of such rates [1-4]. Given this solid grounding, it is
desirable to have a toolkit that allows flexible parameteriza-
tion of probabilistic models and interchange of appropriate
modules.

There are many existing software packages that can manipu-
late biological sequences and structures, but few allow speci-
fication of both truly novel statistical models and detailed
workflow control for genome scale datasets. Traditional phy-
logenetic analysis applications [5,6] typically provide a
number of explicitly defined statistical models that are diffi-
cult to modify. One exception in which the parameterization
of entirely novel substitution models was possible is PyEvolve
[1], which has been incorporated as part of PyCogent and sig-
nificantly extended. However, building a phylogenetic tree is
only one step in most comparative genomics workflows. Spec-
ifying a workflow requires connecting to raw data sources,
conducting or controlling specific analytical processes, and
converting data between different components. Such tasks
are achievable to differing degrees using the Bio-language
(for example, BioPerl [7] and BioPython [8]) libraries,
although these projects are limited in their built-in evolution-
ary modeling capabilities. Finally, support by either analysis
or workflow applications for visualization, which is a critical
aspect of data analysis, is often limited. Workflow tools such
as CIPRES/Kepler [9] allow flexible connection of pre-coded
components within the context of a graphical user interface,
but they have (at least at the time of writing) a relatively small
range of built-in analyses. We list a summary of features from
several comparative genomics tools in Table 1.

Here, we describe PyCogent, a toolkit designed for connecting
to databases, implementing novel analyses, controlling work-
flows, and visualization. Below, we outline some of the
toolkit's capabilities and demonstrate them through three
specific comparative genomics case studies. We take the
opportunity to emphasize here that PyCogent has capabilities
that are of value in other biological fields. The toolkit includes
many functions of generic utility, such as simplified reading
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and manipulation of tabular data, and common statistical
functions. Also included are facilities to expand the capabili-
ties of PyCogent beyond the provided selections of data for-
mat parsers, database connectors, and third-party
application controllers. We have applied several of these
capabilities in population genomics studies, but their poten-
tial utility spans a wide range of bioinformatics and genomics
tasks. The software is available online [10].

In the remainder of this report we use monospace type to dis-
tinguish literal code and arguments.

Features and capabilities

Design

The design of PyCogent was motivated by specific criteria
arising from the analysis of other packages that were available
at the time when development began, but that lacked the
advanced modeling and visualization capabilities we needed.
The main goal was to take a page from Perl's book, following
Larry Wall's often quoted dictum: 'easy things should be easy,
and hard things should be possible'. Easy things that should
be easy include reading standard formats from a file, running
simple phylogenetic analyses and alignments from the
toolkit's repertoire or using standard third-party applications
such as ClustalW [11] or basic local alignment search tool
(BLAST) [12], retrieving sequences by ID from different data-
bases, coloring important features on trees, alignments and
crystal structures, and calculating statistics on sequences and
alignments. Hard things that should be possible include par-
allel phylogenetic analyses of large sequences or many
sequences, exotic substitution models for phylogenetic analy-
ses or alignments, and the coordination of complex bioinfor-
matics pipelines distributed across a network.

Our design criteria thus included the following general fea-
tures (Additional data file 1 provides more detailed descrip-
tions of functionality):

1. maintainable, reliable, and as platform-independent as
possible;

2. self-contained, with relatively few, and optional, external
dependencies;

3. clean, consistent application programming interface (API),
allowing operations to be performed in few steps with limited
syntax, ideally in an interactive shell;

4. flexible framework for adding new functionality, such as
evolutionary models, parsers, and so on;

5. seamless integration with a large number of widely used
existing tools, for example command-line applications such
as BLAST, external databases, and external high-perform-
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Table |
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Summary of features of selected comparative genomics tools

Feature PyCogent HyPHY P4 BioPython Mesquite ARB CIPRES?
Query remote database Yes No No Yes Yes Yes No
Control external Yes No No Yes Yes Yes Yes
Create novel substitution Yes Yes Yes No Yes No No
Novel sequence alignment Yes No No Yes No No No
Partition models Yes Yes No No No No No
Slice sequences Yes No No Yes No No No
Draw alignments Yes No No No No No No
Build phylogenetic trees Yes Yes Yes No Yes Yes Yes
Draw phylogenetic trees Yes Yes Yes No Yes Yes Yes
Visualization of model Yes Yes No No Yes No No
Parallel computation Yes Yes No Yes No No Yes
Customize parallelization Yes Yes No Yes No No Yes
Reconstruct ancestral Yes Yes No No Yes Yes Yes
Simulate sequences Yes Yes Yes No Yes No Yes
Graphical user interface No Yes No No Yes Yes Yes
Script based control Yes Yes Yes Yes Yes No Yes
Handle 3D structures Yes No No Yes Yes Yes No
Handling RNA secondary Yes No No No No Yes No

PyCogent provides a unique combination of evolutionary modeling capabilities, visualization, and workflow control. Although many packages,
including but not limited to those shown, provide some overlap in capabilities, PyCogent provides a combination of features that is uniquely suited to
genome-scale analyses. 2CIPRES requires purchase of commercially licensed software for core functionality. 3D, three-dimensional.

ance code such as tuned BLAS (basic linear algebra subpro-
grams) libraries [13];

6. high-performance code base (genomics datasets tend to be
large, and so easy implementation of parallel computation is
important);

7. comprehensive and up-to-date user documentation;

8. combined code and documentation files to make it clear
how to modify canned analyses (executable documentation
stays up-to-date because tests fail if changes break the docu-
mentation); and

9. advanced visualization capabilities, including graphical
reports for common annotation, alignment, phylogeny, and
structure tasks.

Implementation

We chose to implement PyCogent in the Python program-
ming language for four main reasons. First, Python is an
object-oriented programming language that allows a mixed
model of procedural, object-oriented, and functional pro-
gramming, and thus it provides a choice of styles to suit spe-
cific bioinformatics tasks. For example, functional
programming techniques such as the map() and reduce()
built-in functions, and the ability to create functions on the fly
and use them as first-class objects, are extremely useful. The

Alignment object provides a good example of the utility of
these techniques. It is often useful to mark or eliminate
sequences that meet specific user-defined criteria, such as the
presence or absence of specific motifs. This can be accom-
plished by creating a function that tests a single sequence for
the presence of the motif, mapping the rows of the alignment
to boolean values based on the result of this function, and
then filtering the alignment based on the value of the test for
each row.

Second, Python is increasingly gaining currency in the scien-
tific programming and high-performance computing com-
munities, with mature third-party libraries such as Numpy
[14], ReportLab [15], and Matplotlib [16] providing important
numerical and reporting capabilities. This popularity in part
reflects the relative ease of teaching scientists who are casual
programmers the lightweight syntax needed to get started
with Python.

Third, Python's introspection capabilities, and advanced
interactive shells such as ipython [17], make the language well
suited to analysis of exploratory data, especially because the
capabilities of objects can be interrogated on the fly with
built-in functions such as dir().

Fourth, Python is easily extensible with tools such as Pyrex
[18], which allows performance critical tasks to be coded in a
Python-like language that compiles with C extensions. This
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extensibility, along with Python's comprehensive built-in
profiling and unit testing tools, allows attention to be focused
first on the correctness of the code and second to identify and
correct bottlenecks, in line with Hoare's dictum, 'Premature
optimization is the root of all evil'.

Finally, Python's built-in doctest module allows testing of
Python code embedded in standard text documents, delim-
ited solely by the Python interactive interpreter's command
input ('>>>") and continuation ('...") symbols, to be executed
and tested. This doctest module allows a user to produce com-
putable documents, such that the accuracy of the documenta-
tion can be assessed; it also provides a means for using
Python to achieve the goals of reproducible computational
research [19,20]. If the code that performs the analysis and
the associated data files are distributed as part of an executa-
ble publication, then other researchers can run the code and
verify that the same (or, for stochastic analyses, qualitatively
similar) results are obtained. PyCogent supplements its for-
mal unit tests for each module with standalone doctest docu-
ments that combine the explanation of specific analyses with
computable code to run those analyses.

It has been observed that the most successful open source
projects, such as the Linux kernel and the Apache web server,
rely on tight control of contributions by a small development
team. This tiered model of development allows many contri-
butions and bug fixes to be considered, but restricted access
for committing changes allows the project to keep a coherent
style and API. Accordingly, with PyCogent we have opted for
an open source license (the general public license), but contri-
butions are peer reviewed and edited before being accepted.
New features or significant modifications are always accom-
panied by both unit tests and integration tests that are auto-
matically triggered by commits to the repository; if tests fail,
then the contribution is rejected. This restriction ensures that
the core PyCogent library is always in a working state. Strict
naming guidelines for classes, functions, methods, abbrevia-
tions, and so on, described in the PyCogent documentation,
are enforced to facilitate discovery of the API's features. This
API consistency eases interactive analyses considerably,
because the abbreviation and capitalization of names can
usually be guessed rather than remembered, reducing the
cognitive burden on the user. The majority of documentation
for PyCogent is written as standalone doctests, and the valid-
ity of the documentation is checked before releases. Features
and APIs that are deprecated must first pass through a warn-
ing stage before they may be removed from the toolkit, allow-
ing sufficient time for modification of legacy code.

Key features of PyCogent

PyCogent consists of 17 top-level packages (Additional data
file 1), which provide core objects for representing and
manipulating biological data, mathematical and statistical
functionality, parsers for a wide range of bioinformatics file
formats, and code for manipulating external databases and
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applications. An overview of each package for developers can
be found in Additional data file 1, and the toolkit is distributed
with extensive examples that illustrate usage. Here, we dis-
cuss some of the design considerations and features that sup-
port common bioinformatics tasks.

Querying databases

Most bioinformatics analyses begin by obtaining information
from public databases. Our goal for database access was to
minimize the overhead involved in querying or in obtaining
records by accession. In general, our database accessors
behave either like dictionaries keyed by the accession number
of each sequence or like containers that return query results.

For example, to retrieve a sequence from GenBank, the fol-
lowing code suffices:

>>> from cogent.db.ncbi import EUtils
>>> e = EUtils()
>>> result = e['AF0001']

By default, the result of the EUtils (Entrez Utilities) call will
be an open FASTA format file, and the nucleotide database
will be searched. Arbitrary queries can also be handled in the
same interface. For example, we can retrieve the first 100 bac-
terial lysyl-tRNA synthetase protein sequences in GenBank
format as follows:

>>> e = EUtils (numsegs=100,
rettype='genpept')

db="'protein',

>>>result = e['"lysyl tRNA-synthetase" [ti] AND\
+’ bacterialorgn] ']

The goal of the database adaptors is to make simple queries as
efficient as possible in terms of both usability and computa-
tional performance, and to allow re-use of the syntax familiar
from the web query interface of each database. Fine-grained
control over parameters such as the number of records
returned in each set and the wait time between queries is also
available.

Adaptors for querying National Center for Biotechnology
Information (NCBI; including PubMed), Protein Data Bank
(PDB), and RNA families database (Rfam) are currently avail-
able, along with a framework that facilitates rapid develop-
ment of additional controllers.

Handling biological data

The core objects in PyCogent include facilities for handling
sequences, alignments, trees, compositions (for example,
codon usage or amino acid usage), and annotations. Again,
the primary goal has been to simplify file input/output as
much as possible while allowing fine-grained control over the
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details for expert users. For example, parsing a GenBank file
'sequences.gbk' on disk can be as simple as follows:

>>>

from cogent import LoadSedgs

>>>
segs = LoadSegs ('sequences.gbk', aligned=Fal
se)

In this case, the file type is automatically detected from the
file extension and dispatched to the appropriate parser. The
file format may also be specified using a format argument to
the LoadSeqs function. Similarly, loading an alignment from
a file (for example, in multi-FASTA format) is simply

>>> seqs = LoadSeqs ('sequences.fasta')

Loading a tree from a file is equally straightforward, for
example

>>> tree = LoadTree('mytree.tree')

If more control is required, then the individual parsers can be
imported from their respective modules. Rather than using
regular expressions to recognize and parse each record, which
can be a fragile approach, we instead use a nested hierarchy
of parsers. The parser at each level recognizes pieces of a
record, and dispatches each piece to the appropriate lower
level parser. The advantages of this approach are that unrec-
ognized fields, such as those newly introduced into a database
format, can be ignored rather than crashing the parser, and
lightweight parsers that ignore all but a few selected pieces of
the record can readily be generated. The hierarchical
approach also ensures that only the lines of the file pertaining
to the current record are kept in memory, so that very large
files can be processed one record at a time. This incremental
parsing can lead to large performance increases. Technically,
the individual parsers are all generators that yield each record
asitis read, although a list containing all records can easily be
produced. A major advantage of the generator approach is
that filtering can be applied on a per-record basis as the
records are read, potentially providing large memory savings.
For example, sequences could be filtered by length, by
number of degenerate nucleotides, or by annotation.

The SequenceCollection and Alignment objects have several
useful methods for filtering sequences by quality, converting
between sequence types and alphabets, and so forth. For
example, the Alignment can delete sequences that introduce
gaps in other sequences, can eliminate columns of gaps or
degenerate bases, or can delete sequences that are more than
a specified distance from a template sequence. It can also con-
vert between dense alignments, which store the alignment as
an array of characters, and sparse alignments, which store the
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original sequences and a mapping between sequence and
alignment coordinates. Dense alignments are useful for ana-
lyzing large numbers of sequences that contain few gaps (for
instance, for individual protein families) and sparse align-
ments are useful for analyzing small numbers of sequences
with many gaps (for instance, whole genome alignments).

Annotations are preserved in the alignment, allowing features
on different sequences to be related to one another. Two types
of annotations are handled: meta-data such as species,
source, and citations, which are stored in an Info object that
can be shared between different forms of a sequence (for
example, the DNA, RNA, and corresponding protein); and
annotation tracks, in which biological attributes that have
sequence locations are explicitly represented as objects that
can be applied to both sequences and alignments. It is fre-
quently the case that for an analysis the user wishes to stratify
by meta-data, such as genic, intergenic, or coding sequence
(CDS). PyCogent's annotation tracks allow such slicing as
illustrated in the case studies below.

The Tree object is implemented recursively, so that any frag-
ment of a tree can be subjected to any analysis that works on
the whole tree. Additionally, the tree objects contain code for
deleting nodes by annotation (including pruning branches
with single children), calculating distances between taxa, col-
lapsing poorly resolved nodes, and evolving sequences
according to a specified substitution model.

Built-in analyses

PyCogent supports many key evolutionary analyses directly,
including sequence alignment, phylogenetic reconstruction,
and model inference. These analyses are intended to be as
flexible as possible, and to allow users to implement easily
new capabilities that were not originally intended by the
authors. This flexibility addresses a problem with many exist-
ing packages, which often provide a range of model parame-
terizations that cannot be extended. The core analyses are
alignment (either using traditional approaches such as
Smith-Waterman or using pair-hidden Markov models
[HMMs]), flexible evolutionary modeling (see the first case
study, below), ancestral sequence reconstruction, tree recon-
struction, and sequence simulation. These analyses can be
performed using arbitrarily complex evolutionary models.
For example, nucleotide, codon, or amino acid models can be
used for any of these tasks, and the parameterization of those
models can be customized. One key advantage of this
approach is that there is complete orthogonality between the
models and the analyses, so that the effects of varying the
model and varying the analysis method can be assessed inde-
pendently. This independence is especially important when
estimating the effects of violating the constraints of a given
(unknown) model on the accuracy of an analysis. Addition-
ally, models that allow dependence between adjacent sites,
such as accounting for deamination in CpG dinucleotides, can
be implemented and used in any of these analyses [1,2]. When
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these models are nested, likelihood ratio tests can easily be
applied using supporting PyCogent infrastructure, as illus-
trated in the first case study (below).

Controlling third-party applications

One critical component of a bioinformatics toolkit is the abil-
ity to control third-party applications. This capability is
essential for testing new methods against the existing state of
the art, for coordinating large numbers of analyses on a par-
allel cluster, for performing sensitivity analysis, and for incor-
porating third-party applications into workflows. PyCogent
has a generic application controller framework that encapsu-
lates the code necessary for passing command-line parame-
ters and reading multiple output files and streams. A
phylogeny package such as RAXML [21], for instance, pro-
duces several different output files, and also prints informa-
tion to the standard output and error streams. Invoking an
application such as ClustalW [11] is straightforward:

>>> from cogent.app.clustalw import Clustalw
>>> app = Clustalw()
>>> result = app('sequences.fasta') ['Align']

In addition to the alignment and guide tree, the exit status
and error streams are also captured. Note that despite the
simplicity of this example, the full set of parameters in the
application is exposed in the interface, allowing fine-grained
control of the analysis. Controllers are currently implemented
for several other applications, including the following: the
homology search packages BLAST [12], position-specific iter-
ative BLAST [22], and BLAST-like alignment tool [23]; the
alignment packages ClustalW [11], Muscle [24], and Dialign
[25]; the motif finder MEME [26]; the phylogeny package
RAXML [21]; and the structure analysis packages RNAView
[27] and Vienna RNA [28].

Parallel computation support

PyCogent implements novel algorithms for parallelization of
computational tasks at either the data or algorithmic levels.
The parallel module convenience function localShareOf pro-
vides a mechanism for data based sharing of tasks across
CPUs, while the output_cpu attribute simplifies the output of
data by only one CPU. Algorithmic level parallelization is
built into certain PyCogent components, primarily in the
form of distributing across multiple CPUs, alignment posi-
tions for the likelihood calculations, or alternate topologies
for the advanced stepwise addition tree topology search algo-
rithm. Additional complexity in parallel computation is sup-
ported by the parallel module's implementation of a virtual
CPU stack. Under this design, for instance, one could simul-
taneously employ both a data and algorithm level parallel
strategy. For example, at the top virtual level two long align-
ments could assigned to separate dual core CPUs, whereas at
the lower level their likelihood calculations may be split by
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position across the two cores. PyCogent also supports task
farming of third-party applications, including activation of
parallelism already used by those programs (such as running
BLAST across multiple cores or CPUs).

Visualization

Visualization is a proven invaluable tool in the analysis of
complex systems, and the utility of many bioinformatics anal-
yses is enhanced by ready access to good visualization tools.
The fundamental properties of biological systems delimit the
display dimensions: relationships between biological
sequences are tree-like, the sequences themselves can be rep-
resented in two dimensions, and their encoded products (pro-
tein or RNA) can be represented in three dimensions.
Integrative visualization of genotypic and phenotypic proper-
ties thus requires the ability to display on sequences, align-
ments, trees, and three-dimensional (3D) structures diverse
types of meta-data such as functional domains, disease asso-
ciation indicators, and statistical estimates. Our approach has
been to use the well established ReportLab library [15] and
third-party applications such as PyMol [29], where possible.
The visualization capabilities of PyCogent discussed below
are demonstrated in the Case studies section (below).

For two-dimensional displays, annotation tracks can be asso-
ciated with alignments or sequences using special pre-
defined symbols that show key features such as promoters,
untranslated regions, and coding sequences. These symbols
are implemented using an extensible DisplayPolicy
framework, allowing undesired information to be suppressed
and additional user-defined symbols to be added. Fixed and
variable types of annotations can be applied to sequence data,
with a protein domain illustrating the former and a parameter
estimate the latter. These fixed feature types can also be pre-
sented on dotplots for comparing different sequences. The
capabilities of the ReportLab library have been exploited so
that sequence or alignment displays can be sliced and spread
over multiple pages to provide additional control over the fig-
ure resolution.

Displaying quantitative and qualitative information on phyl-
ogenetic trees is still often a stumbling block, with many
researchers resorting to exporting the tree topology and then
changing colors or line widths after the fact in general pur-
pose graphics packages such as Adobe Illustrator™. PyCogent
allows arbitrary callbacks to be used to determine the line
color, allowing quantitative information, group labels, or
quantitative features related to the sequence or statistical
modeling to be displayed directly on the tree (see the second
case study, below, for an example of the latter). Additionally,
any parameter or combination of parameters can be desig-
nated for display on the branches directly.

Similarly, extracting information from a sequence alignment
and applying it to a 3D structure determined by
crystallography or nuclear magnetic resonance (NMR) has
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often been performed using ad hoc tricks such as overwriting
the B-factor column in the PDB file. PyCogent allows arbi-
trary residues to be colored on a crystal structure, but it also
allows quantitative data to be displayed in any of a number of
gradients. Additionally, PyCogent allows the sequence from
the 3D structure to be extracted and inserted into the align-
ment, greatly reducing the difficulty typically associated with
converting between alignment coordinates and coordinates
of the residues that exist in the structure. See the von Wille-
brand case study (below) for a detailed example of structure
coloring.

Case studies
All code used to conduct the case studies is available in Addi-
tional data file 3 as Python scripts, text, and HTML formats.

A codon aligner and evolutionary analysis of BRCAI

By jointly representing the influence of DNA biochemistry
and its encoded information on rates of evolution, codon
models of sequence change [2,30,31] provide a means for
explicitly evaluating the neutral theory of molecular evolution
[32]. Under the assumption that synonymous changes are
selectively neutral, the ratio of nonsynonymous to synony-
mous substitution rates (frequently represented as Ka/Ks) is
used as an index of natural selection. An assortment of analy-
ses has been developed around these models, motivated by a
desire to test for departures from the neutral theory. Briefly,
neutrality is violated when there is evidence for Ka/Ks vary-
ing temporally (through time, evidenced by different values
between tree branches) or when Ka/Ks is significantly greater
than 1. Numerous studies have employed these models
[3,33,34] and all face the challenge of producing correct
sequence alignments before implementing such analyses.

Codon models disallow stop codons and gaps within codons,
requiring that indels be positioned respectful of codon
boundaries and in multiples of three. The pragmatic solution
to producing codon multiple alignments has been translation
of DNA sequences into amino acids and alignment of the pro-
tein sequences, followed by introduction of indels from the
protein sequence alignment into the DNA sequences. PyCo-
gent also provides tools to facilitate this approach. The
dynamic programming algorithms for global pair-wise
sequence alignment, which are central to progressive multi-
ple alignment, guarantee optimal alignment for the substitu-
tion model provided [35]. Codon alignments extrapolated
from protein sequence alignments will therefore be optimal
for the protein sequences. The only way to ensure codon opti-
mal alignment is to use a codon alignment algorithm.

In PyCogent, different probabilistic analyses are generalized
such that they accept any PyCogent substitution model the
user creates. For the alignment problem, the user creates a
true codon multiple sequence aligner by just providing a
codon substitution model. The pair-wise and multiple
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sequence alignment algorithms implemented in PyCogent are
based on the progressive pair-HMMs of Loytynoja and Gold-
man [36]. Generating a multiple sequence alignment requires
a sequence collection, a substitution model for the molecular
type, and - optionally - a tree. If no tree is provided, then a
neighbor joining tree is built.

In this case study, we query the NCBI nucleotide database for
specific accessions. We generate sequence names from genus
and species, extract the CDS region, eliminate terminal stop
codons, and generate a multiple alignment. We then test for
evidence of adaptive evolution on the human and chimpanzee
lineages. An interactive Python session of the full analysis is
shown in Figure 1. In the following, statements regarding line
numbers refer to input lines in Figure 1.

We query NCBI for just a set of accessions previously selected
for this analysis on the basis of their completeness and inclu-
sion of human and chimpanzee sequences. In order to allow
extraction of sequence CDS, we use a parser directly and then
remove the terminal stop codon (line numbers 8 to 14),
because this state is disallowed by codon substitution models,
before aligning. Because long sequence contigs can have mul-
tiple features of the same type, it is desirable only to create
each segment corresponding to the sought feature type on
demand. Having queried NCBI explicitly for BRCA1 accession
numbers, however, there is only one CDS per sequence and
therefore we extract just the first entry in the list (because
Python counts from o, this is the oth element; line number
11).

As indicated above, the multiple sequence alignment requires
a codon substitution model. A number of substitution models
are provided for convenience, although we emphasize that a
major strength of PyCogent is its flexibility in specifying novel
substitution models with minimal effort. For the current case
we use the Ho4G codon substitution model containing terms
for transition (labeled in Figure 1 as kappa), nonsynonymous
(omega), and CpG (G) substitutions [2]. The aligner returns
both the alignment and neighbor joining tree that was used to
create it (line 16). We inspect the topology of that tree in an
interactive session by printing the text representation gener-
ated by the asciiArt method (line 17).

The hypothesis that human and chimpanzee BRCA1 genes
have evolved in a selectively neutral manner can be evaluated
using a hierarchical hypothesis test. In the current example,
we explicitly compare the following nested hypotheses: H,,
the regime of natural selection affecting BRCA1 is identical
for all lineages (a single Ka/Ks parameter for the entire tree);
and H,, the selection regime affecting human and chimpan-
zee BRCA1 differs from that affecting the remaining lineages
(two Ka/Ks parameters). PyCogent simplifies the formation
of such nested hypotheses and significantly eases the task of
identifying sections of phylogenetic trees (or tree scopes) to
which distinct parameter values are to be applied. Using the
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1 >>> from cogent.db.ncbi import EUtils
2 >>> db = EUtils(db="nucleotide", rettype='genpept')
3 >>> records = db["NM 007294 NM 001045493 NM 009764 NM 178573 NM 012514"] .readlines()
4 >>> from cogent import LoadSeqgs, DNA
5 >>> from cogent.parse.genbank import RichGenbankParser
6 >>> from cogent.evolve.models import HO04G
7 >>> from cogent.align.progressive import TreeAlign
8 >>> parser = RichGenbankParser (records, moltype=DNA, skip contigs=True)
9 >>> segs = {}
10 >>> for accession, seq in parser:
11 cds = list(seqg.getByAnnotation('CDS')) [0]
12 species = cds.Info.species.split ()
13 seq name = species[0] [0] + species[1] [:3]
14 ... segs [seq name] = cds.withoutTerminalStopCodon ()
15 >>> seq collection = LoadSegs (data=segs, moltype=DNA, aligned=False)
16 >>> aln, tree = TreeAlign(H04G(), seq collection, show progress=False)
17 »>>> print tree.asciiArt()
/-Btau

/edge.1-- |

| | /-Mmus

| \edge.0-- |

-root----| \ -Rnor

|

| --Hsap

|

\-Ptro

18 >>> 1f = H04G() .makeLikelihoodFunction (tree)

19 »>>> 1f.setAlignment (aln)

20 >>> 1lf.optimise(local=True, show progress=False)

21 »>>> null InL = 1f.getLogLikelihood ()

22  »>>> null nfp = 1f.getNumFreeParams ()

23  >>> lf.setParamRule('omega', tip names=['Hsap',6 'Ptro'l],
R outgroup name='Mmus', is clade=True)

24 >>> 1f.setName ("Alternate Hypothesis")

25 >>> 1f.optimise(local=True, show progress=False)

26 >>> alt 1nL = 1f.getLogLikelihood ()

27 »>>> alt nfp = 1f.getNumFreeParams ()

28 >>> print 1f
Alternate Hypothesis

G kappa

7.1203 3.4131
edge parent length omega
Btau edge.1l 0.3639 0.5923
Mmus edge.0 0.1980 0.5923
Rnor edge.0 0.1793 0.5923
edge.0 edge.l 0.6113 0.5923
edge.1l root 0.2322 0.5923
Hsap root 0.0124 1.7144
Ptro root 0.0095 1.7144

29 >>> LR = 2*(alt_lnL-null 1nL)

30 >>> df = alt_nfp-null nfp

31 >>> from cogent.maths.stats import chisgprob

32 >>> print "LR=%.4f; df=%d; p-val=%.4f" % (LR, df, chisgprob (LR, df))
33 LR=7.8117; df=1; p-val=0.0052

Figure | (see legend on next page)
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Figure | (see previous page)

Interactive Python session showing a codon analysis of mammal nucleotide BRCA| sequences. Line numbers are shown at the beginnings of input (but not
output) lines and are referenced in the text. The terms ">>>"and "...' represent primary input and continuation prompts, respectively, from a Python
interactive session. For noninteractive use, these characters and the following space are removed. The trailing '..." indicates additional output has been

truncated.

tree and same substitution model, we create a likelihood func-
tion and provide the alignment (lines 18 and 19). This defines
a hypothesis under which all parameters, with the exception
of branch lengths, are global across the tree and the
probabilities of codons are taken as the average frequency
from the alignment, thus completely specifying H,. Maximiz-
ing the likelihood for this hypothesis given the provided align-
ment requires numerical optimization. PyCogent provides
two different numerical optimizers: simulated annealing
[37], which is a global optimizer, and the method proposed by
Powell [38], which is a local optimizer whose implementation
was derived from the scientific Python library [39]. Although
local optimizers typically produce solutions more quickly
than do global algorithms, they are vulnerable to being
trapped by local optima. The default likelihood function opti-
mizer setting is therefore simulated annealing followed by
Powell's method. In most cases, however, the local optimizer
suffices and can be explicitly selected using the local argu-
ment (line 20). Fine control over all aspects of the optimiza-
tion is provided by additional arguments for the global and
local optimizers. The effect of the optimization is to modify
the parameters' values so as to maximize the likelihood for
the provided data. The actual log-likelihood and number of
free parameters are explicitly extracted (lines 21 and 22).

Definition of the alternate hypothesis requires one to identify
the human and chimpanzee tree edges in a robust manner
and to associate a distinct value of the parameter omega
(which represents Ka/Ks) with that tree scope. The clade is
uniquely identified using two tip names, an outgroup name,
and setting the argument is_clade = True (line 23). A similar
approach can be used to identify just the stem to a clade, or
both the clade and its stem. The result of this call is an addi-
tional omega value applied to the Hsap and Ptro edges. If we
wished to have a different parameter value applied to each
edge in the scope, we would set the argument is_independent
= True. There is a computational benefit from incrementally
building complex hypotheses in this manner; the parameter
estimates from optimization of H serve as a starting point for
optimization of H,, typically resulting in significantly reduced
work required for maximization of H,. The maximum likeli-
hood (ML) estimates are displayed by printing the If, indicat-
ing omega > 1 for the Hominoid lineages (line 28). We
formally test the sufficiency of H, by performing a likelihood
ratio test using the y2 distribution with degrees of freedom
equal to the difference in the numbers of free parameters
between the two hypotheses (lines 29 to 32). In this case, the
estimated probability leads us to reject H, in favor of H,,
which is consistent with the previous report of a distinct evo-

lutionary regime affecting BRCA1 in humans and chimpan-
zees [34].

Visualizing genomic properties in a phylogenetic
context for the Proteobacteria

The visual juxtaposition of phenotype and genotype can
reveal otherwise obscure patterns in complex data. The distri-
bution of a phenotypic property across a phylogeny is indica-
tive of the rate at which the phenotype evolves and may
illuminate its mechanistic origins. Some of the types of ques-
tions that can benefit from visualization of phenotypic prop-
erties in their phylogenetic context are as follows: the extent
to which specific traits are evolvable, the association between
ecological niche and evolutionary relatedness, and the distri-
bution of parameter estimates from a statistical analysis.

PyCogent provides multiple tools that allow the user to
address such issues easily. These tools include multiple algo-
rithms for phylogenetic tree reconstruction, such as neighbor
joining [40] and the tree fit procedures of weighted least
squares and ML approaches [41]. A parallelized implementa-
tion of the advanced step-wise addition tree space search
algorithm [42] is included for use with weighted least squares
and ML. PyCogent's generalizations allow any specifiable
substitution model to be applied to phylogenetic reconstruc-
tion. This ability to use any combination of substitution
model with any tree building algorithm allows simple tests for
the robustness of a given result to variation in these parame-
ters, addressing a common concern in phylogenetic analyses.
Graphical representations of phylogenetic trees can be pro-
duced in several standard dendrogram formats. Parameter
values for each tree branch can be colored on a spectrum or
presented as text. Because the tree labeling or coloring is per-
formed using callbacks that are arbitrary functions of a
branch, complex figures that display quantitative data (such
as nucleotide composition) or qualitative data (such as group
labels, for instance for taxonomic categories or environmen-
tal samples) can readily be produced.

We illustrate these capabilities in this case study using a
downloaded file of about 5,100 RNA sequences from the
rRNA database [43]. We convert these sequences to DNA,
sample 30 sequences at random from each of the five taxo-
nomic divisions, exclude near identical sequences, estimate
the phylogeny, and draw a radial dendrogram tree with
sequence G+C% colored on a spectrum.

The sequence format from this database is for aligned
sequences with additional characters representing secondary
structure information. For this number of taxa, the
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1 >>> subst model = GTR()

2 >>> dcalc = EstimateDistances(aligned segs, subst model)
3 >>> dcalc.run(show_progress=True)

4 >>> dists = dcalc.getPairwiseDistances()

5 >>> tree = nj(dists)

6 >>> tree.writeToFile(filename)

Figure 2

Estimating pair-wise distances. We use a general time reversible nucleotide substitution model (line ). The pair-wise distances (line 4) are passed to the
neighbor joining (nj) function (line 5), which returns a tree that is then written to file (line 6).

reconstruction of an evolutionary tree can prove extremely
time consuming. We choose neighbor joining, a distance
based phylogenetic method, as the best compromise between
accuracy and computational time. The few lines of code
required to estimate these distances, generate a neighbor
joining tree, and save it to disk are shown in Figure 2. The
pair-wise distance estimation code is written to take advan-
tage of multiple CPUs, and the version of the script provided
in Additional data file 4 demonstrates the single-line addition
(relative to that in Figure 2) necessary to achieve this.

To evaluate the phylogenetic distribution of G+C% content,
we annotate a tree by setting each sequence's G+C% value in
the corresponding tips. Although in the example the G+C%
content of ancestral sequences is not determined, internal
branches can also be colored. The third-party library Report-
Lab that PyCogent uses to generate PDF graphics provides
fine-grained control over font size, line width, and color. Only
two commands are required to produce Figure 3 from the
annotated tree. Of interest for this example is the display of
G+C% content on a spectrum between the minimum and
maximum observed values. We display low G+C% to high
G+C% on a spectrum from yellow to blue (note that these
colors were chosen so that the spectrum is discernible by red/
green colorblind individuals, who comprise an estimated 10%
of the male population). We also choose a small font size in
order to reduce the amount of visual clutter arising from over-
lapping tip labels. We note that, in general, closely related
taxa exhibit a similar color. However, certain lineages appear
to have evolved to low G+C%, quickly raising questions about
environmental and/or changes in DNA metabolism that may
distinguish these organisms from their sister taxa. Another
feature apparent from this tree is a general trend for earlier
diverging lineages to be intermediate in G+C%, and for sud-
den changes toward low G+C% to be more common than sud-
den changes to high G+C% (there are more yellow branches
surrounded by blue or green neighbors than blue branches
surrounded by yellow or green neighbors). (Note that the tree
drawn is unrooted, but the root based on comparison with
other bacterial outgroups is near the center of the displayed
tree.) A detailed discussion of these results is beyond the
scope of the present work, but the ability of this visualization
technique to reveal evolutionary trends should be clear.

An integrative analysis of von Willebrand factor

In human genetics, distinguishing clinically influential from
circumstantial mutations at a candidate locus can be a signif-
icant challenge. A number of approaches are used to predict
phenotypic impact: linkage studies of the mutation in affected
pedigrees; experimental analysis of a mutation on protein
function; predicted impact on structure from computer mod-
eling [44]; and an assessment of evolutionary rate [45-47].
The latter approach is based on the hypothesis that a slow
evolutionary rate reflects strong negative natural selection
caused by functional constraint on a residue. There is increas-
ing interest in drawing on measurement of the historical
influence of natural selection to improve predictions regard-
ing the likely phenotypic impact of contemporary variation.
Such integration has been demonstrated to improve explana-
tory power significantly [48].

This case study illustrates an analysis workflow that inte-
grates evolutionary rate classification with molecular
structure. We queried the NCBI protein database for von Wil-
lebrand Factor (VWF), a 2,813 amino acid glycoprotein that is
required for platelet adhesion in blood coagulation. Missense
mutations in this molecule have been associated with von
Willebrand disease, which is a heterogeneous disorder char-
acterized by prolonged bleeding. We visualize the evolution-
ary classification of residues in the context of molecular
structure and annotated functional domains. We also test
whether slowly evolving positions are disproportionately
associated with disease.

We query the protein database at NCBI for VWF entries and
align the sequences. An inspection of the annotated features
column for information regarding disease associated single
nucleotide polymorphisms (SNPs) revealed variation in
nomenclature, which would increase the complexity of cor-
rectly identifying all such variable sites. Records from the
Swiss-Prot Protein Knowledgebase, on the other hand, have a
consistent notation. We therefore select only full length VWF
records from Swiss-Prot using the logical condition 'swiss-
prot' in seq.Info.dbsource. We use annotations on the human
record to extract SNP, human disease, and protein domain
details using the Info object. Disease status of a SNP is
inferred from whether the abbreviation for von Willebrand
disease (VWD) occurred in the note field. This query results
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Figure 3

Radial dendrogram displaying Proteobacteria rRNA G+C% on a phylogenetic tree. Low to high G+C% is displayed on a spectrum from yellow to blue.
Included are 30 randomly sampled species from each of the five Proteobacteria divisions (a to y).

in only three full length sequences, from human, mouse, and
dog. We align the sequences using an empirical protein sub-
stitution model [49].

The simpler probabilistic models of sequence evolution
assume that all sites have evolved at the same rate throughout
time, independently of each other. More realistic evolution-
ary models have been developed that allow for variation
between sites. These models have two major dimensions
corresponding to rate (temporal) and spatial heterogeneity.
For the temporal component, substitutions are considered to
derive from a continuous distribution that has (for computa-
tional efficiency) been split into bins. Such models have been
applied principally to the model parameter 'rate' and a codon
model exchangeability parameter that corresponds to the
ratio of nonsynonymous to synonymous substitutions [3]. AT
distribution is most commonly employed in rate models,
although nonregular and mixture distributions have also

been specified [50]. Substantial evidence indicates that
sequence residues tend to evolve in a manner most similar to
their close neighbors, leading to patches of similarly evolving
residues. HMMs have been successfully applied to detection
of such auto-correlated evolutionary processes [4,51,52].
These phylo-HMMs measure the co-occurrence of residues
whose evolution is best described by one of the bins from a
rate heterogeneity model. In addition to measuring model fit
to a dataset, the classification of sequence residues can be
achieved using posterior decoding.

PyCogent allows specification of both classes of model. Rate
heterogeneity can be specified as either a I or free (nonregu-
lar) distribution for rate or any substitution model exchange-
ability parameter. Although any number of bins can be
specified for the rate heterogeneity models, the HMM compo-
nent at present only allows for two hidden states. If a model
with more than two bins is also specified as a HMM, the bins
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1 >>> rate het = Protein(rate matrix=JTT92 matrix, motif probs=JTT92 freqgs,
2 - ordered_param="rate", distribution="gamma",
3 ... recode gaps=True)
4 >>> patch 1f = rate het.makeLikelihoodFunction (tree, bins=2,
5 ... - - sites independent=False)
6 >>> patch 1f.setParamRule('bprobs', is const=True)
7 >>> patch 1f.setAlignment (aln) -
8 >>> patch 1f.optimise()
9 >>> pprobs = patch 1f.getBinProbs ()
10 >>> slow pprobs = pprobs['bin0']
Figure 4

Specifying the phylo-HMM for analysis of VWF. The meaning of the substitution model arguments (lines | to 3) are as follows: ordered_param, rate will be
split and ordered from small to large across bins; distribution, the statistical distribution by which parameter values are determined; and recode_gaps,

whether gap characters are set to 'N'. The substitution model is then turned into a likelihood function (line 5) by providing a phylogenetic tree, specifying
that the I distribution is split into two bins and the autocorrelated occurrence of rate class members is indicated by the sites_independent argument. We
finish the definition of the I" rate heterogeneity distribution by setting the bin probabilities (bprobs) to be fixed at the default value (line 6), which is equal.
The remaining statements provide the alignment data to the likelihood function, optimize it, and extract the posterior probabilities for each site belonging
to each rate class (lines 7 to 9). The slow rate class is automatically assigned the name bin0O and those probabilities are extracted by slicing the array (line

10). HMM, hidden Markov model; VWF, von Willebrand Factor.

must be mapped to the two hidden states. Although there is
strong evidence for spatial heterogeneity of evolutionary rate,
a hierarchical hypothesis testing approach should be adopted
to validate usage of a phylo-HMM for other parameters.

Returning to our case study, we seek to estimate the probabil-
ity that each site belongs to the slowly evolving rate class
using the multiple sequence alignment. We model sequence
evolution using an empirical protein substitution model [49]
with rate heterogeneity specified by a I distribution with two
bins. The auto-correlation of those bins is specified by a
phylo-HMM, as described above. The code snippet executing
this model and extracting the posterior probabilities is shown
in Figure 4. The numerical optimization process used here is
simulated annealing [37] followed by the Powell algorithm
[38].

Displaying the evolutionary rate classification in direct con-
text with annotated sequence features can be done in two
ways. In the first instance, we generate a figure in which the
sequence features extracted from the human Swiss-Prot entry
are plotted along with the posterior probabilities of the site
belonging to the slow (bino) rate class. These are placed onto
either the human sequence, for the annotated features, or the
alignment, for the posterior probabilities (Figure 5). Much of
the code required to achieve that task is dedicated to splitting
the SNPs into disease and nondisease and truncating the
labels of the protein domains in order to fit into their corre-
sponding display elements. The plot indicates considerable
spatial structure in the occurrence of slow and fast evolving
sites, with a clustering of disease associated SNPs in the VWF
A1 domain, which is associated with platelet binding.

The next step is to compare the rate categories we estimated
from these three sequences with the positions that have been
found in other studies to associate with disease in humans.
Annotated features such as the posterior probabilities and
disease SNP locations can be applied to paint a 3D structure

using the third-party PyMol [29] application. We use the
structure for the A1 domain [53], as downloaded from PDB
(record identifier 1AUQ). Painting the structure requires
identification of the portion of sequence covered by the struc-
ture, and extraction of the corresponding posterior probabil-
ities and disease SNP locations. The probabilities are
displayed as a spectrum scaled from blue (for slowly evolving)
to red (fast evolving), with disease SNPs indicated as yellow.
We present two snapshots taken using PyMol from opposite
sides of the structure (Figure 6) and a movie (Additional data
file 2). These suggest a strong relationship between secondary
structure features and rates of evolution, and a relationship
between 3D proximity of residues and their rate of evolution.
PyCogent greatly facilitates the production of this type of fig-
ure by extracting the sequence and atom coordinates from the
PDB file, relating the PDB sequence to other sequences in a
multiple sequence alignment, and performing the coordinate
mapping so that properties of the alignment can be applied to
residues that exist in the PDB sequence. Because of inherent
technical limitations in X-ray crystallography and NMR, PDB
records often contain missing residues and multiple chains,
and may contain mutations that were introduced to aid anal-
ysis (especially truncation of flexible regions and, for RNA,
the substitution of short, stable loops). The flexibility in han-
dling missing residues that PyCogent provides is essential for
relating evolutionary information across homologs or
sequence variants to the available structural data.

We finally evaluate the hypothesis that there is an association
between the posterior probability of a position being slowly
evolving and there being disease causing variation. PyCogent
includes many standard statistical distributions and statisti-
cal tests. Summary statistics indicate the mean probability for
disease SNPs is 0.58, whereas the mean of the remainder is
0.50. We test whether this difference is significant using
PyCogent's implementations of the Kolmogorov-Smirnov test
for comparing two distributions. Performing this analysis
requires extracting the posterior probabilities for disease SNP
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Figure 5

Posterior probabilities of aligned positions being classified as slowly evolving for VWF. Horizontal lines next to each name represent the aligned sequence,
with gaps indicated by disruptions to the line (indels disrupt the von Willebrand Factor [VWF] A3 domain). Annotations for a sequence are displayed
above its line. Red diamonds are single nucleotide polymorphisms (SNPs) annotated as being associated with von Willebrand disease, blue diamonds are
the remaining SNPs. The blue line is the posterior probability a site belongs to the slow (bin0) bin.
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Figure 6

Rates of evolution on the the VWF Al domain residues. Posterior
probabilities of being slowly evolving are shown on a spectrum from red
to blue corresponding to low/high probabilities. Residues with a disease
causing single nucleotide polymorphism are colored yellow. A movie
showing rotation of the structure is provided in Additional data file 3.
VWEF, von Willebrand Factor.

http://genomebiology.com/2007/8/8/R171

locations and for the remainder of the molecule. Running the
Kolmogorov-Smirnov test indicates that there are tied values
in the data, invalidating the probability estimation. We there-
fore use the bootstrap version of the KS test, which results in
a probability of about 0.2, indicating that the difference in
distributions is not significant. Thus, disease-causing SNPs
do not occur at sites evolving significantly more slowly than
other sites, although these conclusions may change as more
full length sequences become available and allow more accu-
rate estimation of the evolutionary rate at each site.

Conclusion

PyCogent is a unique framework that facilitates the applica-
tion of comparative genomics data to a broad array of compel-
ling biological problems. The database querying and
workflow control capabilities, coupled with a built-in capacity
for specifying novel analyses, provide opportunities for com-
prehensive interrogation of the relationship between genome
indexed phenotypic data and evolutionary dynamics. The
chosen license, language, and implementation provide a basis
for researchers to undertake novel analyses in a manner freed
from the release schedule of toolkit developers. PyCogent can
be employed in the development of novel methods or stan-
dalone applications, to facilitate the integration of new appli-
cations and analyses into visual workflow tools such as
CIPRES/Kepler [9], and in the development of task centric
graphical user interface applications. Several applications
have already been developed that draw on PyCogent's capa-
bilities aimed at phylogenetic footprinting [54], analysis of
microbial community samples [55,56], combinatorial motif
analysis [57], and de-replicating sequence families [58]. The
development team welcomes contributions from others who
are interested in extending the toolkit to novel problems,
integrating it with additional tools and data sources or who
seek to exploit it to develop standalone applications.

Requirements

PyCogent requires the following software: Python 2.5 or
greater [59] and Numpy 1.0.3 or greater [14]. Optional
dependencies are as follows: ReportLab version 2.0 or greater
for visualization [15] (note that this package is required for
the case studies presented in this report); Matplotlib version
0.90.1 or greater for visualization of codon usage [16];
PyxMPI version 1.0 or greater for parallel computation [60];
Pyrex for developers who want to modify the *.pyx files [18];
and PyMol version 0.99 or greater for display of 3D structures
[29] (note that this package is required for the case studies
presented in this report).

Abbreviations

API, application programming interface; BLAST, basic local
alignment search tool; CDS, coding sequence; 3D, three-
dimensional; EUtil, Entrez Utility; HMM, hidden Markov
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model; Ka/Ks, ratio of nonsynonymous to synonymous sub-
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lies database; SNP, single nucleotide polymorphism; VWF,
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