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Abstract The use of the Python programming lan-
guage for scientific computing has been gaining momen-

tum in the last years. The fact that it is compact and
readable and its complete set of scientific libraries are
two important characteristics that favour its adoption.

Nevertheless, Python still lacks a solution for easily

parallelising generic scripts on distributed infrastruc-

tures, since the current alternatives mostly require the

use of APIs for message passing or are restricted to

embarrassingly-parallel computations.

In that sense, this paper presents PyCOMPSs, a

framework that facilitates the development of parallel

computational workflows in Python. In this approach,

the user programs her script in a sequential fashion and

decorates the functions to be run as asynchronous par-
allel tasks. A runtime system is in charge of exploiting
the inherent concurrency of the script, detecting the

data dependencies between tasks and spawning them

to the available resources.

Furthermore, we show how this programming model
can be built on top of a big data storage architecture,

where the data stored in the backend is abstracted and
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accessed from the application in the form of persistent

objects.
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1 Introduction

The use of the Python programming language for sci-
entific computing has been gaining momentum in the

last years, sometimes replacing traditional tools such as
Matlab [8]. The fact that Python is free software makes
it available to anyone at no cost, and its portability en-
ables execution on a variety of platforms. The language

itself is compact, readable and very suited for rapid

prototyping, while being powerful enough for writing

large applications. Even though some people do not

consider it efficient enough, Python integrates very well
with C/C++, allowing to easily invoke external mod-
ules programmed in those languages for the sake of per-
formance or code reuse. Furthermore, it has a rich set

of scientific libraries, e.g. for numeric computation [9],

data processing and analysis [17,10], plotting [7] and

graphical interfaces [6].

All these advantages make Python appealing to the

scientific community but, for the language to be used

in big projects, it needs to be parallelisable. Its default

and most widely-used implementation, CPython [15],

cannot run multiple threads at once because of a global

lock in the interpreter. In response, a number of alter-

natives for spawning multiple Python processes have

appeared [11], both for shared-memory environments

and for distributed infrastructures such as grids, clus-

ters and clouds, as will be discussed in Section 2. How-

ever, most of these solutions are MPI wrappers, only

permit to launch embarrassingly parallel computations
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or require the user to include infrastructure-related de-

tails in the application.

In that sense, this paper presents PyCOMPSs, a
parallel programming framework for Python applica-

tions that overcomes the aforementioned limitations of
other approaches. PyCOMPSs is built on top of COMPSs
[30,28] and it aims to facilitate the development of com-

putational workflows in Python for distributed infras-

tructures. For that purpose, it offers a programming

model based on sequential development - the applica-

tion is a plain sequential Python script - where the

user annotates the functions to be run as asynchronous

parallel tasks. A runtime system is in charge of au-

tomatically exploiting the inherent concurrency of the

script, detecting the data dependencies between tasks

and spawning them to the available resources.

Furthermore, for PyCOMPSs scripts to easily ac-

cess and compute on huge data sets, the programming

model has been implemented on top of a big data stor-

age platform. In our proposal, the application sees such

big data in the form of regular Python objects that can

be made persistent. The objective here is twofold: first,

make possible for a Python script to handle big objects

(too big to fit in the memory of a single node) and, sec-

ond, offer a simple mechanism to access those objects

and manage their persistency. Thus, Python programs
can keep and share the modifications made to objects,
with no need to explicitly read/write the data to persis-

tent storage (e.g. a file); the actual access to the data is

kept transparent to the programmer, who uses the ref-

erences to the objects to operate with them in a normal

way. By placing PyCOMPSs on top of such a storage

platform, we intend to integrate the automatic detec-

tion and exploitation of parallelism in Python scripts

with a data model that targets both big data and per-

sistency.

The paper is structured as follows. Section 2 dis-
cusses the related work. Section 3 provides an overview

of the PyCOMPSs programming model. Section 4 de-

scribes the basic runtime implementation of the model.

Section 5 explains how PyCOMPSs has been integrated

in a big data storage platform. Section 6 presents the

results of the experiments. Finally, the conclusions and

future work can be found in Section 7.

2 Related Work

Although Python distributions include a threading mod-

ule, there is not a simple way for parallelising applica-

tions. Although several threads can be used, the most

popular implementation (CPython) does not support

thread concurrency and the Global Interpreter Lock

(GIL) does not enable more than one thread to ex-

ecute Python bytecode at a time. In [11] the alter-
natives available for parallelising Python applications
are classified according to the platform that is tack-

led: Symmetric Multiprocessing (SMP), Cluster Com-

puting, Cloud Computing and Grid Computing.

The Python multiprocessing module [14] supports

the spawning of processes in SMP machines using an

API similar to the threading module, with explicit calls

to create processes, argument passing, execution, syn-

chronization, result collection, etc. The multiprocessing

module avoids the GIL issue by using subprocesses ini-

tiated with a fork system call instead of threads.

Parallel Python (PP) [12] is a Python module which

provides mechanisms for parallel execution of Python

code on SMP and clusters. It is based on an API which

provides explicit functions to specify the number of

workers to be used, submit the jobs for execution, get

the results from the workers, etc. Similar to the mul-

tiprocessing module, all the management of the paral-

lelism is delegated to the programmer, mixing the ac-
tual algorithm with the parallelism management.

In [29] the Pool/Map approach is described, as well
as the Process/Queue approach. The Pool/Map approach
spawns a pool of worker processes and returns a list
of results. The Python map function is extended to

the multiprocessing module and can be used with the

Pool class to instantiate with a single operation a set of

worker processes that will work in parallel and collect

the results, using the regular Python syntax. The Pro-
cess/Queue approach again extends the multiprocessing
module to enable more than one input parameter to the

concurrent function. This approach creates two FIFO

queues, one for the input data and one for receiving out-

put data. The parallel worker processes are started us-

ing the Process class. In the same paper, the Pool/Map,

Process/Queue approach and Parallel Python are com-
pared when solving parallel astronomical data process-
ing applications, the Process/Queue approach showing

better perfomance. Although in terms of features, Par-

allel Python will also enable execution in clusters, while

the approaches based in multiprocessing can only be ex-

ecuted in a single node.

Other approaches to implement parallelism with Python
are based on MPI wrappers. MPI for Python (mpi4py) [22]

provides bindings of the Message Passing Interface (MPI)
standard for the Python programming language, allow-
ing any Python program to exploit multiple processors.
It supports point-to-point and collective communica-

tions of any picklable Python object, as well as opti-

mized communications of Python object exposing the

single-segment buffer interface. A similar approach is

followed by pyMPI [13].
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dispy [4] is a Python framework for parallel execu-

tion of computations by distributing them across multi-
ple processors in a single machine (SMP), among many
machines in a cluster, grid or cloud. It is based on an

API that enables to explicitly create jobs, submit them

for execution, execute callbacks on job completion, wait

for finalization, etc.

Alternatives to flow-based programming in Python

are described in [5]. Ruffus [26] offers a syntax to ex-

plicitly define computational pipelines in Python us-
ing decorators. Cosmos [25] is another alternative to
implement workflows in Python using the MapReduce

paradigm.

Celery [2] also uses decorators to implement an asyn-
chronous invocation of tasks in a server. The execution

units are tasks, that are executed concurrently on a sin-

gle or more worker web servers using multiprocessing.

Tasks can be executed asynchronously or synchronously

as invocations to a web service.

With regard these previous alternatives, PyCOMPSs

provides an approach to parallelize codes without the

need of expressing explicitly the concurrency and to ex-

ecute them in distributed platforms, including SMPs,
clusters and clouds. Ruffus, as PyCOMPSs, it is based
on the use of decorators, although the decorators in

Ruffus explicitly tell how the task functions are con-

nected between them and the data exchanged between

the nodes of the pipelines are always files, while Py-

COMPSs is also more flexible in this aspect, giving sup-

port to regular Python objects. Ruffus uses the Python

multiprocessing module to create one process per task

in the pipeline. While Ruffus also provides a parallel

construct, it is totally explicit, while in PyCOMPSs

the parallelism is implicit, automatically detected by

the runtime.

When comparing PyCOMPSs with previous work,

it provides a generic (non ad-hoc solution) with a sim-

ple and flexible interface. The codes are programmed in

native Python, with decorators used to indicate which

parts of the code should be instantiated as tasks and

to give hints about the arguments’ directionality which

will be used by the PyCOMPSs runtime to automati-

cally find data dependences between tasks. The API of

PyCOMPSs is composed of a single function that it is

used to synchronize the completion of tasks at the end

of parallel sections.

PyCOMPSs enables programming in parallel in the

closest way to sequential code with the minimum num-

ber of references in the code to computational and data

resources and concurrency. Also, the concurrency that

it is supported is not only fork-join or MapReduce, but

more flexible parallelism described in tasks’ graphs that

are dynamically built at execution time.

In the same way that PyCOMPSs abstracts concur-

rency from applications, access to distributed persistent
objects is also transparent to the programmer thanks to
our persistent storage layer. Current solutions that sup-
port persistent objects in Python provide an intuitive

way to manage them from applications. Some examples
are object databases such as ZODB [20], or the ORM
libraries SQLAlchemy [18] or SQLObject [19]. However,

they do not implement the functionality that allows

PyCOMPSs to exploit data locality, which will be de-

tailed in section 5. In particular, they do not provide

the information that PyCOMPSs requires to schedule

tasks next to the objects they manipulate. Additionally,

our storage layer also provides the abiltiy to iterate on

persistent dictionaries both expoiting data locality and

parallelism.

Another approach to develop programmatic work-

flows is Swift, which is based in its own scripting lan-

guage and finds the opportunities for parallel execu-

tion as a combination of parallel loop constructs and

an implicit data-flow programming model [31]. As data

types that are handled, Swift tasks only can manage
files. Previously to this work, GRIDSs (the predecessor
of COMPSs) was proposed for workflows described in
C/C++ [21] also being able to unveal task parallelism

through the creation at runtime of a data-dependence

task graph defined by files as data objects.

3 PyCOMPSs Programming Model

PyCOMPSs is a programming framework that aims to

facilitate the parallelisation of Python scripts. For that

purpose, it offers a simple programming model based

on sequential development: a PyCOMPSs application

is a plain sequential Python script. In the model, the

user is mainly responsible for (i) identifying the func-
tions to be executed as asynchronous parallel tasks and
(ii) annotating them with a standard Python decorator.

A runtime system is in charge of exploiting the inher-

ent concurrency of the script, automatically detecting

and enforcing the data dependencies between tasks and

spawning these tasks to the available resources, which
can be nodes in a cluster, cloud or grid.

Section 3.1 will present a first example of a Python
script parallelised with PyCOMPSs, while Section 3.2

will provide a more comprehensive specification of the

PyCOMPSs programming model syntax and options.

3.1 First Example

The first step when programming with PyCOMPSs con-

sists in defining the tasks of the application. A Python
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script may be composed by calls to multiple functions,

and some of them may be computationally intensive.

Such functions may be good candidates to be defined

as tasks, so that they can be executed in parallel on a

set of distributed resources.

As an example, let us consider the code in Fig-

ure 1(a). This script performs some computation for

a number of steps (line 5) and merges the partial re-

sults, of type dictionary, into a final dictionary (line 6,

variable result). All the computations receive a config-

uration parameter initialised in line 3. The script can

be executed as a sequential Python program but, in

order to parallelise it with PyCOMPSs, we will define

as tasks three functions called by the script: init conf,

compute step and merge.

Task definition in PyCOMPSs is done by means of

Python decorators [3], which are part of the standard
Python syntax and permit to wrap calls to functions
and with some additional behaviour. In particular, the

user needs to add, before the definition of the function,

a @task decorator that describes the task. Continuing

with the example, Figure 1(b) shows the code of the

aforementioned functions together with their @task dec-

orators. Function init conf returns an object of class Con-
figuration (defined in line 1), as stated by its decorator

(line 4). Similarly, compute step returns a dictionary (as

specified in the decorator of line 7) and receives two pa-

rameters: an integer and a Configuration object. Finally,

merge receives two dictionary parameters and merges

them into the first one (line 13); in order to state that

the first dictionary will be modified inside the task, the

decorator defines it as an input-output parameter (line

11).

Once the functions intended to be tasks are properly

decorated, a Python script is ready to be executed with

PyCOMPSs. When running the script, PyCOMPSs cre-

ates an asynchronous task for each invocation to a dec-

orated function, adding these tasks to a dependency

graph. The nodes of such graph are the tasks, and the
edges represent their data dependencies. In order to de-
tect data dependencies between tasks, PyCOMPSs uses
the information about parameter direction specified in

the @task decorator (e.g. INOUT for the dict1 parame-

ter of function merge in Figure 1(b)). For instance, if a
task writes some data and a subsequent task reads the

same data, there is a data dependency between these
tasks. Data dependencies are automatically enforced by
PyCOMPSs to ensure the correct execution of the ap-
plication.

In that sense, Figure 2 depicts the task dependency

graph built on the fly by PyCOMPSs for the exam-

ple in Figure 1(a). The first asynchronous task that is

created corresponds to function init conf, and after that

1 result = {}
2 num steps = 3
3 conf = init conf ()
4 for i in range(num steps):
5 step res = compute step(i, conf)
6 merge(result, step res)

7 from pycompss.api.api import compss wait on
8 result = compss wait on(result)
9 print ”Result: ”, result

(a)

1 class Configuration(object):
...

2 from pycompss.api.task import task
3 from pycompss.api.parameter import *

4 @task(returns = Configuration)
5 def init conf():
6 return Configuration()

7 @task(returns = dict)
8 def compute step(step, conf):
9 res = do some computation(step, conf)
10 return res

11 @task(dict1 = INOUT)
12 def merge(dict1, dict2):
13 dict1.update(dict2)

(b)

Fig. 1 Example of a sequential Python script parallelised
with PyCOMPSs: (a) main program of the script, (b) task
definition.

the main program proceeds immediately to execute the
loop of computation and merge tasks. Inside the loop, a
total of 3 compute step tasks are generated, and they all

depend on the previous init conf task because they re-

ceive the configuration object conf as input parameter -

if no direction is specified for a parameter, it defaults to
IN. The loop also generates 3 merge tasks, each depend-

ing on their corresponding compute step for the partial
result of the iteration (variable step res); moreover, each

merge task depends on the result produced by the pre-

vious iteration (stored in result) and, consequently, they

are arranged in a chain of tasks.

Once the loop is completely unrolled, the program
reaches lines 7-9, where the final result in variable result

is printed. Before printing it, though, the script needs

to synchronise for the last value of result, produced by

the last merge task. In order to do that, PyCOMPSs

provides an API function, compss wait on, which stalls

the main control flow until the last value of result is

obtained. Hence, the call to compss wait on in line 8 will
wait for the last merge task to finish before getting and

returning the final result, so that it can be printed in

line 9.

It is important to note how PyCOMPSs is able

to detect and exploit the inherent concurrency of the
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Fig. 2 Task dependency graph corresponding to the example
script in Figure 1.

Argument Value
Formal - INOUT: read-write object.
parameter - OUT: write-only object.
name - FILE: read-only file.

- FILE INOUT: read-write file.
- FILE OUT: write-only file.

returns int (for integer and boolean), long, float,
str, dict, list, tuple, user-defined classes.

isModifier True (default) or False.
priority True or False (default).

Table 1 Arguments of the @task decorator.

script, as exhibited by the graph in Figure 2: the com-

pute step tasks can be executed in parallel, while the

merge tasks cannot. The programmer does not control
such parallelisation explicitly; instead, she programs se-

quentially and provides information about the task pa-

rameters and their direction. Actually, the program in

Figure 1 can be executed sequentially by using a se-

quential version of the PyCOMPSs libraries, imported

in line 7 of Figure 1(a) and lines 2-3 of Figure 1(b).

3.2 Syntax

After discussing a complete PyCOMPSs example in
Section 3.1, this section specifies in a more comprehen-
sive way the syntax of the PyCOMPSs programming

model.

3.2.1 Task Definition

In PyCOMPSs, the user can define as a task:

– Functions.

– Instance methods: methods invoked on objects.

– Class methods: static methods belonging to a class.

PyCOMPSs tasks can be defined by means of the

@task decorator, which provides information about the

parameters of the function/method and about the task

itself. Table 1 summarises all the arguments supported

by the decorator.

On the one hand, the metadata corresponding to a

parameter is specified as an argument of the decorator,

whose name is the formal parameter’s name and whose

value defines the type and direction of the parameter.
Thus, when including parameter metadata in the @task

decorator, the user has the options shown in the first

row of Table 1. The parameter types and directions can

be:

– Types : primitive types (integer, long, float, boolean),
strings, objects (instances of user-defined classes,

dictionaries, lists, tuples, complex numbers) and files

are supported. PyCOMPSs is able to automatically

infer the parameter type for primitive types, strings

and objects, but not for files, which need to be de-

fined as FILE.
– Direction: it can be read-only (IN - default), read-

write (INOUT) or write-only (OUT).

Consequently, in the following cases there is no need
to include an argument in the @task decorator for a

given task parameter:

– Parameters of primitive types (integer, long, float,

boolean) and strings: the type of these parameters

can be automatically inferred, and their direction is

always IN.

– Read-only object parameters: the type of the pa-

rameter is automatically inferred, and the direction

defaults to IN.

On the other hand, there are three reserved argu-
ments of the @task decorator, also presented in Table 1.

First, if the function or method returns a value, the pro-

grammer must specify the type of that value using the

returns argument. Return values can be seen as param-

eters with OUT direction. Second, for tasks correspond-

ing to instance methods, by default the task is assumed

to modify the callee object (the object on which the

method is invoked). The programmer can tell other-

wise by setting the isModifier argument to False. Finally,
the programmer can also mark a task as a high-priority

task by setting the priority argument to True. This way,

when the task is free of dependencies, it will be sched-

uled before any of the available low-priority (regular)

tasks. This functionality is useful for tasks that are in

the critical path of the application’s task dependency

graph.

Figure 3 shows an example of the usage of file pa-

rameters in PyCOMPSs tasks, which can be useful to

program computational workflows. The script in Fig-

ure 3(a) calls a function func, which receives a string
parameter containing a file name. Note that, for Py-

COMPSs to know that my file is actually a file path

that must be treated as such - and not as any other

string - the user needs to state that the parameter is of

type FILE. In addition, since the code of func updates

the file, the INOUT direction also needs to be specified.
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my file = ’sample file.txt’
func(my file)

(a)

from pycompss.api.task import task
from pycompss.api.parameter import *

@task(f = FILE INOUT)
def func(f):

fd = open(f, ’r+’)
...

(b)

Fig. 3 Example of a task receiving a file parameter: (a) call
to function from the application, (b) decorated function.

@task(returns = int)
def ret func():

return 1

Fig. 4 Definition of a task returning an integer.

class MyClass(object):
...
@task(isModifier = False)
def instance method(self):

... # self is NOT modified here

Fig. 5 Example of usage of the isModifier flag.

@task(priority = True)
def func():

...

Fig. 6 Example of usage of the priority flag.

Regarding the other arguments of the @task decora-

tor: (i) Figure 4 defines a task that returns an integer

value, (ii) Figure 5 shows a usage example of the is-

Modifier argument and (iii) Figure 6 defines a task with

priority.

3.2.2 Main Program

The main program of the application is a sequential

Python script (or scripts) that contains calls to tasks.

Tasks can modify or generate data (e.g. a file or ob-

ject), and these data can eventually be accessed from

the main program. Before doing so, however, the pro-

grammer needs to synchronise that data (i.e. stall the

main control flow until obtaining the last version pro-

duced by the task, which can imply waiting for the task
to finish). As a result, the main program can work with
the correct version of the data.

Depending on the data type that is being synchro-
nised, two API functions may need to be invoked (sum-

marised in Table 2):

– compss wait on(obj, to write = True): synchronises for

the last version of object obj and returns the syn-

chronised object. It can receive an optional boolean

parameter to write, which defaults to True, that in-

Function Use
compss wait on Synchronises for the last version
(obj, to write = True) of an object and returns it.
compss open Synchronises for the last version
(file name, mode = ’r’) of a file and returns its file

descriptor.

Table 2 PyCOMPSs API functions.

from pycompss.api.api import compss wait on,compss open

my obj = MyClass()
my obj.method()
my obj = compss wait on(my obj)
...

my file = ’file.txt’
func(my file)
fd = compss open(my file)
...

(a)

@task(f = FILE OUT)
def func(f):

...

class MyClass(object):
...

@task()
def method(self):

... # self is modified here
(b)

Fig. 7 Example of synchronisation: (a) main program con-
taining the synchronisation calls, (b) task definition.

dicates whether the main program will modify the

returned object.

– compss open(file name, mode = ’r’): similar to the Python
open() call. It synchronises for the last version of file

file name and returns the file descriptor for that syn-

chronised file. It can receive an optional parameter

mode, which defaults to ’r’, containing the mode in

which the file will be opened (the open modes are

analogous to those of Python open()).

To illustrate the use of the aforementioned API func-

tions, the example in Figure 7 first creates an object of

class MyClass and invokes a task method called method

that modifies the object; the object is then synchro-

nised with compss wait on(), so that it can be used in

the main program from that point on. After that, the

script invokes a task func that writes a file, which is

later synchronised by calling compss open().

If the programmer defines as a task a function or

method that returns a value, that value is not generated

until the task executes. However, in order to keep the

asynchrony of the task invocation, PyCOMPSs man-

ages future objects [24]: a representant object is imme-

diately returned to the main program when a task is in-

voked. The future object mechanism is applied to prim-
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1 @task(returns = MyClass)
2 def ret func():
3 return MyClass(...)

# o is a future object
4 o = ret func()

...
5 another task(o)

...
6 o.yet another task()

...
7 o = compss wait on(o)

Fig. 8 Future objects in PyCOMPSs.

itive types, strings and objects (including the Python

built-in types list, dictionary, tuple and complex).

As shown in Figure 8, a future object returned by

a task (object o, line 4) can be involved in subsequent
asynchronous task calls (lines 5 and 6), and PyCOMPSs

will automatically find the corresponding data depen-

dencies. On the other hand, in order to synchronise the

future object from the main program, the programmer

proceeds in the same way as with any object updated

by a task (line 7).

4 Runtime System

The programming model described in Section 3 is en-

abled by a runtime system that parallelises the appli-
cation on behalf of the user.

This section describes the basic implementation of

such runtime system, i.e. how it generates and manages

tasks and how it processes the data accessed by those

tasks.

4.1 Architecture

PyCOMPSs was designed to operate on top of the COMPSs
[30,28] Java runtime system, acting as a language bind-
ing for Python applications. This design decision al-

lowed PyCOMPSs to leverage COMPSs’ functionalities

and, as a result, require a shorter development time.

Among the functionalities implemented by COMPSs

there are data dependency analysis, task scheduling,

data transfer and fault tolerance. In addition, it can

execute applications on different kinds of distributed

infrastructures such as clouds, clusters or grids. On top

of the Java runtime, the Python binding handles the

computations and data of the application and interacts

(through a C++ library) with the Java libraries un-

derneath. Figure 9 shows the architecture of the whole
framework.

Fig. 9 Architecture of the PyCOMPSs runtime system.

4.2 Task Generation

Calls to functions decorated with @task are wrapped

by a function of the Python binding, which forwards

the function name and parameters to the Java runtime.

With that information, the Java runtime creates a task

and adds it to the data dependency graph, immediately

returning the control to Python. At this point, the main
program can continue executing right after the task in-
vocation, possibly invoking more tasks.

Therefore, the Java runtime executes concurrently
with the main program of the application, and as the

latter issues new task creation requests, the former dy-
namically builds a task dependency graph. Such graph
represents the inherent concurrency of the program,
and determines what can be run in parallel. When a

task is free of dependencies, it is scheduled by the run-

time system on one of the available resources, specified

in XML configuration files.

The default scheduling policy of the runtime is locality-

aware. When scheduling a task, the runtime system

computes a score for all the available resources and

chooses the one with the highest score. This score is

the number of task input parameters that are already

present on that resource, and consequently they do not
need to be transferred.

4.3 Task Offloading and Data Management

Once a task has been scheduled, and before submitting

the task to the target resource for execution, the Java

runtime transfers the missing task input data to that

resource.

Tasks created by a PyCOMPSs application can re-

ceive different types of data as a parameter, as ex-

plained in Section 3.2. Specifically, tasks work with data

that is either in memory (Python objects, primitive

types) or disk (files). Such data needs to be forwarded
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Fig. 10 Management of objects in the basic implementation
of the PyCOMPSs framework.

to the Java runtime, which will be in charge of trans-

ferring it to the destination resource where the task

will run. Primitive types in Python are mapped by the

Python binding to the equivalent types in Java, and

files are processed as such on the Java side.

Regarding Python objects, their management is a
bit more complex. Figure 10 shows how objects are

handled by PyCOMPSs. Objects can be created by a

Python application in Python space and later be ac-

cessed by a task. Since neither these objects nor their

associated classes exist in the Java space, they are se-

rialised to files by the Python binding. Hence, when

informing the Java runtime of the creation of a new

task, the Python binding will define all object param-

eters as files so that the Java runtime can process and

transfer them.

Once the input data for a task is transferred, the
Java runtime will trigger the execution of a Python

worker script on the worker resource. This script will

process the request of running a task, check which data

it needs (deserialising the input objects if necessary)

and finally run the task.

The runtime processing described in this section ob-

viously comes with an overhead. Therefore, for the re-

mote execution of tasks to be worthwhile, the duration

of these tasks should be in the order of tens or hundreds

of milliseconds, depending on the number of resources
to be used.

5 Support for Big Data

Section 4 described the basic implementation of the Py-
COMPSs runtime, where tasks operate on data that is
either in memory (regular Python objects and primi-

tive types) or disk (files). In order to make PyCOMPSs

capable of orchestrating applications that process big

amounts of data, the data management of PyCOMPSs

was extended both at programming model and runtime

system levels.

Fig. 11 PyCOMPSs on top of a persistent storage layer.

In that sense, this section presents the work on inte-

grating PyCOMPSs in a persistent object storage plat-

form. Such platform provides PyCOMPSs scripts, as

well as the tasks they generate, with a distributed,

fault-tolerant and efficient storage layer. Furthermore,
multiple applications can share data in a concurrent
way through this layer.

The main objective of the aforementioned platform

is facilitate the access to data as much as possible. Any
function in a Python script, even if it has not been de-
veloped with PyCOMPSs in mind, should be able to

seamlessly work with objects in memory or with per-
sistent objects, with no need to be adapted for each
case. It is the responsibility of the main program, which

invokes the function, to decide whether the object in-

stance is made persistent or not depending on the pur-

pose of such object, but this decision is transparent to

the function.

Figure 11 depicts the overall structure of the pro-

posed storage platform. Python scripts programmed

with the PyCOMPSs model are located at the top of

the stack, and the tasks they generate are processed

by the PyCOMPSs runtime system. These scripts rely

on a Storage API in order to create, delete, insert, re-

trieve and iterate over persistent data. At its turn, Py-
COMPSs also invokes the Storage API, mainly to ob-
tain locality information about persistent data.

The Storage API can be implemented by multiple

Storage Backends. A Storage Backend is responsible for
storing data in a set of distributed resources, manag-
ing data format and organisation and optimising data

queries.

The next subsections present the extensions to Py-

COMPSs that were required to operate on top of this

storage platform, and they also describe a backend that

implements the Storage API.
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5.1 Programming with Persistent Objects

The data that resides in the storage platform can have
multiple formats, depending on the backend that stores
it. Nevertheless, from the point of view of the applica-
tion, such data is abstracted and it is always accessed as

Python objects, no matter how it is stored underneath.

Consequently, the programming model proposed here

is based on the use of objects. Such objects can be made

persistent by an application, that is, objects initially

allocated in memory can be backed by the persistent

storage layer. From that point on, changes to the ob-
ject will be forwarded to the backend as well. On the
other hand, objects that were made persistent can be

retrieved by other applications. This enables interactive

sharing of data between applications that run concur-

rently.

5.1.1 Managing Persistency

In order to deal with persistent objects, the storage

platform requires some knowledge about the classes that

will be stored. In particular, since Python is a dynami-

cally typed programming language, the names and types

of the attributes are not included in the class defini-

tion, and they should be specified to correctly map the

class representation to the backend. This can be done

by means of docstrings, the standard Python documen-

tation mechanism, as shown in figure 12(a), line 2. This

would be then used to generate the corresponding code

that implements the Storage API.

To make an object persistent, the programmer needs

to invoke the make persistent method, which is part of
the Storage API. Figure 12(b) shows a simple example

where two regular Python objects o1 and o2 of class

Foo are created (lines 4-5). After that, make persistent is

invoked on o1 in order to be stored as persistent (line

6). The make persistent method receives a parameter of

type string that specifies the alias - a name or identifier

- that the user wants to give to that object. Such alias

must be unique in the storage namespace, and it can

be used afterwards to retrieve the object.

A persistent object can be involved in a task call

like any regular (non-persistent) object, as exemplified

in line 7 of Figure 12(b), and the programmer does not

need to provide any additional information in the @task

decorator (line 1). my func can be a pre-existing func-

tion, completely unaware of object persistency. Thus,

it manipulates the persistent object o1 and the regular

object o2 in the same way (line 3). However, in the case

of o1, any changes to the object are transparently per-

sisted in the distributed storage. Also importantly, the

1 class Foo(object):
2 ””” Property bar int ”””
3 def init (self, val):
4 self.bar = val

(a)

1 @task()
2 def my func(foo1, foo2):
3 sum = foo1.bar + foo2.bar

print ’Sum:’, sum

4 o1 = Foo(1)
5 o2 = Foo(2)

...
6 o1.make persistent(’MyFooObject’)

...
7 my func(o1, o2)

(b)

1 @task()
2 def another func(foo):

...

3 o = Foo(’MyFooObject’)
...

4 another func(o)
(c)

Fig. 12 Managing persistent objects: (a) class definition, (b)
producer script that makes an object persistent, (c) consumer
script that loads a persistent object.

Method Use
make persistent Stores an object
delete persistent Deletes an object from

persistent storage
Constructor(’alias’) Retrieves the persistent object

with the alias provided

Table 3 Storage API for applications.

PyCOMPSs runtime will try to schedule the task on the

resource where the object is stored to favour locality.

Figure 12(c) depicts a small consumer script that

loads the same object that was stored in Figure 12(b).

In order to do that, the script invokes a constructor of

class Foo that receives the alias of the object as param-

eter (line 3). This constructor is provided by the im-

plementation of the model, and it returns a reference

to the desired persistent object. Once the reference is

obtained, the object can also participate in a task call

(line 4).

Table 3 details the methods included in the Stor-

age API that provide applications with the ability to

manage persistent objects.

5.1.2 Persistent Dictionaries

A particular case when working with persistent objects

is that of dictionaries. The Python dictionary built-in

type is an unordered set of key-value pairs. Keys can be

of any immutable type, including tuples. Dictionaries
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# o contains two dictionaries, foo and bar
1 o = MyClass()
2 o.make persistent(’MyObject’)

...
# set operation on dict bar

3 o.bar[0] = ’mystring’
...
# get operation on dict foo

4 val = o.foo[’mykey’]
(a)

# iterate over blocks of keys
1 for block in o.foo.keys():
2 my func(block)

...

3 @task()
4 def my func(block):

# iterate over keys in a block
5 for key in block:

...
(b)

Fig. 13 Managing persistent dictionaries: (a) getting and
setting elements, (b) iterating over keys.

(or objects containing dictionaries) can be made per-

sistent and, when that happens, the data they contain
can be easily mapped to a key-value store in a Storage
Backend.

In that sense, a PyCOMPSs application can manip-

ulate a persistent dictionary as it would do with any

regular Python dictionary, e.g. adding a new key-value

pair or requesting the value associated to a given key.

Since the dictionary is persistent, any operation will be

translated into an access to the persistent data. In Fig-

ure 13(a), an object o of class MyClass is instantiated
in line 1 and made persistent in line 2. Let us assume

that object o has two attributes of type dictionary, foo

and bar. Even if o is persistent, the programmer can

add new entries to its dictionaries (line 3) or get the

value for a given key (line 4) in a normal way. In the

case of a persistent object, though, such operations will

be forwarded to the Storage Backend, e.g. a distributed

key-value store.

On the other hand, Python allows to retrieve the set

of keys in a dictionary by invoking the keys() method

on it. In addition, these keys can be iterated to execute

some operation for each key-value pair. In a persistent

dictionary, obtaining the keys and iterating over them

can be done like with a regular dictionary, but the se-

mantics of these operations differs from the original one.

As can be seen in Figure 13(b), when iterating over

the keys of a persistent dictionary (line 1), the iterator

will return blocks of keys instead of individual keys.

Those blocks correspond to the partitions of key-value

pairs in the underlying Storage Backend. This feature

is leveraged to exploit data locality: PyCOMPSs tasks

that receive one or more blocks as parameters can be

created (line 2), and the PyCOMPSs runtime will try

to schedule them in the resource where those blocks

reside. If that happens, any access to the keys in that

block will be local. For instance, if such block is iterated

inside the task to obtain the keys it holds (line 5), the

keys (and their associated values) will already be on the

resource that runs the task.

5.2 Storage API and Backends

The Storage API lies underneath the application and

the PyCOMPSs runtime (Figure 11) and offers meth-

ods to access persistent objects and obtain information

about them.

Section 5.1 introduced those methods that the Stor-

age API provides to manage objects from applications,

i.e. to make objects persistent, to load them or to mod-

ify their attributes. In addition to these methods, the

Storage API also provides a set of methods that enable

PyCOMPSs to take into account data locality when

scheduling tasks with persistent objects as parameters.

In order to do that, the PyCOMPSs runtime invokes

the getLocations method of the Storage API, which re-
turns the resources where a given persistent object or

block is stored. With this information, PyCOMPSs can

try to submit a task to a resource where (at least part

of) its input data is already present, thus preventing re-

mote accesses to the data from the task. This method

receives as a parameter the identifier of an object, which

is assigned by the storage platform. This identifier can
be obtained by means of the method getID. Finally, the

method getByID provides a reference to the persistent

object with the identifier specified as a parameter.

The methods of the Storage API can be implemented

by one or more Storage Backends, which transform the

generic operations on persistent objects into specific

operations on their associated backend data. The next

subsection describes the Storage Backend that has been

developed so far for its use in the Storage Platform.

5.2.1 Hecuba

Hecuba is a set of tools and interfaces developed in our

research group, that aims to facilitate programmers an

efficient and easy interaction with non-relational data-

bases. In particular, we have added to Hecuba the im-

plementation of the interface necessary to provide Py-

COMPSs with a Storage Backend suitable to support

Big Data applications. Currently, this interface is imple-

mented on Apache Cassandra database, although it is

easy to port this implementation to any non-relational

key-value data store.
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Cassandra [1] is a distributed and highly scalable

key-value database. Cassandra implements a non-cen-
tralized architecture, based on peer-to-peer communi-
cation, in which all nodes of the cluster are able to

receive and serve queries. Each node of the cluster is

assigned a token. A partitioner function uses this token

to decide how data is distributed among the nodes in

the shape of a ring.

Data in Cassandra is stored on tables by rows, which
are identified by a key chosen by the user. This key can

be composed by one or several attributes. In each row
the user can add additional attributes also identified by
a name. In order to enhance data locality when access-

ing data stored in Cassandra, it is necessary to under-

stand how is data organized. Cassandra stores data by

rows, and one node is responsible for hosting a specific

row. The target node is chosen based on the key of the
row and of the token of each node by the partitioner
algorithm. In order to guarantee data availability, Cas-
sandra can be configured to keep several replicas for

each data. In a setup with N replicas it is also neces-

sary to choose the nodes that will hold each replica.

The default replication algorithm selects the N-1 nodes

that come after the target node in the ring’s order to
store those replicas.

The mapping of a Python dictionary on a data model

in Cassandra is straightforward as both consist on val-
ues indexed by keys. Thus, the implementation of a Per-
sistent Dictionary backed up by Hecuba is straightfor-

ward too. We have decided to map each class containing

one or more Persistent Dictionary on a Cassandra table.

This table is indexed by the same key attributes than

the Persistent Dictionaries in the class, and contains as

many non-key attributes as Persistent Dictionaries. In

the current implementation Hecuba only supports the

backing of Persistent Dictionaries but as part of our fu-

ture work we plan to extend it to support other type of

attributes.

Following with the example described in section 5.1.2,
we will show how to implement a class backed up by

Hecuba. For the sake of rapid prototyping, our current

implementation has some variations regarding the defi-

nition of classes explained in section 5.1.1. In particular,

figure 15 shows the minimum code required to imple-

ment a class containing two Persistent Dictionaries. It is

just necessary to indicate that the class is a subclass of
StorageObj, which is a class implemented inside Hecuba,

and that contains all the methods that are necessary to

access and manipulate data backed up by Cassandra.

Thus, the code of the application is mostly independent

of the data backend used. Notice that programmers can

add their own methods to the class definition, the only

requirement is that the constructor of the StorageObj

Fig. 14 Configuration of StorageObj.

1 class MyClass(StorageObj):
2 pass

(a)

1 Classes:
2 My Class:
3 bar:
4 Key1: ”(keyname1, int)”
5 Type: string
6 foo:
7 Key1: ”(keyname2, string)”
8 Type: int
9 Keyspace: ”database name”

(b)

Fig. 15 Defining a user class backed by Hecuba: (a) mini-
mum class code, (b) data scheme definition.

class has to be executed each time a new object of the

class is instantiated.

In addition to this simple class definition, users have

to provide the information necessary to connect to the
Cassandra cluster (ip addresses and ports) and to con-

figure the database. Configuration of the database re-

quires information about the database identifier (keyspace

name) and the data scheme (for each table, name and

type of each attribute and which attribute is part of

the key). Information about the Cassandra cluster can
be set through environment variables and it is common
to all applications executed on this cluster. Information

about the database configuration can be codified in a

yaml file. Figure 15 represents the yaml file that the

user should provide to complete the configuration of

the application. During the initialization phase of the

application, Hecuba code reads and parses this yaml file

and configures itself to be able to adapt at runtime the

generic code of the StorageObj methods to the particular

data schemes defined (see figure 14).

Following we describe the implementation of the in-

terface implemented by Hecuba as part of the Stor-
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ageObj class. The methods exported to programmers

allow to perform the following tasks:

– Make an object persistent: this operation is per-

formed through the make persistent method of the

StorageObj. The implementation of this method cre-
ates the Cassandra table that it is necessary to hold

the object and populates it with the data that the

object had in memory.

– Object instantiation: it is implemented by the con-
structor of the StorageObj class. If the constructor
receives a parameter, the constructor binds the in-

stantiated object with the corresponding Cassandra

table. This way, all the following accesses to that

object will be translated into accesses to that table.

On the contrary, if the constructor does not receive

a parameter, all data associated to that new object

instance will be kept in memory until the makePer-

sistent method is executed.

– Query/Update data: these operations are implemented

through the get item and the set item methods of the

Persistent Dictionaries. There are two different sce-

narios: if the object is in memory, the implementa-

tions of these methods are translated into the usual

methods of a Python dictionary; if the object is

backed by a Cassandra table, then the implementa-
tions of these methods consist on queries performed
on the Cassandra table.

– Data iteration: as we have explained in section 5.1.2,

the implementation of the keys method of a Persis-

tent Dictionary returns a block of keys that will be
the input parameter of a task. In order to enhance

data locality, we decided to create the blocks of keys
based on their node location. This way, PyCOMPSs
can use the information about the data location to

schedule tasks local to the data. Thus, we have im-

plemented two different iterators: one of them to

create the different blocks of keys and the other one

to traverse all the keys in a block (see figure 16).

– Delete a persistent object: this operation is imple-

mented by the delete persistent method of the Stora-

geObj and it just deletes from the database the table

that was backing the object.

6 Evaluation

This paper presents the evaluation of PyCOMPSs in

two different cases: evaluation of PyCOMPSs standalone

and evaluation of PyCOMPSs with the support for Big

Data with the Hecuba backend.

Fig. 16 Implementation of iterators.

6.1 Test Environment

The evaluation has been performed in two different

environments. The standalone PyCOMPSs tests have
been executed in the MareNostrum III supercomputer.
MareNostrum III is a cluster with 3,056 compute nodes,
each of them 2x Intel SandyBridge-EP E5-2670/1600

20M with 8 cores at 2.6 GHz connected with a Infini-

band FDR10 network.

The tests of PyCOMPSs with the support for Big

Data have been performed in a cluster of 5 nodes. Each

node is equipped with 2 Intel Xeon Quad-Core L5630

at 2.13GHz, 24 GB RAM and 6 TB HDD, and they are

interconnected with Gigabit Ethernet. Out of the five

nodes, one executes the main program of the applica-

tion and the PyCOMPSs master runtime, while the rest

are PyCOMPSs worker nodes that execute tasks. The

4 worker nodes also form a Cassandra ring and have

the Hecuba backend installed. The master node has an

Hecuba client and a Cassandra client.

In all cases we used PyCOMPSs version 1.2 1.

6.2 Standalone Tests

PyCOMPSs has been evaluated in MareNostrum III

with two different applications: DimSweep and Neu-

ronCorr. DimSweep performs a cluster architecture ex-

ploration using the Dimemas simulator performing a

parameter sweep of several configuration values: Fabric

Interconnection Network latency and bandwidth, num-
ber of nodes, CPU speed, and intranode latency and
bandwidth.

Dimemas [27] is a simulator of the behavior of MPI

applications under different network and architecture

1 Available at www.bsc.es/compss
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Fig. 17 Performance of DimSweep. The chart shows ellapsed
time and speed-up using as baseline the 16 workers case.

conditions by means of replaying the applications’ ex-

ecutions recorded in traces. This PyCOMPSs example

is codified with two different tasks’ types: one that ex-

ecutes the Dimemas simulation and another one that

accumulates the results. While the simulation tasks are

independent between them, the accumulation tasks cre-
ate a chain of dependencies that serialize all them. To
avoid a long chain of these tasks at the end of the ex-
ecution, these tasks are prioritized in such a way that

are inserted between the simulation tasks.

For the experiment a case with a real execution

tracefile and a combination of parameters’ configura-

tions that generated 2304 tasks was used. Figure 17

shows the results obtained when varying the number

of cores used for PyCOMPSs workers from 16 to 512.

The time is the total ellapsed time and the speedup is

computed using as baseline the case with 16 workers.

The results show very good scaling up to 128 workers,

reducing a bit for larger processor counts.

NeuronCorr is a neuroscience data processing exam-

ple that computes all mutual cross-correlations between

all pairs of a set of spike data [23]. The original example

was written in Parallel Python and has been translated

to PyCOMPSs. The example has two tasks’ types: one
that compute the cross-correlations for a block of data
and a second one that gathers the results in a data
structure. Since the gathers create a chain of tasks, this

type of task is prioritized to avoid a long serial chain at

the end of the execution. The evaluation was performed

with a data set that generates 2048 tasks.

Figure 18 shows the results obtained for the Neu-

ronCorr example. Due to the small granularity of the

tasks this example does not scale as well as the Dim-

Sweep one.

Fig. 18 Performance of NeuronCorr. The chart shows el-
lapsed time and speed-up using as baseline the 16 workers
case.

Cassandra topology PyCOMPSs workers Time(s)
4, 4, 0, 0 4, 4, 0, 0 19228
8, 8, 0, 0 8, 8, 0, 0 10273
16, 16, 0, 0 16, 16, 0, 0 ∗ 12867
16, 16, 16, 16 16, 16, 16, 16 ∗ 6644

Table 4 Performance results for the NeuronCorr application
with persistent storage for some configurations. The column
on the left describes the Cassandra configuration, indicating
how the Cassandra nodes are mapped in the Minerva clus-
ter nodes. The column in the middle describes the number of
PyCOMPSs workers mapped in each of the Minerva cluster
nodes. In the cases marked with ∗, multithreading is acti-
vated.

6.3 Tests on Persistent Storage

For this section, PyCOMPSs has been evaluated with

NeuronCorr application, in the Minerva cluster (Fig-

ure 19). All simulation tasks are independent, and in-

put data is obtained from a Cassandra table previously
created. Once the execution starts, input data is struc-
tured in blocks, and this information is used by tasks to
know which Cassandra node contains its information.

Once each task has finished executing, resulting data is

saved in Cassandra.

Table 4 presents results using different configura-

tions of Cassandra nodes and PyCOMPSs workers for

a given input data. The column in the left shows the

mapping of the Cassandra nodes to Minerva cluster

nodes. The column in the middle shows the mapping of

PyCOMPSs workers to the Minerva cluster nodes, us-

ing multithreading in some cases (marked with ∗). The
same total count of Cassandra nodes and PyCOMPSs

workers is used to balance workload. These results show

good scaling between the cases of the same nature (with

multithreading or without multithreading). The results

also reflect the impact of sharing resources between

threads when multithreading is used.
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Fig. 19 Hecuba Topology for Persistent Storage

7 Conclusions and Future Work

This paper has presented PyCOMPSs, a programming

framework that facilitates the development of parallel

computational workflows in Python. With PyCOMPSs,

the user programs her script in a sequential fashion and

decorates the functions to be run as asynchronous par-

allel tasks. A runtime system is in charge of exploiting

the inherent concurrency of the script, detecting the

data dependencies between tasks and spawning them

to a set of distributed resources. Those resources can

be physical nodes in a cluster or grid or virtual ma-

chines in a cloud.

We have also described an extension to the Py-
COMPSs programming model and runtime system that

builds on top of a persistent object storage layer. In this

approach, the application data is stored in a distributed

storage backend (e.g. a key-value store like Cassandra).

From the application point of view, such data is ab-

stracted and accessed as Python objects, no matter the

particular backend being used underneath. PyCOMPSs
tasks can receive persistent objects as parameters, and
these tasks will be scheduled taking into account data

locality, launching them to resources that store the data

they need. Furthermore, multiple applications can share

data in a concurrent way through this persistent object

layer.

The future work includes incorporating a new back-

end for persistent objects, based on the Scalable Key-

Value Store [16] being developed at IBM. On the other

hand, we will offer a web portal for programming, de-

ploying and executing PyCOMPSs scripts on the cloud,

which will leverage the IPython notebook [6] tool as the

main interface for interactive script development and

execution.
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