
226

correspondence

Pycro-Manager: open-source software for
customized and reproducible microscope control
To the Editor — Cutting-edge innovations
in biological microscopy are increasingly
blurring the line between data acquisition
and data analysis. Computational
microscopy and machine-learning-based
methods take this paradigm to an extreme,
often producing raw measurements that
are not human-interpretable without
postprocessing1–3. Furthermore, new
data-adaptive imaging methods rely
on data processing during acquisition to
actively control various hardware settings
of the microscope.

Testing new ideas and applying them
for biological discovery is often impeded
by a lack of control software that is
capable of meeting demands for speed
and performance, integrating new and

diverse types of hardware, providing the
flexibility to adapt in real time to the data
being captured, and providing user-friendly
programming interfaces. As a result,
researchers often end up developing custom
software that works only with specific
instruments, using closed-source and/or
proprietary programming languages. In
addition to slowing development, this lack
of a consistent software ecosystem creates
barriers to reproduction and replication
of new techniques. These include the
increased likelihood of bugs in code that is
not reused and tested in different contexts,
the burden on new users of understanding
new code bases, and the extra work of
disentangling high-level code that is not
properly abstracted from the underlying

hardware. In many fields the Python
programming language — in particular,
the NumPy and SciPy ecosystem4,5 — has
emerged as a common framework for
reproducing research results that rely on
complex, multilayer scientific workflows in
a portable, scriptable form6 that is accessible
to researchers with various levels of
programming experience.

The central challenge of such a
consolidated approach in microscopy is the
diversity of hardware used in different types
of microscopes, ranging from custom-built
components on optical tables to turnkey
commercial systems. µManager7,8 is an
essential tool for controlling microscopes,
thanks to an extensive library of ‘device
adapters’ for controlling different types

Get
image(s)

Hardware-
optimized

events

Start
camera

Adjust
hardware

Scientific
computing

Pycro-Manager

Acquisition hook

Acquisition events

Software architecture

Pycro-Manager high-level programming interface

Data/instruction
transfer layer

Acquisition engine

Hardware
abstraction

layer

Data
visualization

Acquired data

Hardware
control

External
Python
libraries

Machine
learning

1) Call Java or C++
through Python

2) High-level
programming interface

a

b

High-level programming interface code examplesc

Acquisition
engine

Core

Drivers

μManager

Acquistion hooks

Data-driven acquisition

Images
Saving

and
display

Acquisition
events

Image
processors

GUI

Java

Java
plug-ins

Graphical
user interface
(e.g., Micro-
Magellan)

Image processor

Fig. 1 | Pycro-Manager. a, Software architecture overview. Grey: the existing parts of µManager provide generic microscope control abstracted from

specific hardware, a graphical user interface (GUI), a Java plug-in interface, and an acquisition engine that automates various aspects of data collection.

Orange: Pycro-Manager enables access to these components through Python over a network-compatible transport layer, as well as a concise, high-level

programming interface for acquiring data. Purple: these provide integration of data acquisition with Python libraries for hardware control, data visualization,

scientific computing and so forth. b, Pycro-Manager’s high-level programming interface. The data acquisition process in Pycro-Manager starts with a source

of acquisition events (blue), from either programming or a GUI. These events are passed to the acquisition engine (green), which optimizes them to take

advantage of hardware triggering where available, sends instructions to hardware and acquires images. The resulting images are then saved and displayed in

the GUI (magenta). The three main abstractions of the Pycro-Manager high-level programming interface (acquisition events, acquisition hooks, and image

processors) enable fine-grained control and customization of this process. c, Code examples. Code snippets for implementing acquisition events (blue),

acquisition hooks (green) and image processors (magenta). (“Python” and the Python logos are trademarks or registered trademarks of the Python Software

Foundation, used with permission from the Foundation. C++ logo from http://isocpp.org/about).

NATURE METHODS | VOL 18 | MARCH 2021 | 226–228 | www.nature.com/naturemethods

http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-021-01087-6&domain=pdf
http://isocpp.org/about
http://www.nature.com/naturemethods

227

correspondence

of hardware, from cameras to complete
microscopes, with a single programming
interface. Community contributions of
device adapters, plug-ins and scripts
provide hundreds of developer-years of
microscopy automation.

Despite the power of these libraries,
which are written in C++ and Java, they
are often difficult to integrate with the
latest developments in computer vision
and scientific computing, which most
readily interface with NumPy. This not
only increases the difficulty of developing
techniques that rely on both customized data
capture and data analysis, but also hinders
the dissemination and adoption of these
techniques by fragmenting them across
multiple tools and programming languages
and making them harder to understand and
test in new contexts.

Many groups are developing
microscopy control software that is
written mostly or entirely in Python,
including, Python Microscope9, Python
Microscopy Environment (http://www.
python-microscopy.org/) and Tormenta10
(a complete list is at https://doi.org/10.5281/
zenodo.4433237). However, these tools
are currently limited to specific types of
microscopy (for example, super-resolution)
and/or support a relatively small
number of hardware devices. Thus,
despite the potential benefits of such
a design, they face an enormous task
to match µManager’s flexibility and
device support.

To address these needs, we present
here Pycro-Manager. Pycro-Manager is
built on a translation layer that converts
Java objects, functions and data into
language-agnostic messages that are
reconstituted as Python objects or
functions and as NumPy arrays (Fig. 1a and
Supplementary Information). As a result,
the existing capabilities of µManager
can be called as if they had been written
in Python, without forcing users to learn
Java, forcing Java developers to learn
Python, or abandoning of the relative
strengths of either language (Supplementary
Information).

In addition, Pycro-Manager provides
a new library of high-level programmatic
building blocks (in Python) for customizing
data acquisition. These are designed
to facilitate creation of complex data
acquisitions with concise, readable
code while maintaining the flexibility
required for customization and the ability
to handle multi-terabyte datasets acquired
at speeds over 1 GB s–1 (Supplementary
Information).

The high-level application
programming interface (API) contains

three main abstractions: acquisition events,
acquisition hooks and image processors
(Fig. 1b,c). These building blocks can
be used individually or combined for
more complex applications. Acquisition
events enable customized instructions for
how to adjust hardware when acquiring
images and how to index those images
along arbitrary axes (for example, time, z,
etc.) for storage and display. For common
microscopy workflows like time-lapses
and z-stacks, events can be automatically
generated by high-level functions (Fig. 1c).
Alternatively, they can be created manually
from nested Python lists and dictionaries
to allow a greater degree of customization.
Acquisition hooks enable the execution
of arbitrary Python code concurrently
at various stages of the data acquisition
process. Image processors give access to
the image data as soon as it is acquired,
for modification or for use in data-
driven feedback loops on the acquisition
process.

The combination of Jupyter notebooks
(https://jupyter.org/) — interactive
documents that consolidate text,
code, equations and results — and
the Pycro-Manager high-level API
provides a means to describe the full
workflow of a research project, from data
acquisition to analysis to results, thereby
facilitating understanding, dissemination
and reproduction of new microscopy
technologies. For techniques that
rely heavily on computation, these
notebooks can be as valuable as (or even
more valuable than) their corresponding
research papers.

In the Supplementary Information
and online documentation (https://
pycro-manager.readthedocs.io/en/latest/#),
we provide tutorials describing the basic
features of Pycro-Manager, as well as Jupyter
notebooks outlining sample applications
in microscope alignment, light sheet
microscopy, integrated sample processing,
computational microscopy and machine
learning, and the control of microscopes
over networks.

The source code and documentation
for Pycro-Manager can be found in the
Supplementary Information, and future
updates will be posted at https://github.com/
micro-manager/pycro-manager and https://
pycro-manager.readthedocs.io/en/latest/#.

Reporting summary
Further information on experimental design
is available in the Nature Research Reporting
Summary linked to this paper. ❐

Henry Pinkard   1,2,3,4 ✉, Nico Stuurman   5,
Ivan E. Ivanov6, Nicholas M. Anthony   7,

Wei Ouyang8, Bin Li   9, Bin Yang6,
Mark A. Tsuchida9, Bryant Chhun6,
Grace Zhang1, Ryan Mei1,
Michael Anderson10,11, Douglas P. Shepherd12,
Ian Hunt-Isaak13, Raymond L. Dunn14,
Wiebke Jahr   15, Saul Kato16,17,18, Loïc A. Royer   6,
Jay R. Thiagarajah   10,11, Kevin W. Eliceiri   9,
Emma Lundberg   8, Shalin B. Mehta6 and
Laura Waller   1,3

1Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley, Berkeley,

CA, USA. 2Computational Biology Graduate Group,

University of California Berkeley, Berkeley, CA, USA.
3Berkeley Institute for Data Science, University of

California, Berkeley, Berkeley, CA, USA. 4University

of California San Francisco Bakar Computational

Health Sciences Institute, San Francisco, CA, USA.
5Howard Hughes Medical Institute and University

of California, San Francisco, San Francisco, CA,

USA. 6Chan Zuckerberg Biohub, San Francisco,

CA, USA. 7Department of Biomedical Engineering,

Northwestern University, Evanston, IL, USA. 8Science

for Life Laboratory, School of Engineering Sciences

in Chemistry, Biotechnology and Health, KTH –

Royal Institute of Technology, Stockholm, Sweden.
9University of Wisconsin at Madison, Madison, WI,

USA. 10Division of Gastroenterology, Hepatology and

Nutrition, Boston Children’s Hospital, Boston, MA,

USA. 11Harvard Medical School, Boston, MA, USA.
12Center for Biological Physics and Department of

Physics, Arizona State University, Tempe, AZ, USA.
13Applied Physics Graduate Program, John Paulson

School of Engineering and Applied Sciences, Harvard

University, Cambridge, MA, USA. 14Neuroscience

Graduate Program, Department of Neurology,

Department of Cell and Tissue Biology, University

of California, San Francisco, San Francisco,

CA, USA. 15Institute of Science and Technology

Austria, Klosterneuburg, Austria. 16Department of

Neurology, University of California, San Francisco,

San Francisco, CA, USA. 17Weill Institute for

Neuroscience, University of California, San Francisco,

San Francisco, CA, USA. 18Kavli Institute for

Fundamental Neuroscience, University of California,

San Francisco, San Francisco, CA, USA.
✉e-mail: hbp@berkeley.edu

Published online: 5 March 2021
https://doi.org/10.1038/s41592-021-01087-6

References
 1. Boominathan, V. & Adams, J. K. IEEE Signal Process. Mag. 33,

23–35 (2016).

 2. Gustafsson, M. G. L. J. Microsc. 198, 82–87 (2000).

 3. Pavani, S. R. P. & Piestun, R. Opt. Express 16, 22048–22057

(2008).

 4. Harris, C. R. et al. Nature 585, 357–362 (2020).

 5. Virtanen, P. et al. Nat. Methods 17, 261–272 (2020).

 6. Poldrack, R. A., Gorgolewski, K. J. & Varoquaux, G. Annu. Rev.

Biomed. Data Sci. 2, 119–138 (2019).

 7. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N.

Curr. Protoc. Mol. Biol. 92, 1–17 (2010).

 8. Edelstein, A. D. et al. J. Biol. Methods 1, 10

(2014).

 9. Miguel, D. et al. Preprint at bioRxiv (2021).

 10. Barabas, F. M., Masullo, L. A. & Stefani, F. D. Rev. Sci. Instrum. 87,

126103 (2016).

NATURE METHODS | VOL 18 | MARCH 2021 | 226–228 | www.nature.com/naturemethods

http://www.python-microscopy.org/
http://www.python-microscopy.org/
https://doi.org/10.5281/zenodo.4433237
https://doi.org/10.5281/zenodo.4433237
https://jupyter.org/
https://pycro-manager.readthedocs.io/en/latest/
https://pycro-manager.readthedocs.io/en/latest/
https://github.com/micro-manager/pycro-manager
https://github.com/micro-manager/pycro-manager
https://pycro-manager.readthedocs.io/en/latest/
https://pycro-manager.readthedocs.io/en/latest/
http://orcid.org/0000-0002-4748-5207
http://orcid.org/0000-0002-6179-8613
http://orcid.org/0000-0003-2882-2471
http://orcid.org/0000-0003-0695-393X
http://orcid.org/0000-0003-0201-2315
http://orcid.org/0000-0002-9991-9724
http://orcid.org/0000-0002-1437-325X
http://orcid.org/0000-0001-8678-670X
http://orcid.org/0000-0001-7034-0850
http://orcid.org/0000-0003-1243-2356
mailto:hbp@berkeley.edu
https://doi.org/10.1038/s41592-021-01087-6
http://www.nature.com/naturemethods

228

correspondence

Acknowledgements
We thank S. van der Walt and K. Marchuk for discussion

during development. This project was funded by Packard

Fellowship and Chan Zuckerberg Biohub Investigator

Awards to L.W.; STROBE: A NSF Science and Technology

Center; an NSF Graduate Research Fellowship awarded

to H.P.; a Berkeley Institute for Data Science/UCSF Bakar

Computational Health Sciences Institute Fellowship

awarded to H.P. with support from the Koret Foundation,

the Gordon and Betty Moore Foundation, and the

Alfred P. Sloan Foundation to the University of California,

Berkeley. K.W.E., B.L. and M.T. were funded by the Chan

Zuckerberg Initiative and NIH grant P41GM135019.

Author contributions
Initial concept: H.P. Early development and planning:

H.P., N.S., L.W. Development of core libraries: H.P., N.S.,

I.E.I., N.M.A, M.T., B.C., I.H., S.B.M., L.W. Application

development, testing, bug finding, and supervision: H.P.,

I.E.I., W.O., B.L., B.Y., G.Z., R.M., M.A.,D.P.S., W.J., R.D.,

S.K., L.A.R., J.R.T., K.W.E., E.L., S.B.M, L.W. Manuscript

writing: H.P., N.S., I.E.I., S.M., L.W.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version

contains supplementary material available at https://doi.

org/10.1038/s41592-021-01087-6.

Peer review information Nature Methods thanks Robert

Haase and Dominic Waithe for their contribution to the

peer review of this work.

NATURE METHODS | VOL 18 | MARCH 2021 | 226–228 | www.nature.com/naturemethods

https://doi.org/10.1038/s41592-021-01087-6
https://doi.org/10.1038/s41592-021-01087-6
http://www.nature.com/naturemethods

n
atu

re research
 | so

ftw
are su

b
m

issio
n

 ch
ecklist

Ju
n

e
 2

0
1

7

1

Corresponding author(s): Henry Pinkard

Code and Software Submission Checklist
Prior to submitting your work to Nature Research, we strongly recommend that you ask at least one colleague who is unfamiliar with your software to

install the tool(s), follow the instructions, and provide feedback. This process will help ensure that reviewers will also be able to run your software.

You must submit all required content as a single zip file prior to peer review or provide a link where editors and reviewers can access all required content.

 Required content
Compiled standalone software and/or source code✔

A small (simulated or real) dataset to demo the software/code✔

A README file that includes:

1. System requirements

All software dependencies and operating systems (including version numbers)✔

Versions the software has been tested on✔

Any required non-standard hardware✔

2. Installation guide

Instructions✔

Typical install time on a "normal" desktop computer✔

3. Demo

Instructions to run on data✔

Expected output✔

Expected run time for demo on a "normal" desktop computer✔

4. Instructions for use

How to run the software on your data✔

(OPTIONAL) Reproduction instructions

We encourage you to include instructions for reproducing all the quantitative results in the manuscript.

 Additional information
Describe your software's license for use. We strongly recommend using a license approved by the Open Source Initiative.

BSD 3-Clause "New" or "Revised" License

Provide a link to the code in an open source repository (when available).

https://github.com/micro-manager/pycro-manager

Your manuscript should include a complete, detailed description of the code's functionality (i.e. pseudocode).

Please indicate where this is found:

Main text

Methods section

Elsewhere (specify):

https://pycro-manager.readthedocs.io/en/latest/features.html

 Examples of well-structured software packages

1. https://github.com/neurodata-papers/MGC

2. https://github.com/neurodata-papers/LOL

3. https://www.nature.com/nbt/journal/v34/n6/abs/nbt.3569.html#supplementary-information

4. https://www.nature.com/nature/journal/v548/n7669/full/nature23463.html#extended-data

https://github.com/yasharhezaveh/Ensai

5. https://www.nature.com/nbt/journal/v34/n11/full/nbt.3685.html#supplementary-information

https://github.com/IFIproteomics/LFQbench

	Pycro-Manager: open-source software for customized and reproducible microscope control

	Reporting summary

	Acknowledgements

	Fig. 1 Pycro-Manager.

