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PyDBS: An automated image-processing workflow

 for deep-brain stimulation surgery

Tiziano D’Albis · Claire Haegelen · Caroline Essert · Sara Fernández-Vidal · Florent Lalys · Pierre Jannin

Abstract

Purpose Deep-brain stimulation (DBS) is a surgical procedure for treating motor-related neurological disorders. 

DBS clinical efficacy hinges on precise surgical planning and accurate electrode placement, which in turn call  

upon several image-processing and visualization tasks, such as image registration, image segmentation, image  

fusion, and 3D visualization. These tasks are often performed by a heterogeneous set of software tools, which  

adopt differing formats and geometrical conventions, and require patient-specific parameterization or interactive 

tuning. To overcome these issues, we developed PyDBS, a fully-integrated and automated image-processing  

workflow for DBS surgery. 

Methods PyDBS  consists  of  three  image-processing  pipelines  and  three  visualization  modules  assisting 

clinicians through the entire DBS surgical workflow, from the preoperative planning of electrode trajectories to 

the the postoperative assessment of electrode placement. The system’s robustness,  speed and accuracy were  

assessed by means of a retrospective validation, based on 92 clinical cases. 

Results The complete PyDBS workflow achieved satisfactory results in 92% of tested cases, with a median  

processing time of 28 minutes per patient. 

Conclusion The results obtained are compatible with the adoption of PyDBS in clinical practice. 
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Introduction

High-frequency deep brain stimulation (DBS) is a minimally-invasive surgical therapy for treating motor-related  

disorders (e.g.,  Parkinson’s disease, essential tremor, and dystonia), which has recently been extended to the  

treatment  of  severe  psychiatric  disorders  (e.g.,  obsessive-compulsive  disorder  and severe  depression).  DBS 

consists in implanting electrodes in the basal ganglia, located deep in the patient’s brain, and delivering high-

frequency electric  pulses  to  the surrounding neural  tissues.  The reversibility  of  this  therapy,  along with its  

spectacular outcomes, have largely contributed to its success. It is important to note that both the quality of  

clinical  improvement  and  the  occurrence  of  adverse  effects  have  been  found  to  correlate  with  electrode 

placement  accuracy  [1-3].  Nevertheless,  accurate  positioning  of  DBS  electrodes  is  still  a  challenging  and  

laborious  procedure,  requiring  extensive  surgical,  anatomical,  and  functional  knowledge  of  the  brain,  and 

typically relying on several manual adjustments and tuning [4].

Electrode trajectories are planned prior to surgery based on  preoperative magnetic resonance (MR) imaging.  

This is a complex task, given that the brain structures targeted for stimulation are often not directly visible on  

conventional MR sequences due to limitations in image contrast and spatial resolution. Surgeons therefore often  

rely on multiple co-registered MR sequences or digital anatomical atlases for targeting. Once a trajectory has  

been  planned,  a  frame-based  stereotactic  procedure  is  conducted.  To  express  the  planned  trajectory  in 

stereotactic coordinates, the frame is detected on a MR or computer tomography (CT) scan of the patient’s skull  

(after frame fixation), and this scan is then registered to the MR image used for targeting. During surgery, the  

planned trajectory is  refined by means of  neurophysiological  microelectrode recordings (MERs)  and direct  

observation  of  the  stimulation’s  clinical  outcomes.  Following  surgery,  the  actual  position  of  the  electrode 

contacts is assessed by segmenting the corresponding artifacts on a postoperative CT scan. It is essential to know 

the exact position of the electrode contacts after surgery for the purposes of both lead programming and clinical  

research studies.

The DBS surgical workflow described above requires several image-processing and visualization tasks, such 

as intra-modal and mono-modal image registration, intensity-based and atlas-based image segmentation, and 

image fusion and 3D visualization. The accuracy, robustness, and usability of the software tools employed for  

these tasks are all critical elements for the success of the entire surgical workflow. At present, most clinical 

centers  rely on commercial  software systems for  DBS surgery.  These systems,  however,  often restrict  their  

functionalities to the planning phase of the workflow, demonstrate a lack of state-of-the-art  registration and 

segmentation  algorithms,  and  typically  require  several  manual  adjustments  before  the  final  result  can  be 

obtained.  In medical-imaging research, great effort is put into the design, implementation, and validation of  

novel image-processing algorithms, which address very specific computational problems and are recognized for  

their ever-increasing performance levels. Nevertheless, only in a few instances have research studies taken a  
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broad perspective at the surgical-workflow level. This kind of wide view is necessary to bridge the gap between  

research and application, with the aim of developing a software system that is effective in clinical practice. In 

this respect, effort should be spent in the integration and automation of the different algorithms and software  

tools available, in the interest of developing a coherent and usable software environment. This coherent software 

environment would then also be beneficial for the research itself by providing a shared platform where different  

algorithms  can  be  easily  compared,  or  even  combined  for  solving  problems  at  higher  levels  of  abstract  

complexity. The study presented in this paper contributes to this goal.   

Related work 

Several solutions have been proposed to assist physicians through the different stages of DBS surgical workflow. 

The study by Guo et al. [5] has presented a visualization and navigation system for stereotactic DBS procedures. 

This system aids physicians in the planning phase by registering and fusing anatomical and functional atlases to 

preoperative  patient  images  and  automatically  detecting  the  stereotactic  frame  on  MR  or  CT  scans. 

Intraoperatively, the system simulates the microelectrode descent along the stereotactic trajectory and collects 

MER data for the construction of functional atlases. Similar functionalities have also been implemented into the 

Cicerone system [6]. Despite this system not providing an automatic frame-detection algorithm, it does offer the 

additional functionality of visualizing a predicted volume of tissue activated by the stimulation. Neither of these 

systems,  however,  addresses  the  postoperative  phase  of  the  workflow,  where  the  implanted  electrodes  and 

stimulation contacts are to be detected.

Another software environment developed in order to provide assistance for DBS surgery is CranialVault [7].  

This  software  combines  a  centralized  data  repository  with  a  series  of  software  tools  for  automatic  data  

processing and visualization (CRAVE tools). The planning module includes functionalities for rigid registration 

of patient preoperative MR and CT scans and for non-linear deformation of multiple anatomical atlases in patient  

space.  These atlases  are  used for  both atlas-based segmentation of  brain structures  and localization of  two 

anatomical  landmarks  used  in  stereotactic  neurosurgery:  the  anterior  commissure  (AC)  and  the  posterior  

commissure (PC). Furthermore, a proposed stimulation target is estimated by projecting target centroids from 

previously implanted patients onto patient space, with electrophysiological and somatotopic maps also provided. 

By means  of  a  standard-angle  approach,  the  system provides  pre-computed  implantation  plans  that  can  be 

modified or validated by the surgeon. CranialVault and the CRAVE tools also include an intraoperative module  

with similar features to those implemented in the first two studies mentioned [5,6], along with a postoperative 

module for electrode contact detection.

Even though it includes a large set of functionalities, CranialVault does not provide segmentations of the brain 

vessels or cortical sulci. Given that brain vessel damage, particularly that which affects the large arteries lying 

within the cortical sulci, is a major risk factor in DBS surgery, it is highly desirable to segment these structures 

and visualize  them during  preoperative surgical  planning.  Furthermore,  as  CranialVault  relies  on a  patient-
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specific stereotactic frame, it does not provide functionalities for the segmentation and detection of standard  

stereotactic frames, such as the Leksell G-frame (Elekta AB, Stockolm, Sweden) or CRW frame (Radionics,  

Burlington, MA, USA). It should also be noted that, to date, only the planning module has been preliminary 

validated [7]. This consisted in measuring the accuracy of a) co-registration of patient’s preoperative images, b)  

detection of points AC and PC, and c) prediction of the stimulation targets, by ensuring planning consistency  

across surgeons [8]. Nevertheless, a validation of the segmented brain structures has not been reported.

Contribution

To  the  best  of  our  knowledge,  a  complete,  fully-integrated  and  automatic  image-processing  workflow for 

planning and postoperative assessment of DBS interventions has not yet been reported, despite all the previous  

related works. Furthermore, software's robustness, speed and accuracy have never been assessed in a systematic 

validation study. In this paper we present PyDBS, an automated image-processing workflow aiding surgeons and 

clinicians in the planning and assessment of DBS procedures. Leveraging on state-of-the-art algorithms and  

software tools, PyDBS provides a fully-integrated and automatic software environment for DBS surgery. The 

system's  robustness,  speed and accuracy were evaluated through a retrospective study involving 92 clinical 

cases. The results obtained are compatible with the adoption of PyDBS in clinical practice.

Materials and methods

PyDBS comprises three image-processing pipelines and three visualization/interaction modules. Each pipeline is  

executed at a different phase of the DBS surgical workflow, with an associated 3D scene collating all results  

generated at completion. The 3D scenes, specified in the Medical Reality Markup Language (MRML), can be  

readily visualized by means of a 3D Slicer [9, 10]. Using the MRML format, the full set of parameters required 

for  3D  visualization,  such  as  screen  layout,  colors,  transparencies,  camera  viewpoints,  and  geometrical 

transformations, can, in fact, be pre-computed and stored within the scene file itself. Furthermore, the user can  

easily  interact  with  a  generated  3D scene  by  means  of  the  three  PyDBS visualization/interaction  modules  

implemented as 3D Slicer plugins.

PyDBS in the surgical workflow

Fig. 1 displays typical usage of PyDBS within the DBS surgical workflow. Prior to surgery, T1-weighted and T2-

weighted MR images of the patient’s brain are acquired. The two images, along with a digital anatomical atlas,  

are the input to the PyDBS inclusion pipeline. The inclusion pipeline, following interactive localization of the 

anatomical  landmarks  AC and  PC,  then  performs an  intensity-based  segmentation  of  the  scalp,  brain,  and 

cortical sulci, as well as an atlas-based segmentation of the brain ventricles and basal ganglia. The scalp surface  
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serves as definition of the space of possible entry points for the implantation, with the cortical sulci and brain 

ventricles  representing  structures  to  be  avoided by  the  electrode  trajectory  [11],  and  the  basal  ganglia  the 

stimulation targets. The T2-weighted image is then also registered onto the T1-weighted image for an improved 

visualization of the deep basal ganglia nuclei (e.g., the red nucleus). The pipeline output consists of an MRML 

scene containing the registered MR images, in addition to the masks and meshes of the segmented anatomical  

structures. Based on this scene, and by using the dedicated PyDBS plugin, the surgeon validates the results and  

interactively defines the electrode trajectories for the implantation (Fig. 2).

On the day of  surgery,  a  surgical  stereotactic  frame is  fixed on the patient’s  skull  and head CT scan is  

performed. This scan, along with a geometrical 3D model of the surgical frame, provides the input to the PyDBS  

preoperative pipeline. At this point, the head CT scan is registered onto the T1-weighted MR volume, the skull 

segmented,  and  the  surgical  frame  detected.  With  the  benefit  of  frame  detection,  the  planned  trajectories  

originally defined in the patient’s AC-PC space can be expressed in the coordinates of the stereotactic frame. The 

pipeline  output  consists  of  an  MRML scene  containing  the  results  of  both  the  inclusion  and  preoperative 

pipelines. Based on this scene, the surgeon validates the MR-CT registration and frame detection, then retrieves  

the  stereotactic  coordinates  of  the  planned trajectories.  The  surgeon is  also  able  to  visualize  the  estimated  

positions of the five micro-electrodes used for intraoperative trajectory refinement. Furthermore, if a trajectory 

angle has been modified during surgery, the new trajectory can be readily updated and visualized in the space of 

the preoperative MR image.

Following surgery, a postoperative head CT scan is performed. This image, along with a geometrical 3D  

model of the implanted electrodes, represents the input to the PyDBS postoperative pipeline. At this point, the  

postoperative  CT  is  registered  onto  the  preoperative  CT  and  projected  onto  the  patient’s  AC-PC  space. 

Furthermore, the implanted electrodes are segmented based on the postoperative CT image, and the stimulation  

contacts are localized. Lastly, an MRML scene containing the results of the three pipelines is generated. Based  

on this scene, the surgeon assesses the electrode contact positions and compares the real trajectories with the  

planned ones.

System perspective

From  a  computing  system  perspective,  PyDBS  operates  from  input  data  consisting  of  patient-specific 

information,  such  as  patient  images  and  clinical  data,  and  generic  models,  such  as  an  anatomical  atlas,  

stereotactic frame model, and electrode model, then outputting a patient-specific model for the planning and 

postoperative assessment of DBS surgery (Fig.  3).  The generated patient-specific model consists of  images,  

segmented anatomical structures (i.e., binary masks and meshes), and geometrical transformations (i.e., linear 

registration matrices and non-linear deformation fields). All images, masks, and meshes are mapped to a shared  
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reference space (the patient’s AC-PC space).

Data import

All patient-specific data is managed by an internal relational database. An automatic import procedure populates  

the database with relevant  image metadata  extracted from DICOM media (e.g.,  modality,  volume size,  and 

sequence type), converting the DICOM series into NIfTI format [12]. NIfTI images are stored in predefined  

locations  on  the  file-system and  then  referenced by  the  internal  database.  Clinical  data,  such  as  the  brain 

structure targeted for stimulation, the lateralization, and electrode type, can be either automatically imported 

from a clinical database or interactively provided at the beginning of a pipeline execution. Additional patient  

clinical data (e.g.,  clinical scores) can also be imported into the database. All data in the database is easily  

accessible from a web-based application or a graphical user interface, both of which are provided by PyDBS.

Pipeline execution

PyDBS pipelines are executed from the command-line or by means of a simple graphical user interface. At the  

beginning of each pipeline, the user is asked to select the patient image(s) to be processed from a list of matching 

entries in the internal database. Following this initial selection, a pipeline is automatically executed with no need 

for  further  user  interaction  (with  the  exception  of  manually  localizing  AC and PC points  in  the  inclusion 

pipeline). On completion, the results, namely the images, masks, meshes, and geometrical transformations, are  

stored in a predefined folder on the local file-system, with an associated MRML scene description file generated  

for each pipeline.

Inclusion pipeline

The inclusion pipeline is composed of six processing steps (Fig. 4, left). Firstly, the two MR images of the  

patient  brain  (T1-weighted  and  T2-weighted)  are  imported  from  the  internal  database.  Secondly,  the  user 

localizes the anatomical landmarks AC and PC on the T1-weighted image.  This is the only step out of all three  

pipeline procedures that requires user interaction. We opted for the manual detection of AC and PC due to the  

high inter-surgeon variability that characterizes this localization [15]. Furthermore, there are several localization  

strategies currently in use in clinical practice, and we decided not to constrain the users in their choice. Once the  

AC-PC reference frame has been defined, a batch execution of the BrainVISA Morphologist pipeline [13, 14] is  

triggered. This pipeline performs an intensity-based segmentation of the scalp, brain (gray and white matter), and 

cortical sulci. We selected the BrainVISA Morphologist pipeline due to its proven robustness for segmenting the 

cortical sulci [13], a particularly important segmentation for the purposes of our work. The T2-weighted and T1-

weighted MR images are then subject to rigid co-registration. All linear registrations are computed by means of  

the FMRIB's Linear Image Registration Tool (FLIRT), which has been proven to outperform other commonly-
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used linear-registration algorithms in terms of accuracy and robustness [16, 17]. For both mono- and multi-

modal linear-registrations, we have adopted a cost function based on mutual information.

Atlas-based segmentation

The T1-weighted image of the patient’s brain is registered onto an anatomical atlas for performing an atlas-based  

segmentation of the brain ventricles and basal ganglia. The atlas we have adopted was constructed by averaging 

57 T1-weighted MR images of Parkinson’s disease patients,  defining 24 anatomical structures, all  manually 

segmented by an anatomist [18]. Atlas registration is performed over five processing steps (Fig. 5), including 

both linear  and non-linear  registrations  and taking a  similar  global-to-local  approach to  the one previously 

described by Lalys et al. [19]. Firstly, all non-brain voxels are masked out of both images, followed by rigid co-

registration of both (six degrees of freedom [DOF]). Secondly, the two images are affinely co-registered (12 

DOF). Thirdly, a box volume corresponding to a region-of-interest (ROI) around the basal ganglia and defined in 

the  anatomical  atlas  space  is  cropped from both  images.  Fourthly,  the  two  cropped  ROIs  are  linearly  co-

registered  (12  DOF).  Finally,  the  ROIs  are  non-linearly  co-registered  using  the  symmetric  diffeomorphic  

registration  algorithm  (SyN)  with  cross-correlation  as  cost  function  [20,  21].  We  chose  this  deformation 

algorithm based on a recent validation study that reported SyN to be one of the best performing algorithms for  

iconic non-linear brain image registration [22]. At the end of the registration process, brain-ventricle and basal-

ganglia segmentations are projected from the atlas space onto the patient space (Fig. 6). In the final step, an  

MRML scene is generated.

Preoperative pipeline

The preoperative pipeline is composed of six processing steps (Fig. 4, middle). Firstly, the preoperative CT scan  

of the patient’s head (fixed to the stereotactic frame) is imported from the internal database. Secondly, this CT 

image is  rigidly registered onto the preoperative T1-weighted MR image of  the patient's  brain.  Thirdly,  an 

intensity-based segmentation of the patient’s skull and the four frame screws is performed by means of a chain 

of thresholding and connected-component-labeling operations (Fig. 7a, top). In the fourth step, the frame artifact  

is segmented using an analogous strategy (Fig. 7a, bottom). In the fifth step, the frame model is rigidly registered  

onto the patient's  CT scan.  This is  done by means of a two-step procedure,  the first  step consisting of ten 

landmark points automatically detected on the frame artifact, namely the two most superior points for each frame 

side and the three points at half of the frame height (Fig. 7b). These landmarks are used to estimate an initial  

rigid registration matrix between frame model and the patient's CT scan (point-based optimization algorithm 

[23]). Then, the two images are rigidly-co registered using the estimated matrix as initialization. At the final step,  

a second MRML scene is generated with these results.
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Postoperative pipeline

The postoperative pipeline is composed of six processing steps (Fig. 4, right). Firstly, the postoperative CT is 

imported in from the internal database. Secondly, this image is thresholded in order to obtain a coarse skull  

segmentation. In the third module, the postoperative CT is rigidly registered onto the preoperative CT, a process 

which takes two steps, namely a global-search registration between the two segmented skulls, followed by a  

local-search  registration  between  the  two  original  volumes.  In  the  fourth  step,  the  electrode  artifacts  are 

segmented on the postoperative CT by applying the brain masks computed on the T1-weighted MR image (one 

per hemisphere) and by thresholding the resulting volume. In the fifth step, the electrode contacts are detected by 

registering  the geometrical  model  of  the  implanted  electrodes  to  the  segmented artifacts.  The electrode tip 

position is calculated using the coordinates of the most inferior voxel in the electrode artifact, and the direction 

of the electrode axis is estimated by applying principal-component analysis to the artifact voxels within a 15mm 

radius from the electrode tip (Fig. 8).

Validation

The three pipelines were retrospectively validated against a dataset comprising 92 patients available at our site.  

We included all patients having been implanted from September 2006 to September 2012 at the Neurosurgical  

Department of the University Hospital of Rennes (France). The inclusion criteria consisted of availability of: 1)  

3T T1-weighted MR image with gadolinium injection (1mm x 1mm x 1mm, Philips Medical system), 2)  3T T2-

weighted MR image (1mm x 1mm x 1.1mm, Philips Medical system), 3) preoperative CT scan with stereotactic  

frame (0.55mm x 0.55mm x 0.6mm, GE Healthcare VCT 6),  and 4) postoperative CT scan with implanted  

electrodes (0.44mm x 0.44mm x 0.6mm, GE Healthcare VCT 64). Informed consent  was obtained from all 

patients. Despite there being only T1-weighted MR images acquired after frame fixation available for a subset of 

patients  (n=37),  in  all  cases,  the stereotactic frame was detected from a preoperative CT scan.  The dataset  

comprised patients having undergone unilateral (n=14) or bilateral (n=78) DBS surgery. The targeted anatomical  

structures were the sub-thalamic nucleus (n=37), globus pallidus internum (n=32),  or the caudal  part of the  

ventro-lateral thalamic nucleus (n=23). Patient pathologies included Parkinson’s disease (n=63), essential tremor 

(n=12), dystonia (n=9), Tourette syndrome (n=4), and obsessive-compulsive disorder (n=4). For all patients, the 

Leksell G stereotactic frame (Elekta Instruments AB, Stockholm, Sweden) has been used, and the implanted  

electrodes were Medtronic 3389 or 3387 electrodes (Medtronic Sofamor Danek). 

The pipelines were executed on a 64-bit laptop with an Intel® i7-2860QM CPU (8 cores, 2.50GHz clock  

frequency)  equipped  with  16GB of  RAM.  The  results  were  qualitatively  validated  by  an  expert,  with  the  

processing times measured for each pipeline. This qualitative validation consisted of seven steps (three for the 

inclusion pipeline, two for the preoperative pipeline, and two for postoperative pipeline), each supplemented by 

a 3D scene visualized by the expert (Fig. 9). The corresponding results were evaluated as either satisfactory or  
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unsatisfactory,  with  respect  to  their  potential  use  for  preoperative  planning  of  electrode  trajectories  and  

postoperative assessment of electrode placement. If any element within the 3D scene was considered misleading  

for the purposes of these two tasks, the corresponding validation step was marked as unsatisfactory. Pipeline 

results were considered satisfactory only if all their validation steps were satisfactory.

The inclusion pipeline was validated in three steps: 1) validation of the intensity-based brain segmentation, 2)  

validation of the T2-weighted image registration, and 3) validation of the atlas-based segmentation of the brain 

ventricles and basal ganglia (Fig. 9 a-c). The preoperative pipeline was validated in two steps: 1) validation of 

preoperative CT registration, and 2) validation of frame detection (Fig. 9 d-e). Lastly, the postoperative pipeline 

was  validated  in  two  steps:  1)  validation  of  postoperative  CT registration,  and  2)  validation  of  electrode 

segmentation and electrode contact detection (Fig. 9 f-g).

Results

Validation results are reported in Fig. 10a. The inclusion pipeline achieved satisfactory results for all patients  

except two (#75 and #127), corresponding to a 98% success rate. For patient #75, the atlas-based segmentation 

produced unsatisfactory results. This was due to the patient exhibiting very large ventricles compared to the 

anatomical atlas, resulting in a mismatch between the region-of-interest cropped from the patient image and the  

corresponding region on the atlas.  For patient  #127,  the intensity-based brain segmentation terminated with  

errors. This can probably be attributed to the presence of movement artifacts in the original T1-weighted MR  

volume. Given this pipeline’s unsuccessful termination, the preoperative and postoperative pipelines could not 

be executed for this patient.

   The preoperative pipeline produced satisfactory results for 86 patients out of the 91 tested, corresponding to a  

94% success rate. The pipeline failed on one occasion due to an unsatisfactory registration of the preoperative 

CT with the preoperative MR (patient #79), and on four occasions due to an unsatisfactory frame detection  

(patients #39,  #54,  #89,  and #116).  Where frame detection failed,  the problem was owing to an inaccurate  

segmentation of the frame artifact caused by non-frame voxels that were not masked out from the image. In all  

cases, the preoperative pipeline terminated with no reported errors.

Satisfactory  results  were  obtained  with  the  postoperative  pipeline  for  90  patients  out  of  the  91  tested, 

corresponding  to  a  99%  success  rate.  For  one  patient  (#89),  the  pipeline  failed  due  to  an  unsatisfactory  

registration of the postoperative CT with the preoperative CT. For this patient, despite the electrode contacts 

being correctly detected, their coordinates could not be correctly expressed in the AC-PC reference frame. In all  

cases, the postoperative pipeline terminated with no reported errors.

Combining the results of the three pipelines, satisfactory results were obtained for 85 patients out of the 92  

tested,  corresponding  to  a  92%  success  rate.  Pipeline  processing  times  are  reported  in  Fig.  10b.  Median 

processing times were approximately 15 minutes  for  the inclusion pipeline,  7  minutes  for  the preoperative  
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pipeline, and 4 minutes for the postoperative pipeline, with a total processing time of 28 minutes per patient. The  

processing  times  for  the  most  time-consuming  modules  of  each  pipeline  have  also  been  reported.  For  the 

inclusion pipeline, the most time-consuming module was the intensity-based brain segmentation (Morphologist 

pipeline), which took approximately 7 minutes to complete, followed by the atlas registration (approximately 6  

minutes),  and  the  interactive  detection  of  the  AC and PC points  (approximately  2  minutes).  For  both  the  

preoperative and postoperative pipelines, the most  time-consuming module was the CT volume registration, 

which took a median time of 3.5 minutes to complete.

Discussion and future work

In this article, we have presented PyDBS, an integrated image-processing workflow for DBS surgery. PyDBS 

includes three image-processing pipelines and three visualization/interaction modules. The three pipelines are 

fully automatic (exception made for the manual localization of the points AC and PC) and completely general,  

meaning that no patient-specific parameter tuning is needed. Each pipeline addresses a specific phase of the  

surgical workflow, generating as output images, meshes, and geometrical transformations, all collected in a 3D 

scene readily available for visualization. Furthermore,  for each 3D scene,  a PyDBS visualization/interaction 

module provides an easy means to access and manipulate the displayed data.

We retrospectively tested all three pipelines on a dataset of 92 patients available at our site, with the results  

subjected to qualitative validation by an expert. Satisfactory results were obtained across the entire workflow for 

85 patients out of the 92 tested, corresponding to a 92% success rate. The cases where pipelines failed were  

analyzed in order to further improve our software. Particular mention should be made that the frame-detection  

module was found to be the least robust, as it resulted in the highest error rate (4%). In this respect, we believe  

that  a  new semi-automatic  procedure  for  frame  detection  should  be  implemented  for  the  cases  where  the 

automatic  algorithm  fails.  In  more  general  terms,  we  plan  to  supplement  the  three  PyDBS 

visualization/interaction modules with additional error-correction functionalities, ensuring that the user is able to  

interactively adjust the automatically-generated results, whenever this may be required.

PyDBS is implemented in the Python programming language, hence its name, language which was chosen 

based on the clarity of its syntax and its rapidity of development, making it well-suited for research prototyping. 

The  processing  speed  was  not,  however,  compromised,  as  all  low-level  image-processing  tasks,  such  as 

registration and segmentation, were delegated to pre-compiled routines. We were, in fact, able to obtain a median  

processing time of about 28 minutes per patient, and the preoperative pipeline, the most critical in terms of time 

performance, completed in about 7 minutes. This is a time performance that is compatible with clinical adoption.

Next we will discuss some of the limitations facing our work. Firstly, the system performances were evaluated  

by means of a qualitative validation study. Qualitative validation is commonly used in medical-imaging research  

when quantitative performance measures are difficult to define, or when a ground truth is not directly available  

11



to serve as a comparison. This was the case for our study, in which we aimed to validate a complete system at the 

surgical-workflow level. The algorithms and software tools that are used by the three PyDBS pipelines had, in 

fact,  been individually validated for  the most  part  in  separate  studies,  though their  level  of  integration and 

automation, as well as their effectiveness in the specific context of DBS surgery, had yet to be assessed. This  

could have been conducted prospectively by evaluating the potential effects of adopting the proposed system on 

the DBS surgical workflow, in terms of its total duration or the associated clinical outcomes, for example. A  

prospective validation, however, also implies several clinical risks, and it would be preferably postponed to the  

late stages of a system evaluation when its performances have been already proved otherwise. We therefore  

opted for a retrospective validation, and measured our system's performances in terms of robustness, speed, and  

accuracy.  In terms of accuracy, however, only a qualitative evaluation was possible owing to the lack of ground-

truth for comparison. An alternative could have been to quantitatively assess system accuracy in comparison 

with a gold-standard. This would have been very difficult in our study, however, due to the heterogeneity of 

surgical procedures adopted at different clinical centers, and the substantial engineering effort that would have  

been required to reproduce and adapt alternative solutions to our data. 

For qualitative validation, one would ideally involve a pool of experts and evaluate the results at the root of 

the intra-observer and inter-observer variability in the assessment. This was also difficult in our study, however,  

owing to the cost of involving several experts in such a demanding validation study, and the fact that only one  

expert was available at our site. We thus believe that a multi-observer, and possibly even multi-site validation  

study, is a necessary milestone we shall aim for in the future, even though the validation proposed in this paper  

proved very informative for future developments of the project.

Overall, the results we obtained proved PyDBS to be a valuable tool for assisting clinicians through the DBS 

surgical workflow. Furthermore, we plan to employ the PyDBS inclusion pipeline output as input data for an 

automatic-trajectory-planning software, such as the one proposed by Essert et al. [24]. With the advantage of its 

modularity and flexibility, PyDBS is also well-suited for supporting clinical research studies. For example, the 

PyDBS postoperative pipeline, supplemented by additional functionalities not described here, has already been 

employed in a clinical research study on electrode deformations [25], as well as in a study focusing on the  

correlation between stimulation targets and clinical scores [3].

Future projects also include the integration of anatomo-clinical atlases [3] into the PyDBS inclusion pipeline. 

Once registration with preoperative patient’s images has been conducted, anatomo-clinical atlases could, in fact,  

be  used  in  order  to  identify  the  best  stimulation  targets  according  to  the  clinical  outcomes  of  previously 

implanted patients. In this setting, PyDBS could be used both to visualize the atlases during planning and to 

build  and  update  them  whenever  a  new  patient  is  treated.  Finally,  it  is  our  objective  to  validate  PyDBS 

prospectively by using it in parallel with the commercial DBS-planning system currently in use at our institute.
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Fig. 1 Integration of PyDBS within the DBS surgical workflow.
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Fig. 2 MRML scene generated by the PyDBS inclusion pipeline. The three slice views are presented in “probe-

eye” mode, that is, projected perpendicularly to the electrode trajectory (red cylinder). The left panel shows the 

PyDBS plugin for interactive trajectory planning. The user defines a trajectory by selecting an entry and target 

point on the MR image (red spheres, E: entry point, T: target point). A trajectory can be refined by dragging the 

two points on the 3D view, such as for maximizing the distance from the cortical sulci (gray meshes). Multiple 

trajectory plans can be defined, and plans can be saved to an XML file for later inspection.
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Fig.  3  PyDBS from a system perspective.  PyDBS inputs are patient-specific  data  and generic models.  The  

PyDBS output is a patient-specific model for DBS surgery.
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Fig. 4 Detailed diagram of the PyDBS pipelines: processing modules and dependencies. Dashed arrows depict 

inter-pipeline dependencies and indicate the specific result  on which the target  processing module depends. 

Within-pipeline dependencies are not shown.
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Fig. 5 Registration between the T1-weighted patient image and anatomical atlas. The contour of the atlas brain 

(red line) is superimposed onto an axial slice of the patient image. The darker square in d-f indicates the region 

of interest (ROI). Initially, the two volumes are not registered (a). The registration process is composed of five  

phases (b-f): rigid registration (b), affine registration (c), crop of the ROI (d), affine registration of the two ROIs  

(e), and non-linear registration of the two ROIs (f).
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Fig. 6 Atlas-based segmentation of brain ventricles (blue) and basal ganglia: caudate (cyan), putamen (magenta), 

globus  pallidus  externum (green),  globus  pallidus  internum (dark  orange),  thalamus  (yellow),  sub-thalamic 

nucleus (light orange), red nucleus (red), and substantia nigra (gray). Two common targets for DBS are the  

globus pallidus internum (arrows in a-c) and sub-thalamic nucleus (arrows in d-f ). The first three columns show 

axial, sagittal, and coronal slices, respectively. In a-c only the T1-weighted MR volume is shown. In d-f the T2-

weighted volume is overlaid onto the T1-weighted volume for improved visualization of deep structures. g) 3D 

view of brain ventricles and basal ganglia on the T1-weighted volume.
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Fig. 7 Segmentation of skull, frame screws, and frame artifact. a) Flow diagram of the segmentation algorithm.  

All  images  are  binary,  except  for  the  input  CT  volume.  Thresholding  and  connected-component-labeling 

operations are abbreviated as “th” and “cc”, respectively. For segmenting skull and screws we retained only the  

largest connected component, while for the frame artifact we retained the six largest ones. This is on account of  

the frame artifact being composed of three separate parts (i.e., one anterior part and two lateral parts), each of 

which may be split  into another  two parts  if  the frame is  not  entirely contained in  the CT volume.  When 

segmenting  the  frame  artifact,  the  dilated  brain  mask  is  used  to  clean  up  small  skull  components.  b)  

Segmentation results for one patient. The patient’s skull (gray), frame screws (blue), and frame artifact (yellow) 

are all displayed. The anterior part of the frame artifact is not shown, since it was not included in the frame  

model. The red spheres (five per side) indicate the automatically-detected landmark points used for the point-

based registration between the frame model and the CT scan.
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Fig. 8 Electrode segmentation and contact detection. Panels a-c depict three slices of one patient’s postoperative  

CT image magnified onto the electrode artifact and overlaid with the contours of detected objects, namely the  

electrode  artifact  (blue),  electrode  contacts  (red),  and  three  surrounding  anatomical  structures:  putamen 

(magenta),  globus  pallidus  externum  (green),  and  globus  pallidus  internum  (orange).  The  slice  in  a)  is 

perpendicular to the electrode axis and centered at the lowest contact. The slices in b) and c) are aligned to the 

electrode axis and perpendicular to each other. In d) a 3D view is displayed.
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Fig.  9 Validation steps  for  the three  pipelines.  Each step is  illustrated  with  a  screen-shot  of  the  3D scene 

visualized by the observer. a) Skin (magenta), gray matter (white), white matter (red), and cortical sulci (yellow)  

are superimposed onto the T1-weighted volume. b) The T2-weighted volume is  superimposed onto the T1-

weighted volume. c) Brain ventricles (blue) and basal ganglia are superimposed onto the T1-weighted volume  

(basal-ganglia colors have been presented in Fig. 5). d) The skull segmented on the preoperative CT (yellow) is 

superimposed onto the T1-weighted volume. e) The frame artifact (yellow) and the registered frame model (red) 

are superimposed onto the preoperative CT. f) The skull segmented on the preoperative CT (red) along with the 

gray matter segmented on the T1-weighted volume (yellow) are superimposed onto the postoperative CT. g) The 

electrode artifact (blue) and electrode contacts (red) are superimposed onto the postoperative CT. Registration  

and segmentation are abbreviated as “reg.” and “seg.”, respectively.
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Fig. 10 Validation results. a) For each validation step and for each patient an empty (filled) circle indicates a  

satisfactory (unsatisfactory) result. For the three pipelines we reported the fraction and percentage of patients  

with  entirely  satisfactory  validation  steps.  When  one  of  the  pipelines  terminated  with  a  runtime error,  the 

corresponding patient code was marked in red. b) Pipeline processing times. Colored bars represent median  

values; error bars span from the lower to the upper quartile of the distribution. Patient #127, for whom runtime  

errors occurred, was excluded from time performance estimation.
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