
132 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Pydra - a flexible and lightweight dataflow engine for
scientific analyses

Dorota Jarecka‡∗, Mathias Goncalves¶‡, Christopher J. Markiewicz¶, Oscar Esteban¶, Nicole Lo‡, Jakub
Kaczmarzyk§‡, Satrajit Ghosh‡

F

Abstract—This paper presents a new lightweight dataflow engine written in
Python: Pydra. Pydra is developed as an open-source project in the neu-
roimaging community, but it is designed as a general-purpose dataflow engine
to support any scientific domain. The paper describes the architecture of the
software, as well as several useful features, that make Pydra a customizable
and powerful dataflow engine. Two examples are presented to demonstrate the
syntax and properties of the package.

Index Terms—dataflow engine, scientific workflows, reproducibility

Introduction

Scientific workflows often require sophisticated analyses that
encompass a large collection of algorithms. The algorithms, that
were originally not necessarily designed to work together, and
were written by different authors. Some may be written in Python,
while others might require calling external programs. It is a
common practice to create semi-manual workflows that require
the scientists to handle the files and interact with partial results
from algorithms and external tools. This approach is conceptually
simple and easy to implement, but the resulting workflow is
often time consuming, error-prone and difficult to share with oth-
ers. Consistency, reproducibility and scalability demand scientific
workflows to be organized into fully automated pipelines. This
was the motivation behind Pydra - a new dataflow engine written
in Python, that is presented in this paper.

The Pydra package is a part of the second generation of the
Nipype ecosystem ([GBM+11], [Dev]) --- an open-source frame-
work that provides a uniform interface to existing neuroimaging
software and facilitates interaction between different software
components. The Nipype project was born in the neuroimaging
community, and has been helping scientists build workflows for
a decade, providing a uniform interface to such neuroimaging
packages as FSL [WJP+09], ANTs [ATS09], AFNI [Cox96],
FreeSurfer [DFS99] and SPM [FAK+07]. This flexibility has
made it an ideal basis for popular preprocessing tools, such as
fMRIPrep [OEG19] and C-PAC [C-P]. The second generation of
Nipype ecosystem is meant to provide additional flexibility and is

* Corresponding author: djarecka@gmail.com
‡ Massachusetts Institute of Technology, Cambridge, MA, USA
¶ Stanford University, Stanford, CA, USA
§ Stony Brook University School of Medicine, Stony Brook, NY, USA

Copyright © 2020 Dorota Jarecka et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

being developed with reproducibility, ease of use, and scalability
in mind. Pydra itself is a standalone project and is designed as a
general-purpose dataflow engine to support any scientific domain.

The goal of Pydra is to provide a lightweight dataflow en-
gine for computational graph construction, manipulation, and dis-
tributed execution, as well as ensuring reproducibility of scientific
pipelines. In Pydra, a dataflow is represented as a directed acyclic
graph, where each node represents a Python function, execution
of an external tool, or another reusable dataflow. The combination
of several key features makes Pydra a customizable and powerful
dataflow engine:

• Composable dataflows: Any node of a dataflow graph can
be another dataflow, allowing for nested dataflows of arbi-
trary depths and encouraging creating reusable dataflows.

• Flexible semantics for creating nested loops over input
sets: Any Task or dataflow can be run over input parameter
sets and the outputs can be recombined (similar concept
to Map-Reduce model [DG04], but Pydra extends this to
graphs with nested dataflows).

• A content-addressable global cache: Hash values are
computed for each graph and each Task. This supports
reusing of previously computed and stored dataflows and
Tasks.

• Support for Python functions and external (shell)
commands: Pydra can decorate and use existing functions
in Python libraries alongside external command line tools,
allowing easy integration of existing code and software.

• Native container execution support: Any dataflow or
Task can be executed in an associated container (via
Docker or Singularity) enabling greater consistency for
reproducibility.

• Auditing and provenance tracking: Pydra provides a
simple JSON-LD -based message passing mechanism to
capture the dataflow execution activties as a provenance
graph. These messages track inputs and outputs of each
task in a dataflow, and the resources consumed by the task.

Pydra is a pure Python 3.7+ package with a limited set of
dependencies, which are themselves only dependent on the Python
Standard library. It leverages type annotation and AsyncIO in
its core operations. Pydra uses the attr package for extended
annotation and validation of inputs and outputs of tasks, the
cloudpickle package to pickle interactive task definitions, and the
pytest testing framework. Pydra is intended to help scientific
workflows which rely on significant file-based operations and

mailto:djarecka@gmail.com

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 133

which evaluate outcomes of complex dataflows over a hyper-
space of parameters. It is important to note, that Pydra is not a
framework for writing efficient scientific algorithms or for use
in applications where caching and distributed execution are not
necessary. Since Pydra relies on a filesystem cache at present, it
is also not designed for dataflows that need to operate purely in
memory.

The next section will describe the Pydra architecture --- main
package classes and interactions between them. The Key Features
section focuses on a set of features whose combination distin-
guishes Pydra from other dataflow engines. The paper concludes
with a set of applied examples demonstrating the power and utility
of Pydra, and short discussion on the future directions.

Architecture

Pydra architecture has three core components: Task, Submitter and
Worker. Tasks form the basic building blocks of the dataflow, while
Submitter orchestrates the dataflow execution model. Different
types of Workers allow Pydra to execute the task on different
compute architectures. Fig. 1 shows the Class hierarchy and
interaction between them in the present Pydra architecture. It was
designed this way to decouple Tasks and Workers. In order to
describe Pydra’s most notable features in the next section, we
briefly describe the role of each of these classes.

Key Features

● Consistent API for Task and Workflow

● Splitting & combining semantics
on Task/Workflow level

● Global cache support to reduce
recomputation

● Support for execution of Tasks
in containerized environments

Architecture

● Uses Python Standard Library
(with few exceptions)

● Uses Concurrent Futures as the main
executor (partial support for Slurm
and Dask)

● Uses AsyncIO for asynchronous
processes

Pydra - Architecture, Features and Objects

Multi location cache
- Writeable current cache: '/path/to/cache_dir'
- Readonly prior cache: ['/cache_dir1', '/cache_dir2']

Worker
- ConcurrentFutures
- SLURM
- Dask (experimental)

Resource management

Task
- Workflow
- FunctionTask
- ShellCommandTask

- ContainerTask
- DockerTask
- SingularityTask

Submitter

Nested Workflows
Workflow

Nested Splitters and Combiners

e.g. [("var1", "var2"), "var3"]

Scalar
("var1", "var2")

Outer
["var1", "var2"]

Fig. 1: A schematic presentation of principal classes in Pydra.

Dataflows Components: Task and Workflow

A Task is the basic runnable component of Pydra and is described
by the class TaskBase. A Task has named inputs and outputs,
thus allowing construction of dataflows. It can be hashed and
executes in a specific working directory. Any Pydra’s Task can
be used as a function in a script, thus allowing dual use in Pydra’s
Workflows and in standalone scripts. There are several classes that
inherit from TaskBase and each has a different application:

• FunctionTask is a Task that executes Python functions.
Most Python functions declared in an existing library,
package, or interactively in a terminal can be converted

to a FunctionTask by using Pydra’s decorator -
mark.task.
import numpy as np
from pydra import mark
fft = mark.annotate({'a': np.ndarray,

'return': float})(np.fft.fft)
fft_task = mark.task(fft)()
result = fft_task(a=np.random.rand(512))

fft_task is now a PydraTask and result will contain a
Pydra’s Result object. In addition, the user can use
Python’s function annotation or another Pydra decorator—
mark.annotate in order to specify the output. In the
following example, we decorate an arbitrary Python func-
tion to create named outputs:
@mark.task
@mark.annotate(

{"return": {"mean": float, "std": float}}
)
def mean_dev(my_data):

import statistics as st
return st.mean(my_data), st.stdev(my_data)

result = mean_dev(my_data=[...])()

When the Task is executed result.output will contain two
attributes: mean and std. Named attributes facilitate pass-
ing different outputs to different downstream nodes in a
dataflow.

• ShellCommandTask is a Task used to run shell com-
mands and executables. It can be used with a simple
command without any arguments, or with specific set of
arguments and flags, e.g.:
ShellCommandTask(executable="pwd")

ShellCommandTask(executable="ls", args="my_dir")

The Task can accommodate more complex shell com-
mands by allowing the user to customize inputs and
outputs of the commands. One can generate an input
specification to specify names of inputs, positions in the
command, types of the inputs, and other metadata. As a
specific example, FSL’s BET command (Brain Extraction
Tool) can be called on the command line as:
bet input_file output_file -m

Each of the command argument can be treated as a named
input to the ShellCommandTask, and can be included
in the input specification. As shown next, even an output is
specified by constructing the out_file field form a template:
bet_input_spec = SpecInfo(

name="Input",
fields=[
("in_file", File,

{ "help_string": "input file ...",
"position": 1,
"mandatory": True }),

("out_file", str,
{ "help_string": "name of output ...",

"position": 2,
"output_file_template":

"{in_file}_br" }),
("mask", bool,

{ "help_string": "create binary mask",
"argstr": "-m", })],

bases=(ShellSpec,))

ShellCommandTask(executable="bet",
input_spec=bet_input_spec)

134 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Outputs can also be specified separately using a similar
output specification.

• ContainerTask class is a child class of
ShellCommandTask and serves as a parent class
for DockerTask and SingularityTask. Both
Container Tasks run shell commands or executables
within containers with specific user defined environments
using Docker [doc] and Singularity [sin] software
respectively. This might be extremely useful for users
and projects that require environment encapsulation and
sharing. Using container technologies helps improve
scientific workflows reproducibility, one of the key
concept behind Pydra.
These Container Tasks can be defined by using
DockerTask and SingularityTask classes
directly, or can be created automatically from
ShellCommandTask, when an optional argument
container_info is used when creating a Shell Task.
The following two types of syntax are equivalent:
DockerTask(executable="pwd", image="busybox")

ShellCommandTask(executable="ls",
container_info=("docker", "busybox"))

• Workflow - is a subclass of Task that provides support
for creating Pydra dataflows. As a subclass, a Workflow
acts like a Task and has inputs, outputs, is hashable, and is
treated as a single unit. Unlike Tasks, workflows embed a
directed acyclic graph. Each node of the graph contains a
Task of any type, including another Workflow, and can be
added to the Workflow simply by calling the add method.
The connections between Tasks are defined by using so
called Lazy Inputs or Lazy Outputs. These are special
attributes that allow assignment of values when a Workflow
is executed rather than at the point of assignment. The
following example creates a Workflow from two Pydra
Tasks.
creating workflow with two input fields
wf = Workflow(input_spec=["x", "y"])
adding a task and connecting task's input
to the workflow input
wf.add(mult(name="mlt",

x=wf.lzin.x, y=wf.lzin.y))
adding anoter task and connecting
task's input to the "mult" task's output
wf.add(add2(name="add", x=wf.mlt.lzout.out))
setting worflow output
wf.set_output([("out", wf.add.lzout.out)])

State

All Tasks, including Workflows, can have an optional attribute
representing an instance of the State class. This attribute
controls the execution of a Task over different input parameter
sets. This class is at the heart of Pydra’s powerful Map-Reduce
over arbitrary inputs of nested dataflows feature. The State
class formalizes how users can specify arbitrary combinations. Its
functionality is used to create and track different combinations
of input parameters, and optionally allow limited or complete
recombinations. In order to specify how the inputs should be
split into parameter sets, and optionally combined after the Task
execution, the user can set splitter and combiner attributes of the
State class. These attributes can be set by calling split and

combine methods in the Task class. Here we provide a simple
Map-Reduce example:
task_with_state =

add2(x=[1, 5]).split("x").combine("x")

In this example, the State class is responsible for creating a list
of two separate inputs, [{x: 1}, {x:5}], each run of the Task should
get one element from the list. The results are grouped back when
returning the result from the Task. While this example illustrates
mapping and grouping of results over a single parameter, Pydra
extends this to arbitrary combinations of input fields and down-
stream grouping over nested dataflows. Details of how splitters
and combiners power Pydra’s scalable dataflows are described
later.

Submitter

The Submitter class is responsible for unpacking Workflows
and single Tasks with or without State into standalone stateless
jobs, runnables, that are then executed by Workers. When the
runnable is a Workflow, the Submitter is responsible for checking
if the Tasks from the graph are ready to run, i.e. if all the inputs are
available, including the inputs that are set to the Lazy Outputs from
previous Tasks. Once a Task is ready to run, the Submitter sends
it to a Worker. When the runnable has a State, then the Submitter
unpacks the State and sends multiple jobs to the Worker for the
same Task. In order to avoid memory consumption as a result of
scaling of Tasks, each job is sent as a pointer to a pickle file,
together with information about its state, so that proper input can
be retrieved just before running the Task. Submitter uses AsyncIO
to manage all job executions to work in parallel, allowing scaling
of execution as Worker resources are made available.

Workers

Workers in Pydra are responsible for the actual execution of
the Tasks and are initialized by the Submitter. Pydra supports
three types of execution managers: ConcurrentFutures, Slurm and
Dask (experimental). When ConcurrentFuturesWorker is
created, ProcessPoolExecutor is used to create a "pool" for
adding the runnables. SlurmWorker creates an‘sbatch‘ submis-
sion script in order to execute the task, and DaskWorker make
use of Dask’s Client class and its submit method. All workers
use async functions from AsyncIO in order to handle asynchronous
processes. All Workers rely on a load_and_run function to
execute each job from its pickled state.

Key Features

In this section, features of Pydra that exemplify its utility for
scientific dataflows are presented. Individually, some of these
features are present in the numerous workflow packages that exist,
but Pydra is the only software that brings them together using
a very lighweight codebase. The combination of the following
features makes Pydra a powerful tool in scientific computation.

Nested and Hashed Workflows

Scientific dataflows typically involve significant refinement and
extensions as science and instrumentation evolves. Pydra was
designed to provide an easy way of creating scientific dataflows
that range from simple linear pipelines to complex nested graphs.
It enables reproducibility and reduces cost of dataflow mainte-
nance through flexible reuse of already existing functions and
Workflows in new applications. The Workflow class inherits

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 135

from TaskBase class and can be treated by users as any other
Task, so can itself be added as a node in another Workflow. This
provides an easy way of creating nested Workflows of arbitrary
depth, and reuse already existing Workflows. This is schematically
shown in Fig. 2. Key Features

● Consistent API for Task and Workflow

● Splitting & combining semantics
on Task/Workflow level

● Global cache support to reduce
recomputation

● Support for execution of Tasks
in containerized environments

Architecture

● Uses Python Standard Library
(with few exceptions)

● Uses Concurrent Futures as the main
executor (partial support for Slurm
and Dask)

● Uses AsyncIO for asynchronous
processes

Pydra - Architecture, Features and Objects

Multi location cache
- Writeable current cache: '/path/to/cache_dir'
- Readonly prior cache: ['/cache_dir1', '/cache_dir2']

Worker
- ConcurrentFutures
- SLURM
- Dask (experimental)

Resource management

Task
- Workflow
- FunctionTask
- ShellCommandTask

- ContainerTask
- DockerTask
- SingularityTask

Submitter

Nested Workflows
Workflow

Nested Splitters and Combiners

e.g. [("var1", "var2"), "var3"]

Scalar
("var1", "var2")

Outer
["var1", "var2"]

Fig. 2: A nested Pydra Workflow, black circles represent single Tasks,
and Workflows are represented by red rectangles.

The Pydra’s Submitter supports this nested architecture and
can dynamically extend the execution graph. Since a Workflow
works like a Task—has inputs, outputs, and is hashable, once
executed it does not need to recompute its operations if cached
(Pydra’s caching is explained later in the section).

State and Nested Loops over Input

One of the main goals of creating Pydra was to support flexible
evaluation of a Task or a Workflow over combinations of input
parameters. This is the key feature that distinguishes it from
most other dataflow engines. This is similar to the concept of
the Map-Reduce [DG04], but extends it to work over arbitrary
nested graphs. In complex dataflows, this would typically involve
significant overhead for data management and use of multiple
nested loops. In Pydra, this is controlled by setting specific State
related attributes through Task methods. In order to set input
splitting (or mapping), Pydra requires setting up a splitter. This is
done using Task’s split method. The simplest example would be
a Task that has one field x in the input, and therefore there is only
one way of splitting its input. Assuming that the user provides a
list as a value of x, Pydra splits the list, so each copy of the Task
will get one element of the list. This can be represented as follow:

S = x : x = [x1,x2, ...,xn] 7−→ x = x1,x = x2, ...,x = xn ,

where S represents the splitter, and x is the input field.
That is also represented in Fig. 3, where x=[1, 2, 3] as an

example.
Scalar and outer splitters: Whenever a Task has more

complicated inputs, i.e. multiple fields, there are two ways of
creating the mapping, each one is used for different application.
These splitters are called scalar splitter and outer splitter They
use a special, but Python-based syntax as described next.

A scalar splitter performs element-wise mapping and requires
that the lists of values for two or more fields to have the same
length. The scalar splitter uses Python tuples and its operation is
therefore represented by a parenthesis, ():

S = (x,y) : x = [x1,x2, ..,xn], y = [y1,y2, ..,yn]

7→ (x,y) = (x1,y1), ...,(x,y) = (xn,yn),

x = [1, 2, 3]

S = x

x = 1 x = 2 x = 3

out = 3 out = 4out = 5

Fig. 3: Diagram representing a Task with one input and a simple
splitter. The white node represents an original Task with x=[1,2,3] as
an input and S=x as a splitter. The coloured nodes represent stateless
copies of the original Task after splitting the input, these are the
runnables that are executed by Workers.

where S represents the splitter, x and y are the input fields.
This is also represented as a diagram in Fig. 4

x = [1, 2]

y = [10, 100]

S = (x, y)

x = 1
y = 10

x = 2
y = 100

out = 11 out = 102

Fig. 4: Diagram representing a Task with two input fields and a scalar
splitter. The symbol convention is described in 3.

The second option of mapping the input, when there are
multiple fields, is provided by the outer splitter. The outer splitter
creates all combination of the input values and does not require
the lists to have the same lengths. The outer splitter uses Python’s
list syntax and is represented by square brackets, []:

S = [x,y] : x = [x1,x2, ...,xn], y = [y1,y2, ...,ym],

7→ (x,y) = (x1,y1),(x,y) = (x1,y2)...,(x,y) = (xn,ym).

The outer splitter for a node with two input fields is schematically
represented in Fig. 5

x = [1, 2]

y = [10, 100]

S = [x, y]

x = 1
y = 10

x = 1
y = 100

x = 2
y = 100

out = 101 out = 12out = 11

x = 2
y = 10

out = 102

Fig. 5: Diagram representing a Task with two input fields and an
outer splitter. The symbol convention is described in 3.

Different types of splitters can be combined over inputs such
as [inp1, (inp2, inp3)]. In this example an outer splitter provides

136 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

all combinations of values of inp1 with pairwise combinations
of values of inp2 and inp3. This can be extended to arbitrary
complexity.

Combiners: In addition to the splitting the input, Pydra
supports grouping or combining the output resulting from the
splits. Taking as an example the simple Task represented in Fig. 3,
in some application it can be useful to group all output values of
the individual splits. In order to achieve this for a Task, a user can
specify a combiner. This can be set by calling combine method.
Note, the combiner only makes sense when a splitter is set first.
When combiner=x, all values are combined together within one
list, and each element of the list represents an output of the Task
for the specific value of the input x. Splitting and combining for
this example can be written as follows:

S = x : x = [x1,x2, ...,xn] 7→ x = x1,x = x2, ...,x = xn,

C = x : out(x1), ...,out(xn) 7→ outcomb = [out(x1), ...out(xn)],

where S represents the splitter, C represents the combiner, x is
the input field, out(xi) represents the output of the Task for xi, and
outcomb is the final output after applying the combiner.

In the situation where input has multiple fields and an outer
splitter is used, there are various ways of combining the output.
Taking as an example Task represented in Fig. 5, user might want
to combine all the outputs for one specific value of :math:x_i and
all the values of :math:y. In this situation, the combined output
would be a two dimensional list, each inner list for each value of
:math:x. This is written as follows:

C = y : out(x1,y1),out(x1,y2), ...out(xn,ym)

7−→ [[out(x1,y1), ...,out(x1,ym)],

...,

[out(xn,y1), ...,out(xn,ym)]].

And is represented in Fig. 6.

x = [1, 2]

y = [10, 100]

S = [x, y]

C = y

x = 1
y = 10

x = 1
y = 100

x = 2
y = 100

out = 101 out = 12out = 11

x = 2
y = 10

out = 102

outcomb = [11, 101] outcomb = [12, 102]

Fig. 6: Diagram representing a Task with two input fields, an outer
splitter and a combiner. The white node represents an original Task
with x=[1,2], y=[10, 100] as an input, S=[x, y] as a splitter, and C=y
as a combiner. The coloured nodes represent stateless copies of the
original Task after splitting the input, these are the runnables that
are executed by Workers. At the end outputs for all values of y are
combined together within outcomb.

However, for the diagram from 5, the user might want to
combine all values of x for specific values of y. One may also
need to combine all the values together. This can be achieved
by providing a list of fields, [x, y] to the combiner. When a full

combiner is set, i.e. all the fields from the splitter are also in the
combiner, the output is a one dimensional list:

C = [x,y] : out(x1,y1), ...out(xn,ym) 7−→ [out(x1,y1), ...,out(xn,ym)].

And is represented in Fig. 7.

x = [1, 2]

y = [10, 100]

S = [x, y]

C = [x, y]

x = 1
y = 10

x = 1
y = 100

x = 2
y = 100

out = 101 out = 12out = 11

x = 2
y = 10

out = 102

outcomb = [11, 101, 12, 102]

Fig. 7: Diagram representing a Task with two input fields, an outer
splitter and a full combiner. The Tasks are run in exactly the same
way as previously, but at the end all of the output values are combined
together. The symbol convention is described in 6.

These are the basic examples of the Pydra’s splitter-combiner
concept. It is important to note, that Pydra allows for mixing
splitters and combiners on various levels of a dataflow. They can
be set on a single Task or a Workflow. They can be passed from
one Task to following Tasks within the Workflow. Examples of this
more complex operation are presented in the next section.

Checksums and Global Cache

One of the key feature of Pydra is the support for a Global
Cache. This allows multiple people in a laboratory, or even across
laboratories to use each other’s execution outputs on the same
data without having to rerun the same computation. Each Task
and Workflow has an attribute called checksum. In order to create
the checksum, all of the input fields are collected and hash value
is calculated. If File or Directory is used as an input, than the
hash value of the content is used. For Workflows, the connections
between the Tasks are also included in the final checksum, and
hence the checksum of a Workflow changes if its underlying
graph changes. The checksum is used to create output directory
path during execution and can be reused in future executions of
the same exact Task or Workflow. To reuse, a user can specify
cache_dir and cache_locations when creating a Task or
Workflow. The cache_dir is a read-write path, where you want
your outputs to be saved, but cache_location can include
a list of paths, which allow re-using existing caches. Before
running any Task or Workflow, Pydra checks all the directories
that are either in cache_dir or cache_locations, and if the
specific checksum is found, then the results are reloaded without
running the specific Task. It is important to emphasize that without
a cache, every element of a nested Workflow would be re-executed.
Using Global Cache can significantly reduce execution time when
the same operations on the same data are repeated. This is also
true for Tasks with State. If the number of input elements is
expanded, the previously cached results can be reused without
recomputation. For scientific workflows, where many tasks take
significant computational resources, this can drastically speed up
reruns.

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 137

Applications and Examples

In this section, we highlight Pydra through two examples. The first
example is an intuitive scientific Python example to demonstrate
the power of Pydra’s splitter and combiner. The second example
extends this demonstration with a more practical machine learning
model comparison workflow leveraging scikit-learn.

Example 1: Sine Function Approximation

This example illustrates the flexibility of the Pydra’s splitters and
combiners, but the example is not meant to convince scientist to
use Pydra to write algorithms like this. The exemplary workflow
will calculate the approximated values of Sine function for various
values of x. The Workflow uses the Taylor polynomial formula for
Sine function:

nmax

∑
n=0

(−1)n

(2n+1)!
x2n+1 = x− x3

3!
+

x5

5!
+ ...

where nmax is a degree of approximation.
Since the idea is to make the execution as embarassingly

parallel as possible, each of the term for each value of x should
be calculated separately. This is done by function term (x, n). In
addition, range_fun(n_max) is used to return a list of integers from
0 to n_max and summing(terms) will sum all the terms for the
specific value of x and n_max.
from pydra import Workflow, Submitter, mark
import math

@mark.task
def range_fun(n_max):

return list(range(n_max+1))

@mark.task
def term(x, n):

import math
fract = math.factorial(2 * n + 1)
polyn = x ** (2 * n + 1)
return (-1)**n * polyn / fract

@mark.task
def summing(terms):

return sum(terms)

The Workflow takes two inputs - a list of values of x and a
list of values of n_max. In order to calculate various degrees
of the approximation for each value of x, an outer splitter is
used [x, n_max]. All approximations for a specific values of x
is aggregated by using n_max as a combiner.
wf = Workflow(name="wf", input_spec=["x", "n_max"])
wf.split(["x", "n_max"]).combine("n_max")
wf.inputs.x = [0, 0.5 * math.pi, math.pi]
wf.inputs.n_max = [2, 4, 10]

All three Function Tasks are added to the Workflow and connected
together using lazy connections. The second task, term, has to be
additionally split over n to compute the different pieces of the
Taylor approximation and the results of each term calculation are
grouped together through the combine method.
wf.add(range_fun(name="range", n_max=wf.lzin.n_max))
wf.add(term(name="term", x=wf.lzin.x,

n=wf.range.lzout.out).
split("n").combine("n"))

wf.add(summing(name="sum", terms=wf.term.lzout.out))

Finally, the Workflow output is set as the approximation using
set_output method. Thus the Workflow reflects a parallelizable
self contained function.

wf.set_output([("sin", wf.sum.lzout.out)])
res = wf(plugin="cf")

When executed using the concurrent futures library, the result is a
two dimensional list of Results. For each value of x the Workflow
computes a list of three approximations. As an example, for x=pi/2
this returns the following list:
[...[Result(output=Output(sin=1.0045248555348174),

runtime=None, errored=False),
Result(output=Output(sin=1.0000035425842861),

runtime=None, errored=False),
Result(output=Output(sin=1.0000000000000002),

runtime=None, errored=False)],
...]

Each Result contains three elements: output reflecting the actual
computed output, runtime reflecting the information related to
resources used during execution (when a resource audit flag is
set), and errored a boolean flag which indicates whether the task
errored or not. As expected, the values of the Sine function are
getting closer to 1 with increasing degree of the approximation.

The described Workflow is schematically presented in Fig. 8.

wf.x = [0, π/2, π, 2π]

wf.nmax = [0, 5, 10]

S = [x, nmax]
C = nmax

powers

nmax = 2

wf.x = 0

wf.nmax = 2

x = 0, nmax = 2
wf.out.sin = 0

nmax = wf.lzin.nmax

n = wf.powers.lzout.out

terms

x = 0

n = [0, 1]

S = n

x = wf.lzin.x

sum

all = [0, 0]

wf.out.sin = wf.sum.lzout.out

x = 0

wf.out.sincomb = [0, 0, 0]

terms

x = 0

n = 0

terms

x = 0

n = 1

out = 0 out = 0

outcomb = [0, 0]

all = wf.terms.lzout.out

powers

nmax = 4

wf.x = 0

wf.nmax = 4

nmax = wf.lzin.nmax

n = wf.powers.lzout.out

terms

x = 0

n = [0...3]

S = n

x = wf.lzin.x

sum

all = [0, 0, 0, 0]

wf.out.sin = wf.sum.lzout.out

terms

x = 0

n = 0

terms

x = 0

n = 1

out = 0 out = 0

outcomb = [0, 0, 0, 0]

all = wf.terms.lzout.out

terms

x = 0

n = 2

terms

x = 0

n = 3

out = 0out = 0

x = 0, nmax = 10
wf.sin = 0

x = 0, nmax = 4
wf.out.sin = 0

Fig. 8: Diagram representing part of the Workflow for calculating
Sine function approximations of various degrees for values of x.
Circles represent single Tasks and rectangles represent Workflows.
The white nodes represent Task or Workflow with a State. The coloured
nodes represent stateless copies of the original Task after splitting the
input. The gray nodes represent a Task that has no State.

Example2: Machine Learning Model Comparison

The massive parameter search space of models and their param-
eters makes machine learning an ideal use case for Pydra. This
section illustrates a general-purpose machine learning Pydra’s
Workflow for model comparison using a boostrapped shuffle-split
mechanism for choosing training and test pairs from a given
dataset. The example leverages Pydra’s powerful splitters and

138 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

combiners to scale across a set of classifiers and metrics. It also
uses Pydra’s caching to not redo model training and evaluation
when new metrics are added, or when number of iterations is
increased. The complete model comparison workflow is available
as an installable package called pydra-ml [pyd], and includes
SHAP-based feature importance evaluation in addition to model
comparison.

The Workflow presented here comprises four FunctionTasks.
For the sake of clarity, we will not redisplay the task code here.
They can be found in the tasks.py file in pydra-ml [pyd]. The
first function, read_data, reads csv data as a pandas.DataFrame
and allows the user to extract specific columns as the input, X,
to a learning model, a target column, y, and an optional group
column. The second function, gen_splits, uses GroupShuffleSplit
from sklearn.model_selection to generate a set of train-test splits
given n_splits and test_size, with an option to define group and
random_state. It returns train_test_splits and split_indices. The
main function to train the classifier, train_test_kernel, takes as
input a specific train-test split pair, a target variable, a parameter
providing information about which classifier to use and whether to
generate a null model by permuting the labels. The final function
calc_metric returns the value from a scoring function given the
actual target and predicted values from the classifier.

These tasks are combined together within a Workflow exploit-
ing splitters and combiners. The Workflow itself has an outer
split for clf_info and permute, allowing evaluation of null and
non-null models for every classifier. The core model fitting and
evaluation function train_test_kernel uses an internal splitter to
iterate over all the bootstrapped iterations. Using Pydra, it is
possible to split over split_index, that comes from gensplit Task,
and run train_test_kernel for each of them without combining.
This maintains State which can be used by the calc_metric
function to evaluate different scoring methods on the classifier
outputs and combine these results back together.
wf = pydra.Workflow(name="ml_wf",

input_spec=list(inputs.keys()),
**inputs,
cache_dir=cache_dir,
cache_locations=cache_locations)

Workflow level splitting over combination
of values
wf.split(["clf_info", "permute"])
wf.add(read_file(

name="readcsv",
filename=wf.lzin.filename,
x_indices=wf.lzin.x_indices,
target_vars=wf.lzin.target_vars))

wf.add(gen_splits(
name="gensplit",
n_splits=wf.lzin.n_splits,
test_size=wf.lzin.test_size,
X=wf.readcsv.lzout.X,
Y=wf.readcsv.lzout.Y,
groups=wf.readcsv.lzout.groups))

wf.add(train_test_kernel(
name="fit_clf",
X=wf.readcsv.lzout.X,
y=wf.readcsv.lzout.Y,
train_test_split=wf.gensplit.lzout.splits,
split_index=wf.gensplit.lzout.split_indices,
clf_info=wf.lzin.clf_info,
permute=wf.lzin.permute))

Task level splitting over bootstrapped
train-test pairs
wf.fit_clf.split("split_index")
wf.add(calc_metric(

name="metric",
output=wf.fit_clf.lzout.output,

metrics=wf.lzin.metrics))
Downstream combination after calculating
a set of metrics on each train-test pair
wf.metric.combine("fit_clf.split_index")
wf.set_output(

[
("output", wf.metric.lzout.output),
("score", wf.metric.lzout.score),
("feature_names",

wf.readcsv.lzout.feature_names),
]

)

The workflow is executed by providing an input dictionary exem-
plary input dictionary and the Workflow’s submission can look as
follow:

clfs = [
('sklearn.ensemble', 'ExtraTreesClassifier',
dict(n_estimators=100)),
('sklearn.neural_network', 'MLPClassifier',
dict(alpha=1, max_iter=1000)),
('sklearn.neighbors', 'KNeighborsClassifier', dict(),
[{'n_neighbors': [3, 7, 15],

'weights': ['uniform','distance']}]),
('sklearn.ensemble', 'AdaBoostClassifier', dict())]

inputs = {"filename": 'iris.csv',
"x_indices": range(4), "target_vars": ("label"),
"n_splits": 3, "test_size": 0.2,
"metrics": ["roc_auc_score"],
"permute": [True, False], "clf_info": clfs}

n_procs = 8 # for parallel processing
cache_dir = os.path.join(os.getcwd(), 'cache')
wf_cache_dir = os.path.join(os.getcwd(), 'cache-wf')

Execute the workflow in parallel using multiple processes
with pydra.Submitter(plugin="cf", n_procs=n_procs) as sub:

sub(runnable=wf)

result = wf.result(return_inputs=True)

The result from the Workflow is a set of scores for permuted and
non-permuted models. This is a list, each element of the list is for
one value of clf_info and permute, both fields were set as input
fields to the Workflow. All Result objects have an output.score
field that is also a list. Each element of the score corresponds
to a different value of split_index, that was set both as a splitter
and combiner to the fit_cls Task. This gives an option to easily
compare various models and sets of parameters.

[({'ml_wf.clf_info':
('sklearn.ensemble','ExtraTreesClassifier',
{'n_estimators': 100}),

'ml_wf.permute': True},
Result(output=Output(score=[0.2622, 0.1733, 0.2975]),

runtime=None, errored=False)),
({'ml_wf.clf_info':

('sklearn.ensemble', 'ExtraTreesClassifier',
{'n_estimators': 100}),

'ml_wf.permute': False},
Result(output=Output(score=[1.0, 0.9333, 0.9333]),

runtime=None, errored=False)),

...

({'ml_wf.clf_info':
('sklearn.ensemble', 'AdaBoostClassifier', {}),

'ml_wf.permute': False},
Result(output=Output(score=[0.9658, 0.9333, 0.8992]),

runtime=None, errored=False))]

Usually, there is no easy way in scikit-learn to compare models
in parallel across a variety of classifiers without using loops. It is
possible to do all this natively in scikit-learn and joblib, but would

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 139

require much more code to do the maintenance of the dataflow
and aggregation.

Summary and Future Directions

Pydra is a new lightweight dataflow engine written in Python. The
combination of several key features - including flexible option
for splitting and combining input fields, and Global Cache -
makes Pydra a customizable and powerful dataflow engine. The
Pydra’s developers are mostly from the Neuroimaging community,
which provides a plethora of use-cases for complex dataflows, but
the package is designed as a general-purpose dataflow engine to
support any scientific domain. As the next step, the developer team
would like to invite more scientist to use Pydra in order to test the
package for diverse applications. In the near future, the developer
team is also planning to work on:

• improvement of Worker classes to coordinate resource
management

• improved interaction with Dask and other resource man-
agers (e.g., SLURM) in HPC and Cloud environments.

• updates to the Nipype software to use Pydra as its engine
• improve the documentation and tutorials

We welcome scientists and developers to join the project. The
project repository is available on GitHub under Nipype organiza-
tion: https://github.com/nipype/pydra. In addition, there is also a
repository that contains Jupyter Notebooks with Pydra tutorial:
https://github.com/nipype/pydra-tutorial. The tutorial can be run
locally or using the Binder service.

Acknowledgements

This was supported by NIH grants P41EB019936, R01EB020740.
We thank the neuroimaging community for feedback during de-
velopment, and Anna Jaruga for her feedback on the paper.

REFERENCES

[ATS09] Brian B Avants, Nick Tustison, and Gang Song. Advanced
normalization tools (ants). Insight j, 2(365):1–35, 2009.

[C-P] C-PAC. http://fcp-indi.github.io/.
[Cox96] Robert W. Cox. Afni: Software for analysis and visualization

of functional magnetic resonance neuroimages. Computers and
Biomedical Research, 29(3):162 – 173, 1996. URL: http://www.
sciencedirect.com/science/article/pii/S0010480996900142, doi:
https://doi.org/10.1006/cbmr.1996.0014.

[Dev] Nipype Developers.
[DFS99] Anders M. Dale, Bruce Fischl, and Martin I. Sereno. Cortical

surface-based analysis: I. segmentation and surface reconstruc-
tion. NeuroImage, 9(2):179 – 194, 1999. URL: http://www.
sciencedirect.com/science/article/pii/S1053811998903950, doi:
https://doi.org/10.1006/nimg.1998.0395.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI’04: Sixth Symposium on
Operating System Design and Implementation, pages 137–150,
San Francisco, CA, 2004.

[doc] Docker. https://www.docker.com/.
[FAK+07] K.J. Friston, J. Ashburner, S.J. Kiebel, T.E. Nichols, and W.D.

Penny, editors. Statistical Parametric Mapping: The Analysis of
Functional Brain Images. Academic Press, 2007. URL: http:
//store.elsevier.com/product.jsp?isbn=9780123725608.

[GBM+11] Krzysztof Gorgolewski, Christopher Burns, Cindee Madison, Dav
Clark, Yaroslav Halchenko, Michael Waskom, and Satrajit Ghosh.
Nipype: A flexible, lightweight and extensible neuroimaging data
processing framework in python. Frontiers in Neuroinformatics,
5:13, 2011. URL: https://www.frontiersin.org/article/10.3389/
fninf.2011.00013, doi:10.3389/fninf.2011.00013.

[OEG19] Ross W. Blair Craig A. Moodie A. Ilkay Isik Asier Erra-
muzpe James D. Kent Mathias Goncalves Elizabeth DuPre
Madeleine Snyder Hiroyuki Oya Satrajit S. Ghosh Jessey Wright
Joke Durnez Russell A. Poldrack Oscar Esteban, Christopher
J. Markiewicz and Krzysztof J. Gorgolewski. fmriprep: a robust
preprocessing pipeline for functional mri. Nature Methods,
16:111 – 116, 2019. doi:doi:10.1038/s41592-018-
0235-4.

[pyd] pydra-ml. https://github.com/nipype/pydra-ml.
[sin] Singularity. https://sylabs.io/docs/.
[WJP+09] Mark W. Woolrich, Saad Jbabdi, Brian Patenaude, Michael

Chappell, Salima Makni, Timothy Behrens, Christian Beck-
mann, Mark Jenkinson, and Stephen M. Smith. Bayesian
analysis of neuroimaging data in fsl. NeuroImage, 45(1,
Supplement 1):S173 – S186, 2009. Mathematics in Brain
Imaging. URL: http://www.sciencedirect.com/science/article/pii/
S1053811908012044, doi:https://doi.org/10.1016/
j.neuroimage.2008.10.055.

https://github.com/nipype/pydra
https://github.com/nipype/pydra-tutorial
http://fcp-indi.github.io/
http://www.sciencedirect.com/science/article/pii/S0010480996900142
http://www.sciencedirect.com/science/article/pii/S0010480996900142
http://dx.doi.org/https://doi.org/10.1006/cbmr.1996.0014
http://dx.doi.org/https://doi.org/10.1006/cbmr.1996.0014
http://www.sciencedirect.com/science/article/pii/S1053811998903950
http://www.sciencedirect.com/science/article/pii/S1053811998903950
http://dx.doi.org/https://doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/https://doi.org/10.1006/nimg.1998.0395
https://www.docker.com/
http://store.elsevier.com/product.jsp?isbn=9780123725608
http://store.elsevier.com/product.jsp?isbn=9780123725608
https://www.frontiersin.org/article/10.3389/fninf.2011.00013
https://www.frontiersin.org/article/10.3389/fninf.2011.00013
http://dx.doi.org/10.3389/fninf.2011.00013
http://dx.doi.org/doi:10.1038/s41592-018-0235-4
http://dx.doi.org/doi:10.1038/s41592-018-0235-4
https://github.com/nipype/pydra-ml
https://sylabs.io/docs/
http://www.sciencedirect.com/science/article/pii/S1053811908012044
http://www.sciencedirect.com/science/article/pii/S1053811908012044
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2008.10.055
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2008.10.055

	Introduction
	Architecture
	Dataflows Components: Task and Workflow
	State
	Submitter
	Workers

	Key Features
	Nested and Hashed Workflows
	State and Nested Loops over Input
	Checksums and Global Cache

	Applications and Examples
	Example 1: Sine Function Approximation
	Example2: Machine Learning Model Comparison

	Summary and Future Directions
	Acknowledgements
	References

