
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
PyEvolve: a toolkit for statistical modelling of molecular evolution
Andrew Butterfield1, Vivek Vedagiri2, Edward Lang1, Cath Lawrence1, 
Matthew J Wakefield1,3, Alexander Isaev1 and Gavin A Huttley*1

Address: 1Centre for Bioinformation Science, John Curtin School of Medical Research and Mathematical Sciences Institute, Australian National 
University, Canberra, ACT 0200, Australia, 2HeliXense Pte. Ltd., 73, Science Park Drive, #02-05, CINTECH 1, Science Park 1, Singapore 118254 
and 3ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, 
Australia

Email: Andrew Butterfield - andrew.butterfield@anu.edu.au; Vivek Vedagiri - vvedagiri@helixense.com; 
Edward Lang - edward.lang@anu.edu.au; Cath Lawrence - cath.lawrence@anu.edu.au; Matthew J Wakefield - matthew.wakefield@anu.edu.au; 
Alexander Isaev - alexander.isaev@anu.edu.au; Gavin A Huttley* - gavin.huttley@anu.edu.au

* Corresponding author    

Abstract
Background: Examining the distribution of variation has proven an extremely profitable technique
in the effort to identify sequences of biological significance. Most approaches in the field, however,
evaluate only the conserved portions of sequences – ignoring the biological significance of sequence
differences. A suite of sophisticated likelihood based statistical models from the field of molecular
evolution provides the basis for extracting the information from the full distribution of sequence
variation. The number of different problems to which phylogeny-based maximum likelihood
calculations can be applied is extensive. Available software packages that can perform likelihood
calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to
model parameterisation.

Results: Here we describe the implementation of PyEvolve, a toolkit for the application of existing,
and development of new, statistical methods for molecular evolution. We present the object
architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation
schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide
model of substitution that includes a parameter for mutation of methylated CpG's, which required
8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide
or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a
10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared
to leading alternative software, PyEvolve exhibited significantly better real world performance for
parameter rich models with a large data set, reducing the time required for optimisation from ~10
days to ~6 hours.

Conclusion: PyEvolve provides flexible functionality that can be used either for statistical
modelling of molecular evolution, or the development of new methods in the field. The toolkit can
be used interactively or by writing and executing scripts. The toolkit uses efficient processes for
specifying the parameterisation of statistical models, and implements numerous optimisations that
make highly parameter rich likelihood functions solvable within hours on multi-cpu hardware.
PyEvolve can be readily adapted in response to changing computational demands and hardware

Published: 05 January 2004

BMC Bioinformatics 2004, 5:1

Received: 17 September 2003
Accepted: 05 January 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/1

© 2004 Butterfield et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all 
media for any purpose, provided this notice is preserved along with the article's original URL.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14706121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-5-1
http://www.biomedcentral.com/1471-2105/5/1
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
configurations to maximise performance. PyEvolve is released under the GPL and can be
downloaded from http://cbis.anu.edu.au/software.

Background
Examining the distribution of variation between related
biological sequences has proven an extremely profitable
technique in the effort to identify sequences of biological
significance. The motivating rationale has been that
sequence conservation implies biological significance.
Yet, as all biologists know, evolution by natural selection
proceeds by sequence change and therefore it is the differ-
ences in genome sequence that are responsible for differ-
ent organismal phenotypes. Analytical techniques that
consider the full distribution of variation will therefore
have greater power to identify sequences of biological
significance.

A suite of sophisticated statistical models from the field of
molecular evolution provides the basis for extracting the
information from the full distribution of sequence varia-
tion [for a review see [1]]. The two key mathematical
aspects of these statistical models are the representation of
sequence change over some time period as a Markov proc-
ess and the formulation for calculating the likelihood of a
multiple-sequence alignment given a phylogenetic tree
[2]. We restrict ourselves here to a simple description of
these two procedures, and refer the interested reader to a
review by Lio and Whelan [3] and the original paper of
Felsenstein [2].

Probabilistic models of substitution are central to our
ability to dissect the forces responsible for the molecular
changes distinguishing different sequences. The probabil-
ity a sequence motif changes (or remains the same) can be
parameterized according to biochemical attributes of the
motifs involved. This Markov process is represented as a
matrix of average relative rates of instantaneous change
and the matrix of substitution probabilities for a given
time period is determined by a matrix exponentiation
procedure. For the more complex substitution models,
explicit solutions to this matrix exponentiation are not
possible and approximation techniques [4] are used
instead.

The likelihood framework provides the basis for statistical
hypothesis testing using molecular sequence data. The
likelihood of an alignment is the probability of observing
that alignment given a model of sequence evolution and
a phylogenetic tree relating the sequences in the align-
ment. This likelihood is calculated using the "pruning"
algorithm [2]. The explanatory power of different hypoth-
eses, which differ in terms of their parameterisation of the
process of molecular evolution, can be formally compared

using a likelihood-ratio (LR) test. In many cases, the LR
test statistic can be evaluated using the χ2 distribution [for
examples of such models see [5,6]]. In other cases, such as
for non-nested hypotheses or for models that violate
assumptions of the likelihood model, parametric boot-
strapping is the preferred technique [7,8]. Parametric
bootstrapping can also be used for estimating parameter
confidence intervals.

There is a diverse array of problems to which phylogeny-
based maximum-likelihood software can be applied. Even
within the scope of conventional hypothesis testing,
numerous model parameterisations can be developed to
dissect biological processes ranging from detecting natu-
ral selection [9], testing the molecular clock [10], detect-
ing gene recombination events [11], or phylogenetic
reconstruction [12]. Each of the different use cases
presents distinct challenges to the end-user in terms of
interaction, and distinct challenges to the developer in
terms of maximising speed.

As the number and taxonomic diversity of DNA sequences
increases, propelled by genomics technology, so too does
the imperative for developing software that can both scale
with the problem and maximise the information gained
from the data. The groundbreaking package in statistical
modelling of molecular evolution was PAML [13]. While
the suite of models calculable by PAML is extensive, it
doesn't scale well as it only runs on single processors.
Additionally, the software is sufficiently complex in
design as to inhibit its extension by other developers.
Control of model parameterisations is achieved by a set-
tings file that uses integers to differentiate between alter-
native model configurations, and in some instances, by
manual editing of the input phylogeny. Both of these
approaches are particularly prone to errors, even for expe-
rienced users. Defining different statistical models by
numbers requires frequent referral to the manual and
example files, while it is extremely easy to make mistakes
editing large phylogenies in the Newick format. Addition-
ally, changing the bounds for a parameter requires modi-
fying the source code and recompiling, which has obvious
disadvantages.

The HYPHY package http://www.hyphy.org has many fea-
tures, including a GUI, and a batch language for imple-
menting non-standard analyses. The latter approach is
intriguing but aspects of its' implementation prove limit-
ing. Since the batch language is unique to the package,
users must learn a highly specialised programming
Page 2 of 12
(page number not for citation purposes)

http://cbis.anu.edu.au/software
http://www.hyphy.org


BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
language, with very restricted utility. Hence, such simple
matters as unsupported data formats quickly become bot-
tlenecks. The ability to integrate HYPHY into automated
analysis pipelines is not trivial as it involves moving
between languages. Other limitations of HYPHY's batch
file language are the mechanism for defining novel mod-
els of substitution, the restriction that the models must be
reversible, and a cumbersome approach to identifying
sub-tree's for modelling purposes. Moreover, while com-
ponents of this program have been parallelised, the paral-
lelisation is "fixed" and can therefore not be tailored by
the user to suite a particular problem.

PyEvolve should prove useful to both modellers and
developers. It has been designed to be adaptable to an
extensive array of use cases and to overcome the perceived
shortcomings of other packages. Here we present a sum-
mary of the toolkit's features and illustrate it's utility by
applying it to develop a novel model of dinucleotide sub-
stitution, and perform a hypothesis test to evaluate the
new model. We further demonstrate the usage and per-
formance of PyEvolve's multi-level parallelisation
schema.

Implementation
We aimed to develop a toolkit for phylogeny-based maxi-
mum-likelihood modelling of molecular evolution that
is:

• Extensible, fast and scalable

• Straightforward to implement most existing methods,
and simplifies the development of novel methods

• Straightforward to learn by novice biologists or by
developers

• Free and can be modified without restriction

To meet these objectives, PyEvolve is implemented as a
Python module with the most computationally intensive
algorithms written in C/C++ and is released under the
GPL.

There are several reasons behind the choice of Python.
Principal among them is Python's utility as a programma-
ble scripting language. By selecting a popular language as
the principal interface to the toolkit, learning the toolkit
for those familiar with Python will be trivial, and for oth-
ers the general utility of the language means it can be
applied to many other problems. Development related
factors also affected our choice. Python is designed to be
able to readily connect with external modules written in
other languages such as C/C++ or Fortran with little fuss.
This ability to glue pieces of code from different languages

increases choice for selecting from existing code for critical
numerical routines (e.g. optimisation). The syntactical
clarity of Python, the ready availability of good documen-
tation suitable for novices [such as the open book project,
[14]], and the self documenting capabilities of Python
code all contribute to lowering the barrier to use of the
toolkit. Together these attributes significantly reduced the
amount of work required by us to generate a toolkit useful
to an end-user group with diverse interests and expertise.

Object architecture
The top-level objects of PyEvolve and their relationships
are illustrated in Figure 1. Briefly, these objects and their
functions are:

Parallel
Defines a parallelisation stack with virtual processors.
Communicates among processors using PyPar, a Python
MPI toolkit.

Bootstrapping
A parametric bootstrapping module. Can be used to assess
parameter confidence intervals or probabilities. In either
case, it requires users to provide a reference to function(s)
that construct controller object(s). Runs in parallel when
multiple cpu's are available.

Optimisers
A generic interface to bound-constrained numerical opti-
misers. Takes a vector of floating point values for optimi-
sation, corresponding vectors of bounds defining the
range of acceptable values, and a ParameterController
object. Presently, a simulated annealing optimiser is
provided.

ParameterController
Defines the parameterisation of the statistical model, sets
parameter starting values and bounds for optimisation.
Specifies the mapping of parameters in the optimisation
vector to the likelihood calculation.

LikelihoodFunction
Performs the likelihood calculation by calling the calcu-
latelikelihood module (which is written in C++). The calcu-
latelikelihood module also calculates the matrix of
substitution probabilities, unless overridden. Can also
simulate an alignment, and estimate posterior probabili-
ties of ancestral motifs [15].

Tree
For reading and manipulating phylogenetic trees. Tree
also provides methods for extracting sub-tree's, and for
identifying portions of a tree using the names of tips.
Page 3 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
Relationship among the PyEvolve componentsFigure 1
Relationship among the PyEvolve components The boxes represent the objects (classes) that make up PyEvolve. The 
filled diamonds, as specified by the Unified Modelling language specification, indicate the object at which the diamonds end has 
the connected objects as essential components.

Optimisers

ParameterController

LikelihoodFunction

AlignAnalysis

Tree

SubstitutionModel

Alphabet

Alphabet

For reading and
manipulating
phylogenetic trees

Performs the likelihood
calculation either by
itself, or by calling
calculatelikelihood, a
C++ module. Can also
simulate an alignment,
and estimate posterior
probabilities of ancestral
motifs.

Defines the
parameterisation of the
statistical model, sets
parameter starting
values and bounds for
optimisation. Specifies
the mapping of
parameters in the
optimisation vector to
the likelihood
calculation.

Bound-constrained
numerical optimiser.
Takes a vector of
parameter values, their
bounds, and a
controller object for
optimisation.

For reading and
manipulating
sequence
alignments.

Represents the motifs (states) in
the substitution model. Relates
alphabet motifs to ambiguity
codes, and performs translation
for different genetic codes.

Services for defining and
implementing Markov
models of substitution.
Both the preparation of
the instantaneous rate
matrix and the matrix
exponential calculations
is performed by a C /
C++ module.

Parallel

Defines a
parallelisation stack
with virtual processors.
Communicates among
processors using
PyPar, a Python MPI
interface.

ParametricBootstrap

Used to assess
parameter confidence
intervals or likelihood-
ratio probabilities.
Page 4 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
AlignAnalysis
For reading and manipulating sequence alignments.

SubstitutionModel
Provides services for defining and implementing Markov
process models of substitution. Both the preparation of
the instantaneous average relative rate matrix and the
matrix exponential calculations can be performed by
calc_psubs, a module written in C / C++. In the fastest
implementation, the instantaneous matrix and matrix
exponentiation routines are in-lined with the calculatelike-
lihood C++ module. In this case, SubstitutionModel is rele-
gated to defining the configuration of the substitution
model.

Alphabet
Represents the motifs (states) in the substitution model.
Relates alphabet motifs to IUPAC ambiguity codes, and
performs translation for different genetic codes.

Serial performance innovations
At the heart of the computational challenge is the poor
scalability of the pruning and matrix exponentiation algo-
rithms. The order of Felsenstein's pruning algorithm is
~O(NA) where A is the number of motifs in the sequence
alphabet (e.g. 4 for DNA, 20 for amino-acids) and N is the
number of sequences. The matrix exponentiation, which
is done by eigenvalue decomposition using the same code
as that used by PAML [13], also scales poorly (> ~ O(N2)).
Given the computationally intensive nature of these algo-
rithms they have been implemented in C / C++.

One way efficiencies can be gained is by reducing the
number of times the algorithm is used. When the
sequences descended from a node are identical at several
sites in the alignment, the partial likelihoods for that node
of the tree will also be identical for those sites. This has
commonly been exploited for the special case in which
the node is the root node, in other words all sequences are
identical between the sites. In this conventional case the
likelihood is calculated only for one instance of a site-pat-
tern and the site-patterns' log-likelihood is then multi-
plied by its' frequency of occurrence. PyEvolve
implements an advanced site-pattern algorithm whereby
the data are pre-processed to identify node-specific site-
patterns that don't fall within the site-pattern of a higher
node (such as the root). The partial likelihoods calculated
for the first instance of a node specific site-pattern are
reused for all other cases of that site-pattern.

Another optimisation strategy involves storing the results
of previous calculations. Many numerical optimisers
change one parameter at a time in the vector to be opti-
mised for a function. For a parameter that has a local (sin-
gle branch) scope, then only the matrix exponentiation

for that branch need be recomputed. PyEvolve takes
advantage of such optimisers by storing the results of each
exponentiation. If the optimiser returns a parameter vec-
tor with parameters relevant to a subset of branches being
unchanged, the stored probability of substitution matri-
ces are used instead. If parameters for a branch remain
unchanged twice in a row, a second level backup of that
matrix is created. This second-level becomes most valua-
ble in the later stages of optimisation when most changes
to the parameter set are sub-optimal. The performance
improvement conferred by this approach is striking for a
model in which most parameters are local (e.g. a model
with branch lengths and local substitution model param-
eters). In this instance, the majority of likelihood function
evaluations involve recalculating the probabilities of sub-
stitution for a single branch.

PyEvolve has also been modified to store previous partial
likelihoods for reuse, taking advantage again of the opti-
miser behaviour. The effect of this approach is that the
partial likelihoods need only be determined for nodes
affected by a parameter change, and their parents. The
optimisation vector has been ordered so as to ensure that
the minimum number of nodes need recalculating. The
vector is in a natural tree traverse order, where the
descendants of each node are added before the node.

The memory impact of storing previous results is minimal
for both strategies. Both the partial likelihood and proba-
bility of substitution matrix reuse algorithms minimise
the overhead for backing up by using the same memory
space. The partial likelihood reuse algorithm has also
been implemented with two versions that differ in mem-
ory usage. The default version keeps all the tree tips and
nodes for the fastest and simplest reuse of previous partial
likelihoods. The second version only keeps the nodes,
thus requiring only half the memory. The performance hit
is low because the partial likelihoods are considerably
quicker to recalculate for tips than nodes. This algorithm
may be of greatest value with bigger trees as the memory
saving becomes more important. The reuse algorithm can
be specified using an argument of the LikelihoodFunction
constructor. The higher memory algorithm is on by
default.

An optional efficiency related to pruning in PyEvolve con-
cerns the number of motifs in the alphabet. As the prun-
ing algorithm is most sensitive to the number of motifs in
the alphabet, reducing these can provide enormous bene-
fits. This efficiency can be trivially achieved in PyEvolve by
reducing the number of motifs in the alphabet to only
those observed in the data, and constructing the Substitu-
tionModel with the revised alphabet.
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
Parallel performance innovations
With the availability of multi-processor clusters of com-
puters becoming commonplace, performance gains can
be achieved by parallelising portions of the computations.
The limits to the maximum gain in efficiency are governed
by the proportion of the algorithm that is strictly serial (as
suggested by Amdahl's Law). Accordingly, the general
principle for parallelisation is to minimise the amount of
serial computation. A secondary, but similarly important,
impact on the performance of a parallelised program is
the time taken up by communication between nodes in
the compute cluster. The combined impact of the diversity
of possible use cases and the heterogeneity in hardware
performance precludes a simple fixed parallelisation
scheme.

Within a single model there are three obviously parallelis-
able stages. At the highest level, portions of the numerical
optimisation procedure may be parallelised. The details of
this parallelisation effort differ between procedures. For
instance, optimisers that use a finite difference method for
estimating the gradient of the likelihood function can be
trivially parallelised at the finite differences step. While
this provides a significant performance boost, these opti-
misers can suffer from a tendency to find local maxima
rather than the global maxima being sought. This may
require the optimiser to be started multiple times, each
from a different position in the parameter space, signifi-
cantly reducing real world performance. Although global
optimisation techniques tend to be slower and, at least for
the simulated annealing procedure implemented in PyE-
volve, benefit less from parallelisation, global procedures
can be more efficient [16]. For these reasons we have
developed a parallelised version of the bound-constrained
simulated annealing algorithm [16]. This level of parallel-
isation will be referred to as the SA level.

The two other obvious opportunities for parallelisation
are the calculation of the probabilities of substitution by
matrix exponentiation and the calculation of the log-like-
lihood for columns in the alignment. We have not imple-
mented the former because the overhead for
communicating an array of 3721 double precision float-
ing point values, as would be required for a codon substi-
tution model, would negate the benefit of parallelising
the matrix exponentiation on most hardware. The likeli-
hood calculation has been parallelised at the level of the
alignment, which will be referred to as the LF level
parallelisation.

In order to permit adaptation of the mixture of parallel-
ised routines to different tasks we have implemented a
flexible multi-level parallelisation schema in PyEvolve.
The Parallel component of PyEvolve uses the PyPar inter-
face to MPI [17]. The basic principle of MPI/PyPar paral-

lelisation is that a copy of the same program runs on all
processors, but that each process uses knowledge that the
other processes exist to selectively do less work. This
works because each process knows how many processors
there are in total, and their ID (or rank) within this
number. Usually the final result is collected onto proces-
sor 0 and then at the beginning of the next calculation the
starting state is sent out to all the other processes.

PyEvolve's schema allows processors to be grouped into a
virtual processor, and provides methods for stacking these
virtual processors on top of one another. The parallelisa-
tion stack created to perform the hypothesis test described
below is illustrated in Figure 2. Each level of the paralleli-
sation stack is made up of a number of virtual processors
that in turn correspond to the same, or a greater, number
of actual cpu's. The following rules must be satisfied in
order to define a multi-level parallelisation stack – at each
level, the maximum number of processors that make up
the virtual cpu (the subgroup size) must be a divisor of the
number of cpu's in the level above. At the top level, the
subgroup size must be a divisor of the total number of
cpu's assigned to the program.

Results
Defining a new substitution model
We illustrate how PyEvolve can be used to develop and
implement new models of substitution by presenting a
dinucleotide model of substitution that incorporates a
term for mutation of the commonly methylated dinucle-
otide CpG. Defining a Markov model of substitution in
PyEvolve involves defining a set of rules that govern the
assignment of parameter values into the matrix of instan-
taneous change [for a more detailed explanation of the
nature of Markov models in molecular evolution see
[1,3]]. These rules correspond to Python functions that
return True or False when comparing two sequence alpha-
bet motifs.

The biochemical phenomenon we are interested in is that
a methylated C (which occur predominantly at CpG dinu-
cleotides) mutates to a T at a higher rate than an unmeth-
ylated C. If the plus strand C is methylated, the CpG
mutates to TpG, if it is on the negative strand CpG mutates
to CpA. In Figure 3(a) is an 8 line Python function that
returns True if a pair of dinucleotide motifs is either (CG
and TG) or (CG and CA), False otherwise. To satisfy the
reversibility assumption of the likelihood model, the
function considers both possible orders in which the
dinucleotides could be received. Having written this rule
function, implementing the novel dinucleotide methyla-
tion model requires passing a reference to the function
indexed by the parameter name that we wish to refer to it
by. In the example in Figure 3(b), the SubstitutionModel
object will then iterate over all possible combinations of
Page 6 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
dinucleotides, passing each dinucleotide pair to the two
assigned rules – submodelobj. istransition and ismethylated-
mutation. When either order of the CG/TG, CG/CA dinu-
cleotide pairs is passed to the ismethylatedmutation
function, it returns True resulting in the assignment of the
parameter 'meth' to that position of the matrix of instan-
taneous change.

Testing a hypothesis with parallelisation
The contribution of the additional methylation parameter
to explaining the pattern of substitution observed in a
data set is tested using a conventional LR test. This process
involves constructing near identical ParameterController
objects that differ only by their substitution models. The
alternative hypothesis substitution model parameter rules
include the ismethylatedmutation reference. Each controller
object is then passed to an optimiser object that is run to
determine the maximum-likelihood parameter estimates
and maximum log-likelihoods, the latter statistics are then
used to perform a conventional LR test using the χ2

approximation with 1 degree-of-freedom.

We seek to test the hypothesis that a parameter for meth-
ylated CpG mutations does not significantly improve the
fit of our model. For this example we use a 38.6 kb non-
coding region from Chimpanzee (AF190865) and Gorilla
(AF190871) [18]. To remove the potential effect of repeat
expansions, which derive from a different mutational
process, on the results we masked all dinucleotide repeats
greater than five prior to alignment with ClustalW 1.8
[19]. More detailed analyses of these data are reported
elsewhere (Wakefield, Isaev and Huttley, in preparation).
We parallelise the script at three levels: (1) the model; (2)
the SA level; and (3) the LF level. The algorithm for setting
up the parallelisation stack for a single model is illustrated
in Figure 2. A python script that implements this example
is available in the standard distribution of PyEvolve and
also as supplementary materials [see Additional file 1]. In
the example the top-level subgroup size is 4, the mid-level
subgroup size is 2, and the low-level subgroup size is 1.
This structure defines two virtual cpu's at the top (each
made up of 4 actual cpu's) which run the different mod-
els. The script descends to the mid-level because the sim-
ulated annealing optimiser assumes it has been initialised
at the level at which it is to be run. Note that taking

The 3-level parallelisation stack for a modelFigure 2
The 3-level parallelisation stack for a model Model – the null or alternative hypothesis parameterisations; SA – the sim-
ulated annealing parallelisation level; LF – the likelihood function parallelisation level; CPU – actual hardware cpu's; level ID – an 
identifier relative to the virtual cpu's at the specified level; subgroup ID – an identifier relative to the processors within a spec-
ified virtual processor at the specified level; actual ID – the standard MPI identifier for each real cpu.

Model

subgroup size = 4
level ID = 0

subgroup ID = 0, 1, 2, 3
actual ID = 0, 1, 2, 3

SA

subgroup size = 2
level ID = 0

subgroup ID = 0, 1
actual ID = 0, 1

LF

subgroup size = 1
level ID = 0

subgroup ID = 0
actual ID = 0

Top level

Middle level

Lower level

Actual CPU's
CPU

actual ID = 0
CPU

actual  ID = 1

LF

subgroup size = 1
level ID = 0

subgroup ID = 0
actual ID = 0

SA

subgroup size = 2
level ID = 1

subgroup ID = 0, 1
actual ID = 2, 3

LF

subgroup size = 1
level ID = 0

subgroup ID = 0
actual ID = 2

CPU

actual ID = 2
CPU

actual ID = 3

LF

subgroup size = 1
level ID = 0

subgroup ID = 0
actual ID = 3
Page 7 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
advantage of the likelihood function parallelisation does
not require explicit stack traversal statements by the user
as the presence of a lower-level is automatically detected.
In order to perform the LR test the stack must be ascended
to the top level and the results communicated between
the two processors. The result of the LR test is highly sig-
nificant (P < 10-53).

Benchmarking
To illustrate the performance improvements arising from
parallelisation we consider different parallelisation stack
configurations and numbers of total cpu's for two differ-
ent substitution models. The parallelisation levels were
SA, LF or both SA and LF (referred to as BOTH). We use a
dinucleotide model with only a transition transversion

Python code required to define a novel model of substitutionFigure 3
Python code required to define a novel model of substitution (a) A function to specify a new substitution model rule. 
This function identifies dinucleotides that differ from each other by mutation of a methylated C. (b) The step to define a dinu-
cleotide substitution model with terms for both transition and methylation induced changes.

(a)

def ismethylatedmutation((dinuc1, dinuc2)):
if dinuc1 == 'cg' and dinuc2 == 'tg' or\
dinuc1 == 'tg' and dinuc2 == 'cg' or\
dinuc1 == 'cg' and dinuc2 == 'ca' or\
dinuc1 == 'ca' and dinuc2 == 'cg':
return True

else:
return False

(b)

dinucsubmodelobj.setparameterrules(
{'kappa': submodelobj.istransition,
'meth': ismethylatedmutation}

)

Page 8 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
parameter, and the codon model of Goldman and Yang
[20] applied to an alignment of the gene BRCA1 for 20
mammals [6]. Species abbreviations, scientific names and
accession numbers are: Anteater Tamandua tetradactyla
AF284001; Chimpanzee Pan troglodytes AF207822; Flyin-
gLem Cynocephalus variegatus AF019081; FlyingSqu Glau-
comys volans AF284003; Galago Otolemur crassicaudatus
AF019080; Gorilla Gorilla gorilla AF019076; HairyArma
Chaetophractus villosus AF284000; Hedgehog Erinaceus
europaeus AF284008; HowlerMon Alouatta seniculus
AF019079; Human Homo sapiens NM_007306; Jackrabbit
Lepus capensis AF284005; Mole Scalopus aquaticus
AF284007; Mouse Mus musculus MMU36475; NineBande
Dasypus novemcinctus AF283999; OldWorld Hystrix africae-
australis AF284004; Orangutan Pongo pygmaeus AF019077;
Rat Rattus norvegicus NM_012514.1; Rhesus Macaca
mulatta AF019078; Sloth Bradypus tridactylus AF284002;
TreeShrew Tupaia tana AF284006. Either 10 or 20
sequences are used. The 10 species data set consisted of
FlyingSqu, Galago, Gorilla, Hedgehog, HowlerMon, Jack-
rabbit, Mole, Mouse, Oldworld, and Rat. The alignment
was 2883 nucleotides (961 codons) long and is available
as part of PyEvolve's distribution. All parameters, aside
from branch lengths, were treated as global across the tree
(i.e. identical for all branches). We examine the parallel
performance of the SA level, the LF level and the two levels
jointly. We used the Australian Partnership for Advanced
Computing linux cluster. The cluster consisted of single
cpu Dell Precision 350's, connected by a gigabit ethernet
switch. More details of the hardware and cluster configu-
ration are available at http://nf.apac.edu.au.

The results of performance testing (Table 1) indicate that
both the serial optimisations and parallelisation efforts
had significant impacts. The difference between time per
lfe (likelihood function evaluation) for the 10 and 20 spe-
cies trees ranged from -7% to 12% of the 10 species time.
The decrease in time for 20 taxa probably reflects
increased identity in portions of the tree by inclusion of
additional taxa. The differences between the dinucleotide
and codon models reflect the increasing proportion of
time taken for matrix exponentiation by the codon model.
These differences indicate the considerable savings
achieved by the serial optimisations. Parallelisation gains
for 16 cpu's ranged from a 3.1 to 4.5 fold increase over the
single cpu performance for the codon model and 3.8 to
5.2 for the dinucleotide model. For both substitution
models the typical order of level gains achieved were
BOTH > LF > SA for a given number of total cpu's. Paral-
lelisation gains were consistently less pronounced for the
larger data set with the codon substitution model, while
the dinucleotide model showed more exceptions to this
relationship. For the codon model the benefits from the
SA vs. LF level depended on the number of taxa, with SA
being marginally better for the larger number of
sequences. The LF level showed a more consistent advan-
tage for the dinucleotide model. The multi-level paralleli-
sation gave the best performance for both substitution
models, providing another 1 × serial fold improved per-
formance over either level alone for the codon model and
1/2 × serial fold improvement for the dinucleotide model.

Table 1: PyEvolve benchmarking. Time taken was estimated as time for optimisation. Number of runs per condition ranged from 1 to 
5. 1Model – See text for details of the codon and dinuc substitution models; 2Levels – indicates whether Simulated Annealing (SA), 
Likelihood Function (LF) or BOTH parallelisation levels were used; 3Parallel degree refers to the number of virtual cpu's at the 4SA or 
LF levels (for the LF level, this is defined per SA virtual cpu); 5the number of likelihood function evaluations made during the 
optimisation for 610 or 20 sequences, expressed in thousands. See text for details of the data and hardware used.

Model 1 Levels 2 Total cpus Parallel degree 3 lfe (1000's) 5 Total Time (minutes) Time (seconds) per
1000 lfe

SA 4 LF 4 10 6 20 6 10 20 10 20

codon Serial 1 1 1 56 121 124 269 133.06 133.65

LF 2 1 2 56 121 81 182 86.49 90.16
4 1 4 56 122 55 130 58.69 63.78
8 1 8 57 122 41 100 43.99 49.02
16 1 16 57 120 35 82 36.52 41.02

SA 2 2 1 57 122 85 178 89.40 87.22
4 4 1 57 121 58 121 60.19 60.15
8 8 1 57 122 44 99 46.10 48.83
16 16 1 58 122 38 88 39.48 43.16

BOTH 4 2 2 57 125 56 125 59.39 60.03
8 2 4 58 122 40 89 41.57 43.74
8 4 2 57 121 39 85 40.92 42.37
Page 9 of 12
(page number not for citation purposes)

http://nf.apac.edu.au


BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
Discussion
PyEvolve's technique for constructing substitution models
confers several advantages. Firstly, with very little coding
it is possible to implement existing or generate entirely
novel models of substitution. This approach reduces the
opportunity for errors in defining existing models. By low-
ering the barrier for developing novel models of substitu-
tion, more biologists should be able to develop models
that reflect their own knowledge. As illustrated by the
methylation model presented here, such knowledge can
lead to striking improvements in model fit. The overall
performance of the software is largely independent of the
code efficiency used to define these model rules.

There are two measures that we have used to evaluate PyE-
volve's performance: (1) the time taken to calculate the
likelihood of an alignment measured in terms of 1000 lfe;
(2) the real world performance measured as the time
taken to maximise the likelihood. For the first of these
measures, PyEvolve was faster than PAML. For instance,
the time taken per 1000 lfe by PAML's codeml application
implementing the Goldman and Yang [20] substitution
model for the 20 sequence data set was ~326.36 seconds
on the same hardware, which is ~2.4 to ~10.4 fold slower
than the fastest single and multi- cpu performance of PyE-
volve respectively. The real world performance of PyE-
volve, however, was sometimes slower than that of PAML.

codeml was able to optimise the likelihood function for
these tests with as few as ~3500 lfe (using the original
slower codeml optimiser) compared with ~125000 lfe
required by PyEvolve's simulated annealing optimiser. Yet
the real world performance edge of codeml implied by
these test cases did not translate to a more parameter rich
model and larger data set. For a 55 mammal species
BRCA1 data set and a codon substitution model, PyEvolve
running on 16 fast Pentium cpu's of the test hardware
required ~6 hours to optimise the function (~30.5 sec-
onds per 1000 lfe). In contrast, on the same data set
codeml (using the fast optimiser option) has taken ~240
hours to optimise the same likelihood on faster hardware
(Alpha 21264C cpu). A codeml run on the fast Pentium
hardware was terminated at 12 hours.

The potential for attaining performance benefits with PyE-
volve depends on the data and the model complexity.
Although parallelisation benefits were typically largest for
the smaller data set, the results are likely to be different for
a data set with a different tree and levels of divergence. For
instance, LF level parallel performance gains will be possi-
ble for a highly diverged set of sequences if the alignment
is long. Users will therefore need to experiment with their
own data, and can use the scripts we provide in the PyE-
volve distribution [see Additional file 1] and the structure
of Table 1 as the basis for establishing the fastest configu-

16 2 8 56 121 30 69 32.28 34.47
16 4 4 58 121 28 63 29.31 31.27
16 8 2 57 121 31 71 32.70 35.30

dinuc Serial 1 1 1 54 119 17 37 19.22 18.47

LF 2 1 2 54 119 11 24 12.59 12.29
4 1 4 54 119 7 16 7.80 7.82
8 1 8 54 117 5 11 5.30 5.55
16 1 16 55 119 4 9 4.04 4.41

SA 2 2 1 53 118 11 23 12.19 11.51
4 4 1 54 118 7 15 8.32 7.77
8 8 1 54 118 5 12 5.91 5.89
16 16 1 53 118 4 10 4.73 4.86

BOTH 4 2 2 54 118 7 15 8.07 7.69
8 2 4 54 118 5 10 5.14 5.04
8 4 2 54 117 5 10 5.61 5.28
16 2 8 54 118 3 7 3.76 3.74
16 4 4 54 119 3 7 3.76 3.57
16 8 2 54 119 4 8 4.13 4.10

Table 1: PyEvolve benchmarking. Time taken was estimated as time for optimisation. Number of runs per condition ranged from 1 to 
5. 1Model – See text for details of the codon and dinuc substitution models; 2Levels – indicates whether Simulated Annealing (SA), 
Likelihood Function (LF) or BOTH parallelisation levels were used; 3Parallel degree refers to the number of virtual cpu's at the 4SA or 
LF levels (for the LF level, this is defined per SA virtual cpu); 5the number of likelihood function evaluations made during the 
optimisation for 610 or 20 sequences, expressed in thousands. See text for details of the data and hardware used. (Continued)
Page 10 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
ration for their analysis problems. There are some general
rules, however, that can point to the most likely configu-
ration to implement. Parameterisations that increase the
number of global parameters will benefit most from the
SA level parallelisation. Factors that increase the propor-
tion of time spent in the pruning algorithm will benefit
most from the LF level. Alphabets with a smaller numbers
of motifs, such as a nucleotide alphabet, will benefit
because the proportion of time taken by the matrix expo-
nentiation algorithm is small. A less balanced tree, which
requires more partial likelihood recalculations for a local
parameter change since the average number of nodes to
the root increases, will also benefit from the LF level.

Clearly there is still scope for improving PyEvolve's per-
formance. Given the dramatic effect of the optimisation
algorithm on real world performance, implementing an
optimiser similar to that used by PAML will have a major
impact on time taken and should increase the number of
problems for which PyEvolve is faster. Matrix exponentia-
tion, although being done by a C module (using the same
source code as that used by PAML), is a costly algorithm.
Other techniques for approximating exponentials are pos-
sible, some of which have good performance for sparse
matrices [4] suggesting they may be candidates to improve
the performance of codon substitution models. Effort's to
better integrate the advanced site-pattern algorithm with
alignment level parallelisation should also reduce the cost
of the latter, conferring benefits of this level to shorter and
less-diverged alignments. Additionally, the vector process-
ing units available on most modern cpu's can be exploited
to speed up the considerable vector multiplication and
addition operations performed in the pruning algorithm.

PyEvolve has numerous potential uses beyond the
straightforward statistical modelling we have applied it to
here. As we have shown, the toolkit can be readily applied
to the development of new models of substitution.
Another potential use is as the computational centrepiece
for phylogenetic reconstruction methods. For instance,
only a topology space search procedure, such as the step-
wise or advanced step-wise addition algorithms [2,12], is
required to deploy PyEvolve in a likelihood based phylo-
genetic reconstruction method. Given PyEvolve's parallel-
isation schema, implementing parallelised versions of
such topology space search algorithms becomes
straightforward.

Conclusion
PyEvolve provides flexible functionality that can be used
either for statistical analysis of sequence data, or the devel-
opment of new methods in molecular evolution. Here we
demonstrated the ease with which a novel model of dinu-
cleotide substitution can be developed and tested. The
toolkit implements a novel parallelisation schema, and

objects within the toolkit that can take advantage of this
schema, that allows the program to be adapted to suit a
broad range of problems. PyEvolve performance scales
well with increasingly complex data sets and models, with
significantly faster performance than codeml for parame-
ter rich models. The modular design ensures that modifi-
cations, such as inclusion of more efficient numerical
optimisation techniques, should be straightforward. The
toolkit also provides sequence alignment and phyloge-
netic tree manipulation tools that are of general utility.

Availability and requirements
Project name: PyEvolve

Project home page: http://cbis.anu.edu.au/software

Operating system(s): Platform independent

Programming language: Python, C, C++

Other requirements: Python 2.3 or higher

License: GPL

Any restrictions to use by non-academics: None

List of abbreviations used
BOTH – parallelised at both the LF and SA levels

LF – likelihood function parallelised at the alignment col-
umn level

lfe – likelihood function evaluation

LR – likelihood ratio

SA – parallelised simulated annealing numerical
optimiser

Authors' contributions
AB was responsible for most of the software design and
implementation. VV translated the Fortran implementa-
tion of the simulated annealing optimiser into Python. EL
assisted with establishing the utility of PyPar for paralleli-
sation, and wrote the disutils component for distribution.
CL made contributions to the data and alphabet compo-
nents. MJW contributed to the bootstrapping component.
AI assisted with the mathematical aspects of the
likelihood calculations. GAH wrote an initial prototype,
contributed to aspects of design, oversaw and managed
contributions to the project, designed and performed the
benchmarking and wrote the manuscript. All authors read
and approved the final manuscript.
Page 11 of 12
(page number not for citation purposes)

http://cbis.anu.edu.au/software


BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/1
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Additional material

Acknowledgements
We thank Ziheng Yang who has given permission to include his source code 
for performing matrix exponentials. We acknowledge support provided by 
the Australian Partnership for Advanced Computing whose facilities we 
used for the benchmarking.

References
1. Whelan S, Lio P, Goldman N: Molecular phylogenetics: state-of-

the-art methods for looking into the past. Trends Genet 2001,
17(5):262-272.

2. Felsenstein J: Evolutionary trees from DNA sequences: a max-
imum likelihood approach. J Mol Evol 1981, 17(6):368-376.

3. Lio P, Goldman N: Models of molecular evolution and
phylogeny. Genome Res 1998, 8(12):1233-1244.

4. Moler C, Van Loan C: Dubious Ways to Compute the Exponen-
tial of a Matrix, Twenty-Five Years Later. SIAM Review 2003,
45(1):3-49.

5. Messier W, Stewart CB: Episodic adaptive evolution of primate
lysozymes. Nature 1997, 385(6612):151-154.

6. Huttley GA, Easteal S, Southey MC, Giles GG, McCredie MRE, Hop-
per JL, Venter DJ: Adaptive evolution of the tumor suppressor
BRCA1 in humans and chimpanzees. Nat Genet 2000,
24(4):410-413.

7. Hall P, Wilson SR: Two guidelines for bootstrap hypothesis
testing. Biometrics 1991, 47:757-762.

8. Goldman N: Statistical tests of models of DNA substitution. J
Mol Evol 1993, 36(2):182-198.

9. Yang Z: Likelihood ratio tests for detecting positive selection
and application to primate lysozyme evolution. Mol Biol Evol
1998, 15(5):568-573.

10. Muse SV, Gaut BS: A likelihood approach for comparing synon-
ymous and nonsynonymous nucleotide substitution rates,
with application to the chloroplast genome. Mol Biol Evol 1994,
11(5):715-724.

11. McGuire G, Wright F: TOPAL: recombination detection in
DNA and protein sequences. Bioinformatics 1998, 14(2):219-220.

12. Wolf MJ, Easteal S, Kahn M, McKay BD, Jermiin LS: TrExML: a max-
imum-likelihood approach for extensive tree-space
exploration. Bioinformatics 2000, 16(4):383-394.

13. Yang Z: PAML: a program package for phylogenetic analysis
by maximum likelihood. Comput Appl Biosci 1997, 13(5):555-556.

14. Downey A, Elkner J, Meyers C: How to think like a computer
scientist.  [http://ibiblio.org/obp/thinkCSpy].

15. Yang Z, Kumar S, Nei M: A new method of inference of ances-
tral nucleotide and amino acid sequences. Genetics 1995,
141(4):1641-1650.

16. Goffe WL, Ferrier GD, Rogers J: Global Optimization of Statis-
tical Functions with Simulated Annealing. Journal of
Econometrics 1994, 60(1/2):65-100.

17. Nielsen O: PyPAR – Parallel Python, efficient and scalable
parallelism using the message passing interface (MPI). Version
1.6.4 edn 2001 [http://datamining.anu.edu.au/~ole/pypar].

18. Bohossian HB, Skaletsky H, Page DC: Unexpectedly similar rates
of nucleotide substitution found in male and female
hominids. Nature 2000, 406(6796):622-625.

19. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment

through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994,
22(22):4673-4680.

20. Goldman N, Yang Z: A codon-based model of nucleotide sub-
stitution for protein-coding DNA sequences. Mol Biol Evol 1994,
11(5):725-736.

Additional File 1
PyEvolve distribution. Includes source code of the benchmarked version 
(0.8), installation script, documentation, example scripts and the code 
used to perform benchmarking. The latest version of the source code can 
be obtained either from the project home page or the corresponding author.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-1-S1.tgz]
Page 12 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-5-1-S1.tgz
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0168-9525(01)02272-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0168-9525(01)02272-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11335036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/385151a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/385151a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8990116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/78092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9580986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9580986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7968485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7968485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7968485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.2.219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.2.219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/16.4.383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/16.4.383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/16.4.383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10869037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://ibiblio.org/obp/thinkCSpy
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0304-4076(94)90038-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0304-4076(94)90038-8
http://datamining.anu.edu.au/~ole/pypar
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35020557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35020557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35020557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10949301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7968486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7968486
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Object architecture
	Parallel
	Bootstrapping
	Optimisers
	ParameterController
	LikelihoodFunction
	Tree
	AlignAnalysis
	SubstitutionModel
	Alphabet

	Serial performance innovations
	Parallel performance innovations

	Results
	Defining a new substitution model
	Testing a hypothesis with parallelisation
	Benchmarking
	Table 1


	Discussion
	Conclusion
	Availability and requirements
	List of abbreviations used
	Authors' contributions
	Additional material
	Acknowledgements
	Acknowledgements

	References

