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Abstract

We present a new version of the FIT3D and Pipe3D codes, two packages to derive properties of the stellar populations and the
ionized emission lines from optical spectroscopy and integral field spectroscopy data respectively. The new codes have been fully
transcribed to Python from the original Perl and C versions, modifying the algorithms when needed to make use of the unique
capabilities of this language with the main goals of (1) respecting as much as possible the original philosophy of the algorithms,
(2) maintaining a full compatibility with the original version in terms of the format of the required input and produced output files,
and (3) improving the efficiency and accuracy of the algorithms, and solving known (and newly discovered) bugs. The complete
package is freely distributed, with an available repository online. pyFIT3D and pyPipe3D are fully tested with data of the most
recent IFS data surveys and compilations (e.g. CALIFA, MaNGA, SAMI and AMUSING++), and confronted with simulations.
We describe here the code, its new implementation, its accuracy in recovering the parameters based on simulations, and a showcase
of its implementation on a particular dataset.
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1. Introduction

The large volume of observed data available nowadays in ev-
ery area of science demands high speed, precise and accurate
analysis algorithms. Due to the availability of different data,
the analysis packages are increasing their capability and cov-
erage of usability cases. In the exploration of the nearby Uni-
verse (z < 0.1), the scenario could not be different. Over the
last couple of decades, the datasets evolve from a few num-
ber of surveys sampling a single value and/or a single spectrum
for each galaxy, to an exploding amount of surveys with obser-
vations of millions of spectra covering the entire field-of-view
of a huge amount of galaxies (2dFRGS: Folkes et al. 1999;
SDSS: York et al. 2000; MaNGA: Blanton et al. 2017; CAL-
IFA, Sánchez et al. 2012; SAMI: Croom et al. 2012; AMUS-
ING: Galbany et al. 2016). As a consequence, the new datasets
require dedicated pipelines for their data reduction and analysis
(e.g. LZIFU, Ho et al. 2016; MaNGA DAP, Westfall et al. 2019;
GIST, Bittner et al. 2019).

Pipe3D (Sánchez et al., 2016b, hereafter S16b) is one of
these tools, a dedicated pipeline to extract the properties of
the stellar populations and emission lines in the optical spec-
tra of Integral Field Spectroscopic data of galaxies. This
pipeline uses as basic fitting algorithms the ones provided by
FIT3D (Sánchez et al., 2016c, hereafter S16a), a package that
can explore the same properties for individual spectra, row-
stacked multi-object spectra (or classical long-slit ones), or IFS
datacubes. Both tools were coded in Perl (with some rou-

tines coded in C), making use of the numerical and fitting
algorithms included in the Perl Data Language (PDL Glaze-
brook and Economou, 1997). Pipe3D has been broadly used
in the analysis of IFS data from individual galaxies and large
datasets of different IFS galaxy surveys including CALIFA (e.g.
Sánchez-Menguiano et al., 2016), MaNGA (Sánchez et al.,
2018), MUSE (e.g. López-Cobá et al., 2020), and SAMI (e.g.
Sánchez et al., 2019). Its capabilities to recover the proper-
ties of the stellar populations and emission lines have been
contrasted with hydrodynamical simulations (e.g. Guidi et al.,
2018; Ibarra-Medel et al., 2019; van de Sande et al., 2019), and
fully compared with the values recovered using other similar
tools (e.g. Belfiore et al., 2019; Sánchez et al., 2019).

Despite of its well proved capabilities there are some draw-
backs with the current implementation of the code. The most
important one is that it is deeply attached to a coding language
and a numerical package that are used only by a small frac-
tion of the astronomical community. Furthermore, it uses PG-
PLOT1, a graphics library that is no longer officially supported,
and again, with a small number of users nowadays. In addition,
new improvements in basic algorithms that frequently appear
for other languages (like Python) and numerical packages (like
numpy or scipy) cannot be implemented. For all those reasons
the code is difficult to be updated, upgraded and maintained. It
is difficult to be installed in new versions of operative systems,
and therefore, to be distributed.

1https://sites.astro.caltech.edu/~tjp/pgplot/
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In order to solve all those problems, update the code, and
maintain it as competitive as possible, we embarked in the tran-
scription of the code to Python, the coding language that is
nowadays the one with largest fraction of users among the as-
tronomical community. We present in here the new code, de-
scribing its conceptual and coding philosophy, summarizing the
main algorithms, and showing its capabilities in the analysis of
the stellar populations and emission lines for both individual
spectra and IFS data. The structure of the article is as follows:
(i) Section 2 describes the dataset adopted as a showcase of the
use of the code; (ii) In Sec. 3 we describe the philosophy of
the new code; (iii) Sec. 4 comprises the description of the al-
gorithms, with 4.1 describing pyFIT3D, including the updates
performed (Sec. 4.1, a description of procedures to recover the
non-linear parameters (velocity, velocity dispersion and dust at-
tenuation, Sec. 4.1.1) and linear parameters (i.e., decomposi-
tion of the stellar population in the adopted single-stellar popu-
lation library, Sec. 4.1.3), and 4.2 describing the different steps
included in pyPipe3D to analyze an individual IFS datacube;
(iv) the accuracy in the recovery of the properties of the new
code is presented in Sec. 5, first contrasted against simulations
for both the stellar population and emission line properties (Sec.
5.1 and Sec. 5.2, respectively), and then against real data (Sec.
6); (v) Finally, the conclusions of this study are presented in
Sec. 7.

2. Data

The data adopted in this study as a showcase of the code is
obtained from the extended Calar Alto Legacy Integral Field
Area survey sample (eCALIFA, Sánchez et al. 2016a; Gal-
bany et al. 2018). The survey was built with observations
from the 3.5m telescope at the Calar Alto observatory, using
PPAK Integral Field Unit (Kelz et al., 2006) of the Potsdam
Multi-Aperture Spectrograph (Roth et al., 2005, PMAS,), with
a covering factor of 60% of a 74” × 64” field-of-view (FoV)
with 331 fibers of 2.7”. A complete coverage of the FoV is
achieved with a three position dithering scheme resulting in a
spatial resolution (characterized by the point-spread function,
PSF) with a full-width at half-maximum (FWHM) of ∼2.5”.
The sample of galaxies covered by eCALIFA, corresponding
to objects within a narrow range of redshifts around z ∼0.015,
was primarily selected by diameter (Walcher et al., 2014) in
order to fit the optical extension of the galaxies within the
FoV of the instrument. We use the V500 observation setup
(3745 − −7500Å, λ/∆λ ∼ 850) for the dataset analyzed dur-
ing this study, which guaranties the simultaneous covering of
(i) the most relevant spectral features of the stellar populations
in the optical regimes and (ii) the more relevant emission lines
from [OII]λ3727 to [SII]λ6717,31 to explore the properties of
the ionized gas. The observing strategy guarantees to sufficient
signal-to-noise through the optical extension of the galaxies,
making this dataset ideal for the purposes of testing the new
version of the code. It is worth noticing that this code, like its
predecessor (Pipe3D), has been already applied to other similar
datasets, like MaNGA (Sánchez et al., in prep.) or data of IFS
data of better spectral resolution (e.g., MUSE).

3. Philosophy of the new code

Contrary to the previous version of the code, that was mostly
a single-coder package, the new version was developed by
a group of people. This requires to adopt an inclusive and
easy-to-write programming language. Following the massive
growth of python users (e.g. Van Rossum and Drake Jr, 1995)
in astronomy, hence the availability of modern, well docu-
mented, helpers and packages of analysis, we rewrite the code
package entirely from perl (Wall et al., 2000) to python 3
(Van Rossum and Drake, 2009, 3.6 or higher). Furthermore, to
rewrite Pipe3D with such an inclusive programming language
will encourage more people to participate in the development of
the code at a lower level. At the end, we choose not to rename
the pipeline and the spectral fitting tool, but to append a prefix
“py” to original names.

One of the most important aspects of this code refactoring
project is the new adopted programming philosophy: to provide
modular and reusable standalone pieces of code (such as classes
and modules) making easy the production of analysis, data-
exploration and interactive2 scripts. Moreover, the new code is
constructed based on well documented public libraries to facili-
tate users/developers to understand how the analysis is made. In
addition to some standard python 3 library modules, we utilize
numerical methods from NumPy (Oliphant, 2006) and SciPy

(Virtanen et al., 2020), the FITS reading package of astropy
(astropy.io.fits; Price-Whelan et al., 2018) together with
some plot functionalities from matplotlib (Hunter, 2007) and
seaborn (Waskom et al., 2017). Finally, the new package
carries a complete code-based documentation and an online
repository3 including handy tools to help the users dealing with
the output files from the analysis and interactive scripts with
various types of procedures taking advantage of the code re-
usability.

4. New code implementation

As indicated before pyFIT3D and pyPipe3D are based on
FIT3D/Pipe3D. We attain the detailed description along the fol-
lowing subsections for the parts that are needed to the under-
standing of the article and also for those which receive some
update. We present the main changes revisiting some details of
the spectral fitting code and introducing the updates to the code.
Finally, we close this Section with the description of pyPipe3D
procedure for the analysis of an IFS datacube.

4.1. pyFIT3D: The spectral fitting code update

The spectra of a galaxy (or a region of a galaxy) are the re-
sult of the emitting light from stars and the ionized gas, kine-
matically shifted due to its dynamical stage and dust attenuated.
The idea behind pyFIT3D is to decouple the stellar continuum
and the ionized emission spectrum in the observed spectral en-
ergy density (SED). The fitting process works disentangling the

2Such as jupyter-notebooks: https://jupyter.org/.
3http://gitlab.com/pipe3d
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Figure 1: Flow-chart showing the three-step fitting process included in pyFIT3D, together with the output products at every step: non-linear fit (top-left panel),
where the systemic velocity/redshift (z?), line-of-sight velocity dispersion (σ?) and the dust attenuation (A?

V) are estimated; emission lines fit (top-right panel),
where it is created a model for the ionized gas emission lines spectrum; and finally the stellar population synthesis (bottom panel), where the gas-free resultant
spectrum is then modeled creating the light population vector (x j, i.e., the coefficients of the decomposition of the stellar spectrum in a base of synthetic stellar
templates). At the end, the light-weighted (LW) and mass-weighted (MW) age and metallicity are estimated, based on this decomposition, together with associated
errors.

stellar and the interstellar medium spectra without a direct as-
sumption of the star-formation and chemical enrichment histo-
ries (SFH and ChEH). However, we assume that the individual
spectrum comprises an unresolved stellar population. Thus, the
physical aperture from which the spectra is obtained is large
enough to encircle ∼ 104 stars, a number sufficient to fully
sample an entire Mass Function (without stochastic problems
Cerviño and Luridiana, 2004). This way, the stellar population
can be modeled by a linear combination of single-stellar pop-
ulations (SSPs), each one corresponding to the different star-
formation burst along the SFH. In comparison to the stellar
continuum, we further assume that the nebular continuum is
negligible throughout the considered aperture. The flowchart
presented in Figure 1 schematize the three-steps process of the
spectral analysis described along this Section:

• Non-linear fit step (upper-left panel), where it is derived
the redshift (systemic velocity), the line-of-sight velocity
dispersion (LOSVD) and the dust attenuation (z?, σ? and
A?

V).

• Emission lines fit step (upper-right panel), where it is de-
rived the main properties of a pre-defined set of emission

lines.

• Stellar population synthesis step (bottom panel), where the
stellar spectrum is decomposed in a set of SSPs, deriving
its main properties (e.g., light-weighted ages and metallic-
ities).

This sequence is essentially the same as the one adopted by the
previous version of the code.

There are other two additional analysis that can be performed
by FIT3D (and are an integral part of Pipe3D) which are not
included originally in the formal loop of analysis, although they
complement it:

• Moment analysis: a non-parametric estimation of emis-
sion lines properties.

• Stellar-indices analysis: where it is measured a set of
stellar indices, such as the Lick/IDS index system (e.g.
Burstein et al., 1984; Worthey, 1994), and D4000 (Bruzual
A., 1983).

Details on the procedures and their modifications are given
over next subsections.
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4.1.1. Step one: non-linear fit
As indicated before, the first group of analysis performed by

pyFIT3D is the determination of the stellar spectrum kinematic
parameters (z? and σ?) and the dust attenuation (A?

V). During
this step, the parameters are explored once at a time follow-
ing the sequence shown in upper-left diagram of Figure 1. For
each explored parameter pyFIT3D covers a range of values con-
straint between an user defined minimum and maximum values
(defining an explored interval), following a random sampling
with an average step (defined by the user too). An input guess
value is also required, which use will be described later on. Op-
tionally, setting up the step to zero makes the program to fix the
value of this parameter to the input guess along the analysis, i.e.
the parameter is not determined by pyFIT3D. The kinematic pa-
rameters receive a second round of exploration as a refinement
of the first one. In this turn, the minimum, maximum and step of
exploration are automatically updated for a fine search around
the best value found during the first round of the parameter de-
termination.

To estimate the best fitted parameter, for each set of values
(z?,σ? and A?

V) the program computes a model for the stel-
lar spectrum (following the inversion procedure described be-
low). For doing so, the adopted single/synthetic stellar popula-
tion (SSP) library is configured to the candidate observed frame
(i.e., redshifted and broadened with the explored values of the
kinematic properties and dust attenuated based on the assumed
extinction law) with a predefined set of emission lines (in the
observed-frame) masked together with the strongest night-sky
emission lines (in the rest-frame). For the broadening of the
spectra due to the velocity dispersion it is assumed a Gaussian
profile for the Line-of-sight velocity distribution (LOSVD). We
acknowledge that this is just a first order approximation and that
effects like the asymmetry of the profiles cannot be recovered
using this approximation (e.g. Cappellari et al., 2011). How-
ever, for the typical signal-to-noise (S/N) of the current IFS sur-
veys this modeling is sufficient and preferred than a more accu-
rate, but more demanding, modeling of the stellar populations.
In addition, we also include the option to input an instrumental
dispersion (in Å) to be considered during the broadening of the
spectra.
pyFIT3D includes the option to use two SSPs libraries, one

for this step and another for the stellar population synthesis at
the final part of the program (Section 4.1.3). We recommend
the use of a simple set of SSPs for the non-linear fit step for two
reasons: (1) speed-up the process (that is very time-consuming)
and (2) avoid known degeneracies between the parameters (e.g.
stellar metallicity and σ?). Then, the coefficients (x j) of the
linear combination of the SSP models which better reproduces
the stellar continuum are derived through a recursive weighted
least-squares (WLS) inverse matrix method,

f nlfit,?
λ =

x j>0∑
j

x j f ssp
λ, j (z?, σ?,A?

V)→ ( j : A?,Z?). (1)

Where f nlfit,?
λ is the modeled spectrum, f ssp

λ, j (z?, σ?,A?
V) is the

shifted, broadened and dust attenuated individual SSP template,

where j runs through the range of ages (A?) and metallicities
(Z?) covered by the considered library. The recursive procedure
applied iterates the WLS matrix inversion, rejecting those SSP
templates within the library that produce negative coefficients,
shrinking the SSP library to include only those ones for which
a positive coefficient is derived. The iteration continues until
there are no negative coefficients. The adopted merit function
is the reduced χ2, calculated as

χ2 =
1

n − m

n∑
λ

 f obs
λ − f nlfit,?

λ

σλ

2

, (2)

where n is the number of pixels of the observed spectrum, m is
the number of templates present in the adopted SSP templates
library and σλ is the error associated with the observed spec-
trum. In addition to a global input wavelength interval for the
analysis performed by pyFIT3D, we include the option to con-
figure an exclusive interval for the derivation of the kinematic
parameters (z? and σ?). Although the lower wavelength inter-
val for the determination of A?

V would speed-up the process, it
is preferred a large baseline of wavelength to provide with the
best estimation of this parameter. At the end, the best-fitted
value for each parameter corresponds to that one for which the
stellar population model produces the lower value of χ2. Since
all three properties are necessary to model the stellar spectrum,
if a property is yet to be determined, it adopts the input guess
value.

Figure 2 illustrates this entire process for the central spec-
trum (5”) of the showcase dataset (NGC 5947, observed by
CALIFA). Details on the adopted parameters, masked wave-
length intervals and configuration files for the current fitting
procedure are given in Appendix Appendix C. The final result
depends on the particular parameters included in this configu-
ration files, and in particular on the adopted SSP library (see
S16a and Cid Fernandes et al., 2014, for a discussion on the
topic). For this particular example, we adopted a sub-set of the
gsd156 stellar population library comprising just 12 templates
(four ages and three metallicities). The gsd156 library (Cid
Fernandes et al., 2013), comprises 156 SSP templates, that sam-
ple 39 ages (1 Myr to 14 Gyr, on an almost logarithmic scale),
and 4 different metallicities (Z/Z�=0.2, 0.4, 1, and 1.5), adopt-
ing the Salpeter IMF (Salpeter, 1955). We must clarify that the
code can run using any suitable SSP library, once transformed
to the required input format (described in Appendix Appendix
A). All attempts of the modeled spectra (i.e., all the realizations
of Eq. 1), residuals and the best model are shown along the
first column following the sequence of determination from top
to bottom. In each panel, vertical shaded regions represent the
masked wavelengths during the procedure. The second column
shows the merit curve for each explored parameter.

We highlight here the importance of a good choice of the
interval explored in the determination of each parameter. The
reason is that there may be local minima present in the param-
eter space exploration, as can be seen in the upper-right panel
of Figure 2. For this, a selection of the interval of parameters
based on the known properties of the observed object (e.g., red-
shift) is required, improving the velocity and reliability of the
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0

10

20

F
lu

x
[1

0−
16

er
g/

s/
cm

2
]

0.0 0.5 1.0 1.5
A?

V

1

2

3

4

χ
2

χ2 = 0.525344 z?=0.019726 σ?=119.808128 A?
V=0.221896

Figure 2: Showcase of the determination of the non-linear parameters for the central (5” aperture) spectrum of galaxy NGC 5947: Redshift (z?, upper-panels),
line-of-sight velocity dispersion (σ?, middle-panels) and dust attenuation (A?

V, lower-panels). The rows are ordered from top to bottom in the sequence that the
three parameters are determined (as appears in Figure 1). At each row, the left panel shows the observed spectrum (black line) and the different models evaluated
during the parameter exploration with associated residuals (colors distributed from light- to dark-red following the range of explored values). The vertical shaded
regions indicate the wavelength ranges masked during the process. The right panel shows the merit curve (χ2) as a function of each parameter. The colored dots
follow the parameter value during the exploration of the first loop and, the black crosses, the second step exploration, a fine sweep around the best value found in
the first loop. The best value found for each parameter is then indicated as a vertical dashed black line.

program. We will discuss that in Section 4.2.

4.1.2. Step two: Emission lines fit
After the derivation of the best kinematic and the dust atten-

uation parameters the program produces a first model for the
stellar spectrum based on the simple SSPs template (i.e., the
one adopted for the non-linear fit step). This stellar spectrum
model is then subtracted to the original one to produce a spec-
trum with just the information of the ionized gas emission lines
(plus noise and residuals). The new process of the emission
lines fit implemented in pyFIT3D is made through a two-round
procedure summarized at the upper-right diagram of Figure 1.
Which systems4 the program will fit depends on the configura-
tion made by the user5.

For the fit of the emission lines, we have implemented now
two different methods that we call RND (for random) and LM

4We call system to a set of emission lines fitted at same time, i.e., included
by the same configuration file.

5More details and examples on the configuration files are included in the
pyPipe3D webpage

(for Levenberg-–Marquardt), both modeling the emission lines
as Gaussian profiles:

• The RND method mimics the one already implemented
in the previous version of the code. The method is con-
structed based on a Monte-Carlo (MC) loop with a χ2

minimization scheme where all emission line models are
created in a pseudo-random search of the free parameters.
The process of the exploration of these parameters works
in a similar way as the one performed by the non-linear fit
step (i.e., the range of allowed values is fully covered using
a pseudo-random exploration). Again, this is important to
avoid local minima inherent to other fitting/minimization
procedures (that may be faster in principal). At the end of
each MC loop it is evaluated the best fitted χ2 and the in-
tervals of exploration are narrowed around the best fitted
parameters (following a similar process to a Markov chain
MC inference). Once the program provides with a first es-
timation of the parameters that define each emission line,
the algorithm performs a second fit with the LM method.

• The LM method is the implementation of the Levenberg–

5
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[4377.0 Å - 4477.0 Å]

4150 4200

0.0

0.5

1.0
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Figure 3: Example of the exploration of the properties of the ionized gas emission lines for the central spectrum of NGC 5947. Top panel shows the observed
spectrum (black) together with the best fitted model of the stellar population spectrum provided by the 1st non-linear step of the procedure (cyan). The residual
spectrum, once subtracted the best model to the original spectrum, is shown in red. This spectrum comprises the ionized gas emission lines to be fitted (together
with the residual of the stellar population fitting plus noise). Light-red shaded vertical regions highlights the intervals selected for fitting each emission lines system.
Bottom panels shows a zoom on those wavelength intervals. In each panel the red line corresponds to the same residual spectrum shown in the top panel. This time,
the cyan corresponds to the best fitted model for the set of emission lines in each wavelength regime and the residual of the fit is shown as a thin black line. The
shaded area highlights all the models explored by the MC method implemented in the fitting procedure. pyFIT3D derives the intensity, the velocity and the velocity
dispersion of all implicated emission lines.

Marquardt minimization, which has good precision and is
very fast. However, this method, like many other mini-
mization algorithms, may present issues with the accuracy
due to the presence of local minima (e.g., right panels of
Figure 2). Moreover, if the intervals for the exploration
of each parameter are not well defined, the method could
diverge. As indicated before, the RND method has a very
robust accuracy. However, it is slower and its precision
is affected on low S/N regime. The combination of both
methods produce optimal results in terms of accuracy and
precision. This is the reason why we include the second
round of analysis in the emission lines fit step of pyFIT3D.
At the end, the final values for the explored parameters are
derived using the LM method and the associated errors are
estimated based on a MC iteration.

The Figure 3 exemplifies this process for our example
dataset. In this example we show the fit of five systems en-
compassing ten emission lines (bottom row, from left to right):
Hδ; Hγ; [O iii]λλ4958,5007 + Hβ; [N ii]λλ6548,6583 + Hα;
[S ii]λλ6731,6716) through the RND+LM method. The set of
models for different emission lines are combined to derive an
ionized gas emission spectrum (

∑
k f Gauss

λ,k ). This is then sub-
tracted from the observed one, producing a gas-free spectrum
(plus residuals and noise), which will be used as the input spec-

trum for the stellar population synthesis.

4.1.3. Step three: Stellar population analysis
The last step of the fitting procedure included in pyFIT3D

comprises the synthesis of the stellar population. This process
works by solving the linear decomposition of the gas-free spec-
trum ( f g.f

λ ) between the different SSP templates of the adopted
library. The decomposition is done using a MC method over
perturbed realizations of the input spectrum. First, all SSP tem-
plates are shifted to the observed frame and dust attenuated us-
ing the kinematics parameters and A?

V derived in the first step
(Section 4.1.1). Then, the average values of the set of x j pa-
rameters derived for each MC iteration are recovered as the fi-
nal weights/coefficients of the stellar population model, with
the standard deviation being adopted as the 1σ error of each
parameter. Figure 4 outlines this part of the procedure for our
adopted example dataset. For this particular example we use the
full gsd156 stellar population library, that has been extensively
used in many different studies (e.g. Pérez et al., 2013; González
Delgado et al., 2014; Ibarra-Medel et al., 2016; Sánchez et al.,
2018, 2021). Once again, we must remind that the code can run
using any SSP library with the proper format.

Let Fi
λ be the perturbed spectrum for the ith MC iteration, Ri

λ

the noise factor, corresponding to a random value following a
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Figure 4: Example of the stellar population synthesis procedure for the central spectrum of NGC 5947. The upper panel shows the spectral fit (left) together with
the values of the main properties derived by the synthesis (right). The observed spectrum (dark-thick line) is overplotted with the best model for the stellar spectrum
(cyan line) with the final residual spectrum draw as a black-thin line at the bottom. All the Fk

λ MC realizations are represented by the hatched gray area around the
observed spectrum. The noise range (as in Eq. 3) and the residual of the k-realizations have been amplified by a factor of five to be better appreciated. The vertical
shaded regions correspond to the masked areas due to intrinsic emission lines (red) and telluric ones (gray). Vertical dashed lines highlight the fitted emission lines
(represented in upper-right panel of Figure 1 and in Figure 3). The bottom panel shows the fraction of light in the selected wavelength range (5500 ± 45Å) that
corresponds to each SSP within the template (i.e., the coefficients of the stellar decomposition), color coded in red.

(-1, 1) clipped Gaussian distribution, and σλ being the noise
spectrum:

Fi
λ = f g.f

λ + Ri
λσλ. (3)

The left panel of Figure 4 shows the set of Fi
λ (gray lines) with

the noise factor (Ri
λσλ). In order to visualize better the differ-

ences between the i iterations the noise has been multiplied by 5
(this factor was introduced just for visualization purposes, it is
not included as such in the code). The reduced χ2 is calculated
for each MC iteration as:

χ2
i =

1
n − m

n∑
λ

Fi
λ − Mi

?,λ

σλ

2

, (4)

where n is the number of pixels in the observed spectrum, m is
the number of SSP models and Mi

?,λ is the modeled spectrum
at the ith MC realization,

Mi
?,λ =

x j>0∑
j

xi
j f ssp
λ, j (z?, σ?,A?

V), (5)

and xi
j is the coefficient of the jth template of the adopted SSP

library at the ith MC realization. The final modeled stellar spec-
trum and associated uncertainties are given by the mean,

M?,λ = mean(M1..i
?,λ), (6)

and standard deviation,

σ(M?,λ) = stddev(M1..i
?,λ), (7)

of the individual i iterations, respectively. Finally, the coeffi-
cients of the best fitted multi-SSP model are given by the mean,

x j(A?,Z?) = mean[x1..i
j (A?,Z?)], (8)

and their uncertainties by their standard deviation,

σ[x j(A?,Z?)] = stddev[x1..i
j (A?,Z?)]. (9)

We should note that these final coefficients provided by the
algorithm correspond to the fraction of light that each SSP tem-
plate contributes to the observed spectrum at a certain wave-
length,

c j =
x j

f ssp
λnorm, j

. (10)

For the optical wavelength range λnorm is usually selected to be
5500 Å.

Once we derive the coefficients of the decomposition of the
stellar population in the SSP templates, it is possible to derive
different average properties. In particular, pyFIT3D estimates
the light-weighted (LW) stellar age,

〈
logA?

〉
L =

m∑
j

c j logA?, j, (11)

and metallicity,

[Z/H]L =

m∑
j

c j log Z?, j. (12)

The light-weighted averages highlight the contribution of the
young stellar populations, i.e., recent star forming events, since
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they contribute more to the light relative to their old counter-
parts. On the other hand, mass averaged values are less sensi-
tive to the presence of young stellar populations, highlighting
the contribution of the old stellar ones. Mass-weighted values
are also calculated defining the mass fraction contributed by
each SSP model as

µ j = c jΥλnorm, j, (13)

where Υλnorm, j is the stellar mass-to-light (i.e. M/L) associated
with the jth SSP model. So, the mass-weighted (MW) mean
stellar age and metallicity are calculated as

〈
logA?

〉
M =

∑m
j µ j logA?, j∑m

j µ j
(14)

and

[Z/H]M =

∑m
j µ j log Z?, j∑m

j µ j
. (15)

4.1.4. Moment analysis
After the description of the three steps present on the default

procedure of analysis of pyFIT3D (Figure 1), we will move to
revisit a second method of analysis of the ionized gas spec-
trum implemented on pyFIT3D. We present in Section 4.1.2 the
emission line parameters derived through the mixed RND+LM
method procedure. However, there are more emission lines
than the strongest and frequently observed (and/or analyzed)
ones, like those presented in the aforementioned Section. The
parameters of the emission lines distributed by pyPipe3D com-
prise those for more than 50 emission lines and the most major-
ity of them weak ones. It is not practical to perform a Gaussian
fit for all of them because it would be very time consuming.
Considering this, we implement a different scheme to extract
the main properties of these emission lines.

This method is based on a direct estimation of the flux in-
tensity, velocity, velocity dispersion and equivalent width (EW)
of the emission lines from the moment analysis of the ionized
spectrum. For the operation of the method it is needed (i) a list
of central wavelengths of emission lines to be fitted (in the rest-
frame), (ii) the ionized gas spectrum (once subtracted the stel-
lar population model), (iii) the stellar population model spec-
trum and (iv) an error spectrum. In addition, an input guess
estimation of the gas velocity (in km/s) and velocity dispersion
(including the instrumental dispersion, in Å) are also required.
For this initial guess we adopt the output of the Hα emission
analysis with the method described in Section 4.1.2.

For each emission line, the algorithm defines a wavelength
range at which it is going to perform the analysis. This range
is centered in the wavelength of the emission line provided by
the list (described before), shifted by the input guess velocity,
and it covers a wavelength interval of ±7.5 times the input ve-
locity dispersion around this central wavelength. In this wave-
length range the code calculates the first three statistical mo-
ments, that corresponds to the flux intensity, the central veloc-
ity and the velocity dispersion of the considered emission line.
This moment estimation is performed weighting the fluxes us-
ing a Gaussian Kernel that adopted as width the input velocity
dispersion. In this way, the possible contributions of adjacent

(or even blended) emission lines are minimized, giving, at the
same time, more weight to the regions of the emission lines
with higher fluxes (and signal-to-noise values). Furthermore,
the EW of the emission line is calculated by dividing the esti-
mated integrated flux by the flux density of the underlying con-
tinuum. For doing so, the program estimates the flux density
of the continuum from the stellar population model spectrum
as the average flux density inside two wide (30 Å) side wave-
length bands centered at ± 60 Å from the central one. The size
of the bands is chosen to mitigate contribution from stellar ab-
sorption features, although this is not perfect and some effects
are always impossible to avoid. Finally, the process is iterated
for each emission line following a MC loop to derive the errors
of the four estimated parameters.

4.1.5. Stellar-indices analysis

The second additional analysis performed by pyFIT3D differ-
ent than the modeling of the stellar population and the emission
lines is the estimation of the equivalent widths of a predefined
set of stellar indices. This is part of a classical technique to de-
rive properties of stellar populations in galaxies from the mea-
surement of determined absorption line strength indices, such
as the Lick/IDS system (e.g. Burstein et al., 1984; Faber et al.,
1985; Worthey, 1994). Those indices are sensitive to the age
and metallicity of the stellar populations and provide model-
independent information complementary to that described in
Section 4.1.3 (fit of the stellar spectrum with multi-SSP tem-
plates).

The adopted algorithm of measurement follows the prescrip-
tion (formulas and steps) implemented in indexf (Cardiel et al.,
2003). Briefly, the algorithm estimates the EW for each of the
stellar indices from the stellar population model spectrum using
the same procedure to derive the EW of the emission lines de-
scribed in Section 4.1.3. In order to perform the analysis over
a set of MC realizations, the program also considers the residu-
als from the stellar population synthesis as a guess of the noise
pattern.

The current version of the code includes the measurement
of eight stellar indices (Hδ, Hδmod, Hγ, Hβ, Mgb, Fe5270,
Fe5335 and D4000). We note that D4000 is not an EW, but
a color parameter, that corresponds to the ratio between the
flux density observed at wavelengths bluer and redder than the
4000Å. In this particular case we use the definition based on
the flux density in wavelengths (D4000λ) instead of the most
frequently adopted one that uses the flux density in frequencies
(D4000ν) for this parameter. This parameter is frequently de-
fined as B4000 and it corresponds to D4000ν/1.1619 (e.g. Gor-
gas et al., 1999). The list of adopted bandwidths for each pa-
rameter is indicated in S16b, Table 2. For the calculation of
the equivalent widths (and color parameters), the bandwidths
are shifted to the observed-frame using the velocity estimated
from the analysis of the kinematics described in Section 4.1.1.
At the end, the program derives the standard deviation of the
measurements of each index along the MC simulation.
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4.2. pyPipe3D: revisiting the procedure

So far we have described the treatment performed to analyze
a single spectrum using pyFIT3D. Based on this fitting tool we
develop a pipeline to provide with the spatially resolved prop-
erties of the stellar populations and emission lines from an IFS
cube. This tool, named Pipe3D, was previously described in
S16b. Here, we implemented the new python version of the
code, and, based on the aforementioned philosophy described
in Section 3, we create a single script, pyPipe3D, that performs
all the steps of this pipeline. To describe this new script we re-
visit briefly the steps implemented in this pipeline highlighting
the differences and updates with respect to the previous version.

Pipe3D was thought to be a generalist tool, able to analyze
data from any IFS galaxy survey (or individual observations).
However, each survey (and instrument reduction package) pro-
vides the data in a slightly different format. In order to apply
Pipe3D (and pyPipe3D), it is needed to do some pre-processing
on the data, which is not part of the pipeline itself. The goal of
this pre-processing is to adapt any IFS data to the format ex-
pected by the pipeline. At the end, this format is a FITS file
with at least two extensions (three preferred). The first exten-
sion should be a cube containing in each spaxel the observed
spectrum (i.e., the flux intensity), with a regular linear step in
the z-axis sampling the wavelength range. The spectra are as-
sumed to be corrected for Galactic extinction. The other two ex-
tensions should have the same format (i.e., the same 3D world
coordinate system, WCS). The second extension contains the
1σ level of the error, estimated by the reduction process. Fi-
nally, the third extension should contain a 3D mask, including
all the possible defects of the CCDs, cosmic rays masks, etc.

The analysis performed by pyPipe3D begins with the ex-
traction and the fitting of the central spectrum (5” aperture) of
the observed source, using the analysis described from Section
4.1.1 to 4.1.3. This first analysis helps the subsequent ones,
recovering the redshift and velocity dispersion of the central re-
gion and allowing to automatically select the guess and range of
values to explore for each non-linear parameter (Section 4.1.1).

The surface brightness of galaxies decreases as a function
of the galactocentric distance, with the S/N following the same
behavior, degrading the reliability of the analysis of the stellar
continuum in the outer regions (e.g. Cappellari and Copin 2003;
Cid Fernandes et al. 2013, 2014; S16a). pyPipe3D overcomes
this problem with a process of spatial binning called Continuum
Segmentation binning, or CS-binning. This process, fully de-
scribed in S16b, combines the criteria adopted in other segmen-
tation/binning schemes, the isophotal (Papaderos et al., 2002,
2013) and the Voronoi binning (Cappellari and Copin, 2003)
schemes. The first method aggregates adjacent spaxels only if
they belong to the same isophote (i.e., if their flux intensities
differ less than a certain pre-defined percentage) and their dis-
tance is lower than a maximum value. By construction, this
procedure preserves at a certain stage the shape of the origi-
nal light distribution. However it does not guarantee to reach
an optical S/N after binning, and the selection of the parame-
ters is somehow arbitrary. On the other hand, the Voronoi bin-
ning uses as a unique criterium to aggregate adjacent spaxels

the S/N. The procedure provides with the minimum number of
voxels that increases the S/N above a desired threshold defined
by the user. In this way, it aggregates spaxels without any con-
sideration to their physical properties (e.g. it can aggregate arm
and inter-arm regions in the same tessella/spatial bin).

The CS-binning combines both criteria in a procedure that
uses both a goal S/N and a maximum difference in the flux in-
tensity to aggregate adjacent spaxels. In summary, the proce-
dure starts by selecting the un-binned spaxel with the largest
flux intensity in a certain band (5590–5680 Å). If this spaxel al-
ready fulfills the requirement in S/N (i.e., if it is larger than the
desired goal), the spaxel is selected as a bin itself. If not, the
algorithm looks for all the adjacent spaxels for which the flux
intensity differs less than a certain fractional threshold with re-
spect to this flux intensity of the considered spaxel. If this cri-
teria is fulfilled then each adjacent spaxel is aggregated to the
bin, and the S/N and average flux are reevaluated. If the S/N
is now above the threshold, the bin is defined and the proce-
dure starts looking for a new bin (i.e., looking for the highest
flux spaxel within the unbinned ones). If not, further adjacent
spaxels are incorporated into the tessella until one of the two
criteria are not fulfilled. The full procedure is finished when
no un-binned spaxels are found above a threshold in S/N (nor-
mally 1σ). Then, the code provides with (i) a RSS with each
row comprising the average spectrum within each of the final
tessellas, (ii) a map of the fractional contribution of each spaxel
to this spectrum (the so-called dezonification map Cid Fernan-
des et al. 2013; S16b) and (iii) a segmentation map in which is
stored the unique ID of each tessella, for a future identification
of the average spectra with their location in the sky.

Figure 5 exemplifies this process for the CALIFA V500-
datacube of galaxy NGC 2916. The three maps are: the flux
intensity of V-band; the S/N map at this band and the CS-binned
map. The average spectrum and the spectra of the binned spax-
els of tessella 184 are shown at the bottom panel (this tessella
was arbitrary chosen within those located near one effective
radius from the center of the galaxy). This binned region is
highlighted in all three maps. The S/N map shows the patchy
pattern due to the three-pointing dithering scheme adopted by
CALIFA (and other IFS surveys, like MaNGA or SAMI)6. The
smooth distribution of the CS-binned map (top-right panel in
Figure 5) shows that this spatial binning essentially removes
this effect, conserving the shape of the light distribution of the
galaxy. Our experiments have shown that when using other
binning schemes, in particular the Voronoi binning, the light
distribution of the galaxy is not preserved as well as using the
adopted CS-binning. We need to recall the reader that this for-
mer binning was developed to explore the central regions of
early type galaxies, which usually have a smooth light distribu-
tion without significant features (Cappellari and Copin, 2003).

6The final datacubes in these surveys are the result of combining at least
three dithered pointings with fibers larger than the final selected spaxel. For this
reason certain spaxels comprise the information of three fibers, while adjacent
spaxels comprise the information of only two or just one of the original fibers.
Thus, for the same flux intensity the S/N is not homogeneous, maintaining the
triangular structure of the adopted dithering scheme.
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Figure 5: Example of the CS binning performed by pyFIT3D for the IFS datacube of the galaxy NGC 2916, observed by CALIFA. Top panels: From left to right,
(i) map of the mean observed flux intensity with the wavelength range 5590-5680 Å, (ii) S/N map at this wavelength interval and (iii) the spatial bin (tessella)
identification number (from 0 to 614 in this case). An arbitrary binned region (184) at approximately one effective radius of the center is highlighted on all three
maps. The bottom panel shows the average spectrum (black) together with the individual spectra (red) within this tessella.

S16b already performed a direct comparison of the three afore-
mentioned spatial binning procedures for the same dataset con-
firming this result.

At this point, pyPipe3D run the pyFIT3D algorithm (de-
scribed in Sections from 4.1.1 to 4.1.3) for each individual
spectrum of the CS-binned dataset. This process provides with
all the parameters summarized in Section 4.1 at each location
within the FoV of the IFS data. This way, for each parameter
is generated a map (2D distribution), in which each derived pa-
rameter is associated with the location of the CS-bin defined by
the segmentation map described before. Finally, all the maps
with the distribution of properties are integrated into a set of
cubes (3D arrays) for more convenient and simple distribution.
These cubes will be described later on. In addition, pyPipe3D
provides with an additional cube with the spectral information
provided by pyFIT3D, comprising (i) the original spectra, (ii)
the best model for the stellar populations, (iii) the best model
combining both the stellar populations and the emission lines
models, and (iv) three residual spectra: (a) once subtracted the
combined model, (b) once subtracted the best stellar popula-

tion model (i.e., gas spectra), and (c) once subtracted the model
spectra for the emission lines (i.e., emission-line cleaned spec-
tra). This product has a cube structure since it comprises at each
slice the RSS including these six spectra for each tessella, with
the z-axis running for the number of spatial bins.

The pyPipe3D procedure continues with an analysis of
the stellar indices, following the procedure described in Sec.
4.1.5. This exploration was performed for each individual spec-
trum corresponding to each tessella once subtracted the best
model for the emission lines, removing their possible contri-
bution/pollution to the estimation of the stellar indices. Like
in the case of the previously described procedure the result of
this analysis is a set of maps, one for each analyzed index (and
another one for its corresponding error), with a spatial struc-
ture that follows the applied tessellation (i.e., all spaxels within
the same spatial bin have the same estimated stellar index, by
construction). Following the same storing philosophy all those
maps are integrated into a single dataproducts cube for a more
simple distribution of the results.

Finally, pyPipe3D re-analyze of the emission lines adopt-
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ing two different procedures, the parametric fitting described
in Sec. 4.1.2, and the moment analysis described in Sec. 4.1.4.
Contrary to the previous explorations described above these two
new analysis are performed spaxel-by-spaxel, not using the CS-
binned RSS spectra. The reason behind that is that the spatial
distribution of the continuum, that was the basis of the adopted
tessallation procedure, does not necessarily corresponds to that
of the ionized gas (which may present both a smooth compo-
nent associated with the continuum and clumpy of filamentary
structures Sánchez et al., 2021). Prior to any analysis it is con-
structed a GAS-pure datacube, i.e., a cube in which the contri-
bution of the stellar population is removed. For doing so the
best fitted stellar population model provided by the pyFIT3D

algorithms for each tessella is re-scaled to the flux intensity of
each spaxel within this tessella using the dezonification map. A
further polynomial correction is applied to remove the possible
color effects between the model (resulting from the fitting to
the average spectra) and the individual spectrum. This matched
stellar-population model spectrum is then removed to the orig-
inal one creating a spectrum that contains the emission by the
ionized gas (i.e., the emission lines), plus noise and residuals.
This GAS-pure cube is also provided as a dataproduct of the
pyPipe3D analysis.

The final analysis explores the strongest emission lines in
the optical wavelength range ([O ii]λ3727, Hβ, [O iii]λ4959,
[O iii]λ5007, [N ii]λ6548, Hα, [N ii]λ6584, [S ii]λ6716,
[S ii]λ6731, in the current implementation of the code) using the
parametric fitting (assuming a Gaussian profile for each emis-
sion line), and the full set of strong a weak emission lines de-
scribed before, for the non-parametric moment analysis, spaxel
by spaxel using the GAS-pure datacube. Once more, like in
the previous cases, each of these procedures provides with a
map with the spatial distribution for each of the derived proper-
ties (flux, velocity...) and each of the emission lines, and their
corresponding errors. For convenience, once more, all those
maps are rearranged into two different dataproduct cubes, one
for each of the procedures.

In summary, pyPipe3D provides with five different dataprod-
uct cubes, that can be stored as individual FITS files, or as ex-
tensions of the same Pipe3D FITS file. Those dataproducts are
tagged as:

• SSP: Main parameters derived from the analysis of the stel-
lar populations, including the LW, and MW ages, metal-
licities, dust attenuation and stellar kinematics properties,
derived for each tessella;

• SFH: Weights of the decomposition of the stellar popula-
tion for the adopted SSP templates library (e.g., values in
Eq. 10), derived for each tessella. It can be used to de-
rive the spatial resolved star-formation and chemical en-
richment histories of the galaxies and the LW and MW
properties included in the SSP dataproducts;

• INDICES: Set of stellar absorption indices derived for each
tessella once subtracted the emission line contribution;

• ELINES: Flux intensities for the strongest emission lines in
the optical wavelength range, together with the kinematics

properties of Hα, derived based on a Gaussian fitting of
each emission line, spaxel-by-spaxel;

• FLUX ELINES: Main parameters of a set of strong and
weak emission lines (∼50) derived using a weighted mo-
mentum analysis based on the kinematics of Hα, derived
spaxel-by-spaxel. It includes the flux intensity, equiva-
lent width, velocity and velocity dispersion, and the corre-
sponding errors for the different analyzed emission lines.

5. Accuracy of the fitting code

As indicated before, the full code has been transcribed and
completely re-coded to python with a set of modifications.
Therefore, it is required to evaluate the accuracy and the pre-
cision of all the recovered parameters. In order to do so we run
the code on a set of simulated and real spectra.

5.1. Testing the stellar population analysis

We generate a set of 2000 realistic simulated stellar spectra
by adopting the set of parametric SFH and ChEH recently pub-
lished by Mejı́a-Narváez et al. (2020), Appendix B. These evo-
lutionary histories were designed to reproduce the wide range
of M/L, A? and metallicity distribution functions observed in
the most recent IFS galaxy surveys such as CALIFA or MaNGA
(e.g. Sánchez et al., 2018; Lacerda et al., 2020). The consid-
ered SFH and ChEH were transformed to age and metallicity
distribution functions in stellar masses, re-sampled to the grid
of values covered by the adopted gsd156 SSP library. Once
we estimate the amount of stellar mass that corresponds to each
SSP template (e.g., values described in Eq. 13), this fraction
is transformed to light based on the corresponding Υλnorm (i.e.,
coefficients described in Eq. 10). Then, applying Eq. 5, a
simulated stellar spectrum is created corresponding to a partic-
ular SFH and ChEH. Finally, the set of simulated spectra are
(i) re-sampled to 2 Å/pix7, (ii) shifted to a specific redshift; (iii)
convolved with a Gaussian function of width σ? to replicate
the LoSVD of the stars and (iv) attenuated by the dust extinc-
tion value obtained applying the extinction law by Cardelli et al.
(1989). Hence, for each simulation we adopt a set of non-linear
parameters randomly selected from a flat distribution within
pre-defined intervals: (i) from 0.005 to 0.05 for z?; (ii) from
75 and 350 km/s for the σ?; and (iii) from 0 to 1.6 mag for
the A?

V. These parameters were selected to emulate the typical
values for nearby galaxies.

Finally, we add white noise to the simulated spectra follow-
ing a Gaussian distribution in order to simulate the range of
S/N values reported in the most recent IFS galaxy surveys (1-σ
of the input have S/N between 50 and 100, and all simulated
data with S/N values ranging between 20 and 300). We do not
include other types of noise pattern in the simulated spectra,
limiting our exploration to situations in which problems like
spectrophotometric calibration, errors in sky subtraction, CCD
defects, etc, are negligible. Furthermore, no emission lines have

7to mimic the sampling of the CALIFA V500 dataset
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been included in these simulations. However, it is well known
that a well-defined set of masks for the emission lines (e.g. Sten-
cel, 1977; Matsuoka et al., 2007; Schröder et al., 2009) is es-
sential for a good determination of the stellar parameters in real
data.

We adopted the same configuration files, initial guess param-
eters and intervals for the analysis of all the simulated spectra.
For the initial guess we use the average values covered by our
simulations and as intervals the simulated range of values. For
these simulations we use the same stellar population library to
simulate the spectra and to model them. Thus, the gsd156 li-
brary is adopted for the analysis of the stellar populations and
the gsd12 for the non-linear step. So far we want to explore
how well the code reproduces well-known and controlled pa-
rameters. For a discussion on the effects of fitting a simulation
generated with a particular stellar library using other libraries
we refer the user to Cid Fernandes et al. (2014).

5.1.1. Recovery of simulated parameters
Figure 6 shows the comparison between the input (I) and re-

covered (R) values for the following stellar parameters: z?, σ?,
A?

V,
〈
logA?

〉
L (Eq. 11), [Z/H]L (Eq. 12) and the stellar mass-

to-light ratio (ΥV ), based on the simulations described before.
The offset between the input and recovered parameters and the
corresponding standard deviations have been included in each
panel of the figure. It is clearly appreciated that the all parame-
ters are very well recovered.

Among the non-linear parameters, the redshift is the one re-
covered with the most precision and accuracy by pyFIT3D. This
is due to the procedure applied on the determination of the non-
linear parameters . We have to remember that there is no curve
fit of the parameter, i.e. the method relies on the lowest value
of Eq. 2, which is primarily affected by the match between the
central wavelengths of the stellar absorption lines. On the other
hand, the σ? is the non-linear parameter recovered with less ac-
curacy (∼2 km/s) and precision (∼22 km/s). Although pyFIT3D
has not been developed optimized for kinematic analysis of the
stellar population, the values are recovered with great accu-
racy and without any significant bias related to the input values.
However, the precision is somehow affected. The extraction
of the LOSVD is a degenerated problem and both the adopted
SSP library and the LOSVD profile chosen (in pyFIT3D case,
a Gaussian one) may affect it (e.g. Bender, 1990; Statler, 1995;
Cappellari and Emsellem, 2004; Ocvirk et al., 2006; Falcón-
Barroso et al., 2011; Falcón-Barroso and Martig, 2021). For
the last parameter determined during the non-linear fit step, the
dust attenuation, there is a good agreement between input and
recovered values. However, the determination of A?

V is another
degenerated problem, which affects and is affected by the de-
termination of other parameters. We will discuss this matter
forward along this Section.

The remaining stellar parameters are then derived using the
non-linear parameters already determined and fixed, following
the procedure described in Section 4.1.3. From this analysis
we recover the coefficients of the decomposition of the stellar
population in the considered SSP library, from which we derive
average properties, both LW and MW. Along the bottom row of

Figure 6 we evaluate the capability of pyFIT3D to recover these
properties. The LW mean age is the best recovered stellar prop-
erty, with an accuracy of ∼-0.01 dex and a precision of ∼0.05
dex. On the other hand, the metallicity is recovered slightly
worse, with no appreciable offset and a precision of ∼0.06 dex,
on average. Contrary to the age, the metallicity presents a neg-
ative bias (recover lower values) at the high metallicity range,
and a positive bias (recover higher values) at low metallicity.
Usually the age is the main source of variance between the SSP
templates with the metallicity responsible for higher order ef-
fects (e.g. Ronen et al., 1999). Thus, the age is the parameter
that it is a priori easier to distinguish between different stellar
populations, what explain why it is better recovered than the
metallicity. For the stellar ΥVwe see a good agreement between
the input and recovered values, with an average accuracy of
∼0.01 dex and a precision of ∼0.04 dex. Like in the case of
the metallicity we appreciate a positive offset (larger recovered
values), in the range of larger ΥVvalues (>0.75 dex). However,
this bias is never larger than a few percent.

Table 1: Stellar population simulation: statistics of the residuals for a typical
S/N of ∼60.

∆(par) mean ± stdev
v? 13.71 ± 21.23 km/s
σ? 4.94 ± 20.32 km/s
A?

V 0.01 ± 0.04 mag〈
logA?

〉
L -0.01 ± 0.04 dex

[Z/H]L 0.01 ± 0.07 dex
ΥV 0.01 ± 0.04 dex

Results of the mean ± the standard deviation of the
distributions.

5.1.2. Interdependence on the ability of estimating the param-
eters

Until now we characterized the capability of pyFIT3D to re-
cover a set of input parameters. Now we proceed to characterize
how the accuracy and precision in the determination of one pa-
rameter affect other ones, i.e., the bias in the derivation of those
parameters. Figure 7 shows the pair-plot for the distributions of
the difference between the recovered and input values (∆par =

parR - parI), for the set of parameters shown in Figure 6 (dis-
cussed in the previous Section). In addition, we include a first
column with the input S/N of each run, illustrating the preci-
sion and accuracy of the fit accordingly to the input goodness
of data, i.e., the relative residual offsets as a function of the S/N.
In each panel is represented a pair of parameters, with the diag-
onal representing the corresponding kernel density estimate for
the matching parameter. The median and standard deviations
of the distributions included in this diagonal are the same as the
ones shown in Figure 6, being included only for completeness.
The plots involving ∆(z) have been deliberately removed since
the redshift presents almost no bias, according to the results
shown in the previous Section, and for this particular case it is
appreciated no correlation at all with any of the explored ∆par.

Examining the first column of Figure 7 we see no correla-
tion between the residuals and the input S/N, what tunes the
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Figure 6: Stellar parameters recovered by pyFIT3D (R) as a function of the input ones (I) for a set of 2000 simulations with an average S/N∼60. Upper panels
correspond, from left to right, to the non-linear parameters: redshift (z?), line-of-sight velocity dispersion (σ?) and A?

V. Lower panels correspond, from left to
right, to the parameters recovered by the stellar population analysis: LW age (

〈
logA?

〉
L), LW metallicity ([Z/H]L) and the stellar mass-to-light ratio (ΥV ). Each

panel shows the Pearson correlation coefficient (r), the mean and the standard deviation for the distribution, with each contour encircling a 1, 2, 4 and 6 standard
deviations of the kernel density estimate (KDE) of points. We warn the reader that KDE method introduces extrapolation effects in the distributions. Most of data
points used to generate distributions are within 2-σ. The projected KDE of each parameter has been included at the upper and right borders of each panel. The inset
in each panel shows the KDE of the difference between both parameters, i.e., ∆(par)

code accuracy. We also note that the results precision is im-
proving with the increasing of the input S/N. We show in Ta-
ble 5.1.1 the statistics (mean and standard deviation) of the ex-
plored residuals for a typical S/N of ∼60. Conversely, there are
clear correlations that highlight the interdependence in the esti-
mation of the different explored parameters, in agreement with
the results found in the literature using different stellar synthe-
sis codes (e.g. Cid Fernandes et al., 2005; Sánchez-Blázquez
et al., 2011; Cid Fernandes et al., 2014). The strongest corre-
lation is found between the ∆A?

V and ∆
〈
logA?

〉
L (r = −0.71),

indicating that an over-estimation of the dust attenuation pro-
duces an under-estimation of the LW age of the stellar popula-
tion (and the other way around). This degeneracy is somehow
expected since the dust attenuation and the age produce similar
effects in the shape of the spectra (i.e., making them redder).
Despite of its strength we need to highlight that the effect in-
volves a maximum variation of ∼0.1 dex in theA? for an error
of ∼0.2 mag in AV. The second stronger correlation is that of
the ∆

〈
logA?

〉
L with the ΥV (r =0.51), that illustrates the direct

connection between both parameters. As indicated before, the

strongest variance in the SSPs is due to the A?, changing es-
sentially the Υratio. Since older stellar populations have larger
Υratios than younger ones, the observed positive relationship
between the two residuals is naturally understood.

The third strongest correlation (r = −0.37) corresponds to
the well known degeneracy between age and metallicity: an in-
crease (decrease) in the fraction of old and metal rich stars have
a similar effect, i.e. the spectra becomes redder (bluer). Fur-
thermore, intrinsic uncertainties in the stellar evolution models,
in the understanding of the stellar evolution and stellar contribu-
tions for the light in different wavelength ranges depending on
the age and metallicity contributes to this degeneracy too (e.g.
Worthey, 1994; Cid Fernandes et al., 2005; Sánchez-Blázquez
et al., 2011). The effect in the residuals of both parameters is
of the same order as the one reported by (Cid Fernandes et al.,
2014) when using the STARLIGHT code for a similar SSP li-
brary. In that exploration, it was found that the use of different
libraries may affect this degeneracy, but without completely re-
moving it.

An almost similar correlation is found between the ∆ σ? and
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Figure 7: Pair-plot comparing the differences between the recovered (R) and input (I) parameters for the different explored parameters shown in Figure 6(∆par)
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Figure 8: Density distribution (shaded curve) of the uncertainty in the derivation of the explored stellar parameters, ∆(par) (i.e., the estimated value minus the
input/simulated one), divided by the error estimated by pyFIT3D, ε(par). Top-panels show the distribution for the non-linear parameters (z?, σ? and A?

V), while
bottom panels the mean properties of the stellar populations (

〈
logA?

〉
L, [Z/H]L and Υ). The dotted line in each panel corresponds to a Gaussian function centered in

zero with a standard deviation of one, representing the expected distribution if the estimated errors were fully representative of the real uncertainties in an statistically
way. ε(par) has been multiplied by a factor f (shown in each panel) to match the observed and expected distributions as much as possible. For comparison purposes
we also added the offset in ∆(par), in the original units of each parameter, to illustrate the nature of the observed shift in some panels (i.e., a systematic bias in the
derivation of the parameters, not related with the estimation of the errors).

∆ A?
V (r = −0.35), in the sense than an over-estimation of the

velocity dispersion produce an under-estimation of the dust-
attenuation. Since a change in the velocity dispersion does not
introduce a direct change in the shape of the observed spectrum
(the primary property sensitive to the dust attenuation), this de-
generacy should be induced by other interdependence among
the explored parameters. The more suitable candidate is the
effect that the velocity dispersion has on the derivation of the
stellar metallicity: a deeper absorption feature can be obtained
by either increasing the velocity dispersion or the metallicity.
This leads to a correlation between the bias/errors when trying
to derive both parameters at the same time (e.g. Koleva et al.,
2008; Sánchez-Blázquez et al., 2011). We indeed find a very
weak trend between ∆ σ? and ∆[Z/H]L (r =0.28), an effect that
via the stronger age-metallicity and age-dust degeneracy may
induce the observed trend.

All the remaining parameters do not present any clear trend
among their residuals, what suggests that their derivation is es-
sentially independent: (i) σ? vs ΥVand A?

V; (ii) A?
V vs ΥV ; and

(iii) [Z/H]L vs ΥV .

5.1.3. Accuracy of the estimated uncertainties
One of the goals of pyFIT3D is to give a good estimation of

the uncertainties for each derived parameter. The stellar pop-
ulation decomposition in pyFIT3D comprises an intrinsic MC
method over perturbed realizations of the input spectrum. This
process enable us to estimate the uncertainties of the estimated
coefficients of the stellar decomposition in the considered SSP
library (Equation 9). These uncertainties are propagated to es-
timate the errors in the averaged properties of the stellar pop-

ulations (such as the LW and MW ages and metallicities). On
the other hand, the uncertainties estimated in the exploration of
non-linear parameters (Sec. 4.1.1) are derived from the analysis
of the χ2 curves (Figure 2, right columns), assuming as a min-
imum error the average sampling of the explored range. This
latter estimation is valid when the parameters are independent
one each-other and the errors have a normal Gaussian distri-
bution, what it is not true in many cases (as discussed in the
previous Section). In general, there is no guarantee a priori that
the estimated errors are representative of the real ones.

In order to determine how the errors estimated by pyFIT3D

for each parameter, ε(par), are representative of the real ones we
compare them with the value of the offsets between the output
and input values, ∆(par), for our simulated dataset. As indicated
before, in the case of an accurate estimation of the parameters
(see Sec. 5.1.1) this residual is a good estimation of the pre-
cision and therefore a realistic tracer of the error. We should
note that uncertainties and errors should match only in an sta-
tistical sense. A direct comparison between both parameters is
presented in Appendix Appendix B. Figure 8 shows the distri-
bution of the ratio between both parameters, where the error is
scaled by a factor f (i.e., ∆(par)/( f ε(par)). In the ideal case in
which our estimated errors are a good representation of the real
uncertainties these distributions should follow a perfect Gaus-
sian function (shown in Figure 8), centered in zero (with any
offset measuring the accuracy of the estimation of the error),
and with a standard deviation of one (with any difference mea-
suring the precision of the estimation of the error). The mean
value of ∆(par) is shown in each panel, showing that pyFIT3D
provides an accurate estimation of the parameters, as discussed
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in the previous Section. In addition we include in each fig-
ure the factor f introduced to match the observed and expected
distributions, i.e., the correction that has to be applied to the re-
ported errors to be fully representative of the real uncertainties.
It is noticed that pyFIT3D underestimates the errors by a fac-
tor ∼3–4 for several parameters (z?,σ?, AV,? and

〈
logA?

〉
L)),

although in other cases the error is of the same order of the
uncertainty ([Z/H]L and ΥV ).

We are not completely aware of the nature of the reported
differences between the estimated and the real errors for cer-
tain parameters. However, we consider that a combination of
reasons may produce them. The most relevant one is that the
estimation of the errors relies on the assumption that the deriva-
tion of the parameters is fully independent, and that the errors
are propagated linearly from the uncertainties. Both assump-
tions are not fully valid, based on the results described in Sec.
5.1.2, where we reported clear correlations in the residuals be-
tween the estimated and input values for different parameters.
The results of this analysis force us to make a revision on the
currently adopted procedure to propagate the errors. However,
although the nominal errors reported by the code present clear
offsets, by applying the reported correction factors the code is
able to provide with reliable and representative values of the
real uncertainties.

5.2. Recovering the properties of the emission lines
Along this Section we estimate the accuracy and precision on

the recovery of the properties of the emission lines based on the
fitting procedure implemented in pyFIT3D. For doing so, we
simulate 10000 spectra including the [N ii]λλ6548,6583 + Hα
emission line system (i.e. three different emission lines), fixing
their integrated flux intensities to 22, 66 and 100 respectively
(in arbitrary units). Then, for each simulation we consider a
different velocity and velocity dispersion for the entire system
(i.e., same kinematic properties for the three lines), randomly
chosen within the following predefined ranges: 5500 − 6500
km/s and 2.5 − 6.5 Å (σv ≈ 100 − 400 km/s) respectively.
The simulated spectra covers the wavelength range between
6500 − 7000 Å(rest-frame), repeating the sampling of 2 Å/pix
employed in the stellar analysis simulation. Each emission
line is simulated adopting a Gaussian profile, with the corre-
sponding flux intensities listed before, shifted by the systemic
velocity and broadened by the velocity dispersion correspond-
ing to each simulation. Subsequently, we add different levels
of noise, assuming a Poissonian distribution, to cover a wide
range of S/N ratios between ∼0.1 and ∼1500. We define here
the S/N as the ratio between the peak flux-intensity of the emis-
sion line and the 1σ level of the simulated white noise. For
a conversion to the conventional S/N of the integrated flux,
a factor of 3 should be applied to the reported S/N values
(S/Nint ≈ 3 S/Npeak). Finally, all simulated spectra were fitted
using the RND+LM procedure described in Section 4.1.2. In
addition, we repeat the fit to the simulated spectra using only
the RND method in order to test the improvements from the in-
troduction of a second step in the emission lines fit procedure
employed by pyFIT3D in comparison with the previous version
of FIT3D.

Table 2: Emission lines simulation: statistics of the relative residuals segregated
by S/N

S/N ∆Flux/Fluxin ∆σ/σin 10×∆vsys/v1
sys,in

< 3 0.00 ± 0.16 -0.04 ± 0.12 -0.01 ± 0.16
3 − 10 -0.01 ± 0.09 -0.01 ± 0.06 0.00 ± 0.07

10 − 100 -0.01 ± 0.08 -0.01 ± 0.05 0.00 ± 0.04
> 100 -0.01 ± 0.07 -0.01 ± 0.04 0.00 ± 0.03

Results of the mean ± the standard deviation of the distribu-
tions.
(1) ∆vsys statistics is multiplied2 by 10 to show it in the same
scale of the other two parameters.
(2) We did not include the multiplication factor to the data
points during the statistical calculation avoiding possible
systematic bias.

For this simulation we use the same input configuration for
all rounds (see Appendix Appendix C for more details on
the adopted configuration). The values for the guess (interval)
adopted for the systemic velocity and the velocity dispersion
were 6000 (5500 − −6500) km/s and 2.7 (2.5 − −6.5) Å respec-
tively. However, the intervals are rewritten by pyFIT3D taking
into account the shift introduced in the simulated spectrum due
to the systemic velocity. All emission lines in the modeled sys-
tem are set to have the same kinematic parameters (systemic
velocity and velocity dispersion). In addition, we set a physical
link between the integrated flux of each [N ii]λλ6548,6583 line
as [N ii]λ6548 = (1/3)F[N ii]λ6584. On the other hand, no link was
imposed between [N ii]λ6584 and Hα, i.e. both are free parameters
on the simulation. By not fixing these values, the simulation
can cover different sources of ionization (e.g. AGNs, H ii re-
gions, post-AGBs; Kewley et al. 2001; Kauffmann et al. 2003;
Stasińska et al. 2006; Cid Fernandes et al. 2010).

5.2.1. Bias on the estimation of the parameters for the emission
lines

Figure 9 gives an overview of the results of this exploration
showing a pair-plot with the relative residuals (∆par/parin) of
the different parameters of the simulated emission lines system
together with the input S/N of each simulation run. Table 5.2
summarizes the results showing the mean and the standard de-
viation of the distributions of the relative residual offsets for
four different S/N ranges. Figure 10 shows four examples of
the analysis (one for each S/N range of Table 5.2).

Exploring the first column of Figure 9 we see no correla-
tion between the input S/N and the relative residuals (i.e., accu-
racy of the results), with a clear improvement of the precision
of the fitting with the S/N, confirmed by the residuals at each
S/N range at Figure 10. Even when the S/N is lower than 3,
where the systematic effects dominate (like errors in the stel-
lar population subtraction and noise patterns not considered in
this simulation), the precision on the flux intensity is not worse
than ≈16% (≈12% for the velocity dispersion). Furthermore,
pyFIT3D provides with an almost constant precision and accu-
racy above S/N > 10 for all parameters. However, the precision
for those parameters does not get better than ≈4% even in the
high S/N cases considered in this simulation. In the case of
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σ:5.1 Å - vsys:5824.5 km/s - S/N: 8.1

6600 6650 6700 6750 6800

wavelength [Å]
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Figure 11: Similar figure as Figure 8 for the properties derived from the analysis
of the simulated emission lines. From top-to-bottom we show the distribution
of ∆(par)/ε(par) for the flux intensity, the velocity dispersion, and the systemic
velocity.

the systemic velocity, the program does recover this parameter
with a precision and an accuracy ≈10% worse than the other
two. Although the accuracy on the flux and the velocity deter-
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Figure 12: Density distributions of the uncertainty in the derivation of the flux,
∆(Flux), divided by the error estimated by pyFIT3D, ε(Flux), for two rounds
of fittings of 10000 simulated spectra comprising the [N ii]λλ6548,6583 + Hα
emission lines system. For the first round (light-red) it was adopted the RND
method, while for the second one (dark-red), it was adopted the combined
RND+LM methods. Upper-left and right corners present the mean and stan-
dard deviation of each distribution.

mination is less affected when compared to the sigma one, the
uncertainties begin to suffer a considerable increase at the very
low S/N regime (S/N < 1), with offsets on the recovered values
around 20% on the flux and the velocity, and above 15% for the
sigma determination.

The estimation of the integrated flux depends directly on the
velocity dispersion, so, in principal, any bias in the determina-
tion of one could affect both the accuracy and the precision of
the determination of the other. However, we see no correlation
between the relative residual offsets, i.e. the determination of
the parameters do not present any interdependence bias. The
bulk of the distribution rests within ±0.1∆par/parin in both axis
for all three parameters (panels e, h and i of Figure 9).

Repeating the experiment using only the fit with the RND
method increases the values of the standard deviations of the
relative residuals with S/N > 3, that in this case shows simi-
lar distributions as the simulations with S/N < 3 (in agreement
with the results presented in S16 using the former version of
the code). This tell us that the inclusion of a second round of fit
with the LM method increases the precision of the estimated
parameters. Other notable result is that the correlation coef-
ficient between ∆σ/σin and ∆Flux/Fluxin increases from 0.15
to 0.26. Although this is a mild increase, it is a significant
change. This time we could conclude that the inclusion of the
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LM method as a second step of the emission line fit process
also helps to decrease the Flux−σ bias, already found for the
previous version of the code (S16).
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Figure 13: Comparison of the spatial distribution (left panels) and radial profiles
(right panels) for the non-linear parameters derived by pyPipe3D and Pipe3D
for the NGC 2916 galaxy observed by CALIFA: vsys (top panels, in absolute
values), σ? (middle panels), A?

V (bottom panels). The white ellipses in the
maps represents the location of one and two effective radius (Re). The error-
bars in the left panels represent the mean and 1σ interval of the azimuthally
averaged parameters.

5.2.2. Accuracy of the estimated uncertainties of the emission
line properties

We repeat here the test of the hypothesis that the errors es-
timated by pyFIT3D could represent the real uncertainty in the
recovery of each parameter (e.g., Sec. 5.1.3, Figure 8), this time
for the emission line analysis. Like in the case of the stellar
populations the comparison between the uncertainties and the
errors should be done in an statistical way. In Appendix Ap-
pendix B we discuss the individual comparison between both
parameters. Figure 11 shows the distribution of ∆(par)/ε(par)
for the explored properties of the emission lines (flux, velocity
dispersion and systemic velocity) based on the simulations de-
scribed in the previous section (i.e., the equivalent to Figure 8,
but for the emission line properties). We first notice that there is
no significant bias (offset) between the recovered and simulated
values for each of the three explored parameters, in agreement
with the results shown in Figure 9. Due to that the observed
distributions are well center in zero. Like in the case of the er-
rors estimated for the stellar population properties we introduce
a correction factor ( f ), to match the observed distribution with
the expected one (a Gaussian function centered in zero with a
σ =1). As a result we appreciate that the estimated errors are
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Figure 14: Similar comparison as the one shown in Figure 13 for the
〈
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L

and [Z/H]L, using the same nomenclature.

of the same order of the real uncertainties for the emission line
fluxes ( f ∼1), however, for the kinematics parameters there is a
clear underestimation of the errors ( f ∼6-7). The observed and
expected distributions are very similar once applied this correc-
tion factor. Therefore the corrected errors can be used as good
estimations of the real uncertainties.

Finally, we repeat this experiment using the two methods im-
plemented in pyFIT3D to explore the emission lines, the RND
method, already present in FIT3D, and the new RND+LN
method. Figure 12 shows the distribution of ∆(par)/ε(par)
for two different fitting rounds (one for each method) over a set
of 10,000 simulated spectra including the emission line system
described before ([N ii]λλ6548,6583 + Hα). There is a remark-
able good agreement between the distributions of the real and
estimated errors for the second method, with the distribution be-
ing well centered in -0.04 dex with a standard deviation of 1.05.
It is clear that the concomitant work of both methods produces
a better result than using the RND method only. For this pre-
vious method the distribution presents a bias of -0.21 dex and
narrower distribution (σ =0.85), what suggest that there is a
bias in the recovered values and an overestimation of the errors.
In summary, combining the RND+LM methods improves the
precision and accuracy of the code.

6. pyPipe3D applied on real data

The experiments in the previous sections, using simulated
data, with well controlled inputs allowed us to demonstrate that
pyFIT3D yield reliable results, characterizing the uncertainties
associated to the derived parameters. However, it does not ex-
emplify the full applicability of pyPipe3D, what is only possi-
ble when using it over real IFS data. As a showcase of the use of
the pipeline (Sec. 4.2) we reanalyze the V500-setup data for the
galaxy NGC 2916, provided by the CALIFA survey. This is a
an Sbc galaxy with log(M?/M�) ∼ 10.8 and redshift ∼ 0.0122
(vcen
? = 3669 km/s), which comprises a wide range of stellar

populations and emission line properties within its optical ex-
tension. For this reason was selected as the showcase example
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Figure 15: Flux intensity maps for the ten strongest emission lines observed in
the galaxy NGC 2916, sorted by the mean flux. The spiral shape of the galaxy
is very clearly traced by these emission line intensity maps. As the mean flux
decreases, the noise is more evident as a patchy pattern in the images.

for the presentation of the previous version of the code (S16b).
This way we will be able to compare the results provided by
the two versions of the code. Considering that the previous ver-
sion has been extensively used with several datasets, confronted
with hydrodynamical simulations and compared with other fit-
ting tool (Sec. 1), this comparison will allow us to estimate the
quality of the analysis performed by the new version too.

Furthermore it will allow us to compare the speed of the two
processes. Using the same CPU (Intel Xeon Gold 6130 (64)
@ 2.101GHz), for a single-core, for a computer with 128Gb
of RAM, the full analysis of the NGC 2916 datacube takes a
total of 12602s (∼3.5h) for pyPipe3D. The same process took
29859s (∼8.3h) to Pipe3D. Thus, the new procedure, even in-
cluding a second round in the analysis of the emission lines (i.e.,
the RND+LM method), is ∼2.4 times faster. Similar numbers
are derived when fitting a single spectrum (i.e., when running
the pyFIT3D routine): using the same hardware configuration
the new code requires 15s while the old one consumes 34s, thus,
∼2.3 times faster.

6.1. Stellar population analysis

Figure 13 shows the spatial distributions and radial profiles
(in units of the effective radius, Re) of the properties estimated
during the non-linear analysis (Sec. 4.1), using both pyPipe3D

and Pipe3D, for the considered dataset. The radial profiles were
calculated up to 2.5 Re, adopting an azimuthal average of the
properties inside elliptical concentric bins of 0.15 Re width. For
practical reasons, we choose to show the velocity map instead
of the redshift (i.e., v? = cz?), although both parameters are in-
terchangeable. No spatial masking was applied to the data since
our goal is to compare the output produced by pyPipe3D with
that from Pipe3D regardless the quality of potential issues with
the original data. For this reason the location of a foreground
star at about 8” North-East of the center of the galaxy is clearly

shown as a location of anomalous values in all maps. The left
map is produced by first while the right one by latter.

In general, the new version of the code presents maps and
profiles qualitatively similar to those of the previous one, and
also with those previously published by other studies using
different techniques (e.g. Cid Fernandes et al., 2013; Sánchez
et al., 2016b). Regarding the velocity profile, the old distri-
bution (and radial profile) presents a non realistic drop in the
outer regions (above 1.5Re). Despite the fact that this region
already corresponds to an area of low S/N, it is evident that this
effect is not seen in the velocity maps provided by new ver-
sion of the code. Thus, we consider that it provides with a bet-
ter determination of the velocity in the outskirts of the galaxy.
Furthermore, the spatial distribution of σ? is clearly smoother,
more realistic, with a slightly steeper profile towards the cen-
ter. However, the differences clearly seen along the map are not
propagated to the radial profile, which is very similar for both
versions of the code. The only difference is a that the new ver-
sion of the code provides somehow lower values of the velocity
dispersion in the outer regions (from ∼60 km/s to ∼30km/s in
the last radial bins). The main quantitative difference is found
in the clear systematic offset in A?

V. For this parameter the val-
ues derived by pyPipe3D are in general ∼1.2 larger than the
ones derived by the old version of the code. This difference is
most probably due to the different implementation of the cur-
rently adopted extinction curve. Pipe3D implemented our own
coded algorithm that reproduces the polynomials published by
Cardelli et al. (1989), while the new version uses the extinction
module implemented in python. In addition we found an issue
with the normalization wavelength at which the dust attenua-
tion was derived for FIT3D in the re-codding of pyFIT3D. We
consider that the two combined effects explain this difference.

The maps and profiles of the light-weighted average proper-
ties of the stellar populations, age and metallicity, are shown
in Figure 14. NGC 2916 is an Sbc galaxy and it follows the
same age and metallicity profiles reported for galaxies with
the same morphology and stellar mass (Cid Fernandes et al.,
2013; González Delgado et al., 2015; Mejı́a-Narváez et al.,
2020; Sánchez, 2020). Both properties present negative gra-
dients along the radius with the metallicity suffering a flatten-
ing or drop towards the inner regions (R < 0.5 Re). For these
parameters the two versions of the code provide with very sim-
ilar spatial and radial distributions of the explored parameters,
despite of the mild/small differences reported in the non-linear
parameters discussed before.

6.2. Emission lines analysis
For the emission lines properties pyPipe3D implements two

different procedures, as discussed in Section 4. Figure 15 show
the maps of the flux intensity for the ten strongest emission
lines, ordered by the mean flux intensity of the map, calculated
by the moment analysis (see 4.1.4). Since the analysis imple-
mented in pyPipe3D is not restricted to a wavelength range by
construction, this list of emission lines is part of a configuration
file and can be altered by the final user. Actually, the pipeline
code has been tested including the derivation of the parameters
of more than 200 emission lines with no significant increase
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over the total time of the analysis. As expected, the maps of the
weakest emission lines present a noisy pattern due to low S/N,
on top of the patchy structure intrinsic to emission line maps
(due to the nature of the ionization, that it is not homogeneous
across the optical extension of galaxies).
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Figure 16: Comparison of the spatial distribution (left panels) and radial profiles
(right panels) for the parameters derived by the moment analysis for the Hα
emission line by pyPipe3D and Pipe3D for the NGC 2916 galaxy observed by
CALIFA: velocity (1st row panels, in absolute values), velocity dispersion (2nd
row panels), flux intensity (3rd row panels), and EW(Hα) (4rd row panels).
White ellipses in the maps, symbols and error-bars in the radial plots follow the
same scheme adopted in Figure 13.

Like in the case of the stellar populations we rely on the well
proved abilities of the former version of the code, Pipe3D, to
extract reliable properties for the emission lines. Therefore we
compare the results provided by pyPipe3D with those provided
by Pipe3D in order to estimate the quality of the derived quan-
tities. Figure 16 shows the comparison between the spatial dis-
tribution and radial profiles of the velocity, velocity dispersion,
flux intensity and EW for the Hα emission line derived by both
codes using the moment analysis, following the same schemes
adopted in Figure 13 and 14. Like in those cases no masking is
applied to highlight the behavior of both codes even under non
optical conditions (low-S/N, presence of foreground sources).
There is a remarkable agreement, with even less differences
than in the case of the properties of the stellar populations. In
summary, the new code provides with a total consistent deriva-
tion of the properties of the emission lines for the explored pro-
cedure.

As mentioned before, pyPipe3D also derives the prop-
erties of the strongest emission lines adopting a Gaussian
parametrization of the emission line, using the RND+LM

method (Sec. 4.1.2). Figure 17 shows the comparison be-
tween the parameters derived for the Hα emission line using
both procedures, moment analysis and Gaussian parametriza-
tion, including the flux intensity, velocity and velocity disper-
sion (in this case, converted to FWHM). To increase the number
statistics as much as possible we use the full dataset provided by
the eCALIFA survey (867 galaxies Lacerda et al., 2020), with
comprises more than 4 million analyzed spaxels/spectra in to-
tal. The same Figure was presented in S16b just of one galaxy
(NGC 2916), using the former version of the code (i.e. Pipe3D).
The conclusions can be directly extrapolated to the case of the
entire survey analysis. The flux intensity is the parameter with
presents the lowest offset between both methods of analysis
(∆FHα = −0.04 ± 0.55 10−16 erg/s/cm2). The kinematic param-
eters present a non-negligible bias (∆vHα = 46.4 ± 59.8 km/s
and ∆σHα = −0.78 ± 1.61 Å). A priori it is expected that
the weighted-moment algorithm works very well for emission
lines which are not blended, while the Gaussian parametrization
should recover the parameters better in those cases (if the S/N is
high enough). We included in the last panel two lines delimit-
ing the maximal dispersion where the Hα lines are not blended
with [N ii]λλ6548,6583 doublet (corresponding to a FWHM of
10 Å). Selecting only those spaxels/spectra under this limit in
the velocity dispersion, the offset and the dispersion for ∆σHα
decreases significantly to a value of −0.38 ± 0.65 Å.

7. Summary and conclusions

Along this article we have presented the new implementation
of Pipe3D IFS analysis pipeline and FIT3D, the fitting tools
adopted by the pipeline, fully transcribed from perl to python.
The new pipeline conserves all the implemented tools and func-
tionality from previous versions with a complete documentation
available online8. Moreover, the entire project comprises a new
documentation, with examples, of how to use it, to facilitate the
final user to understand how the analysis is made and also to
build pieces of analysis themselves.

This article is based on the assurance of the quality of the
results already yielded by the Pipe3D pipeline over the last
five years (e.g. Sánchez et al., 2016a; Cano-Dı́az et al., 2016;
Barrera-Ballesteros et al., 2016; Sánchez-Menguiano et al.,
2017; Sánchez et al., 2018; López-Cobá et al., 2019; Sánchez,
2020). For this reason we maintained the main fitting sequence
and the basic philosophy of the algorithms. We described the
new coding philosophy and the main steps of the pyFIT3D fit-
ting procedure, aimed to decouple the emission by stellar pop-
ulations and the ionized gas and analyze both of them. We ex-
plain how this procedure is performed in three main steps: (i)
the analysis of the non-linear parameters of the stellar popula-
tion (i.e., z?, σ? and A?

V), (ii) the analysis and removal of the
emission lines and (iii) the modeling of the stellar spectrum by
a multi-SSP decomposition. In addition we describe further ex-
plorations that can be performed on both the stellar component
(indices analysis) and the emission lines (moment analysis).

8http://ifs.astro.unam.mx/pyPipe3D
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0

10

20

H
α

ve
l.

F
W

H
M

[Å
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Figure 17: Comparison of the estimated parameters (flux intensity, velocity and velocity dispersion) of the Hα emission line derived by both methods, Gaussian
models (G) versus weighted-moment analysis (M), implemented in pyPipe3D, for the full sample of eCALIFA 867 datacubes (Lacerda et al., 2020). Both dashed
lines in the rightmost panel corresponds to a FWHM of 10 Å a value below which the Hα emission line is not significantly blended with the [N ii]λλ6548,6583
doublet (for the spectral resolution of this data). Contours and density histograms in each panel follow the same scheme presented on Figure 7.

All these different pieces of analysis were integrated into
the final pyPipe3D pipeline, aimed to analyze automatically
IFS observations on a single galaxy, extracting once more the
properties of the stellar populations and the ionized gas. We
described along this article the different procedures performed
by this pipeline, which algorithms from pyFIT3D are adopted
(highlighting the differences with respect to the previous ver-
sion of the code), and described briefly the main dataproducts
delivered. In order to determine the accuracy and precision in
the derivation of the parameters, and to compare with previous
results, we applied our new code to an extensive set of simu-
lated spectra and to real data.

The main conclusions of this study are the following ones:

• The new version of the code implements all the algorithms
and analysis tools of the previous version, respecting the
input and output format of the data and products. How-
ever, the modules and tools under which the entire package
is built are designed to be reused, facilitating also the work
under exploration environments such as IPython (Pérez
and Granger, 2007). Furthermore, taking advantage of the
reusability of the code, the main scripts of pyFIT3D and
pyPipe3D are distributed with new implementations, ac-
cepting new input arguments and output logs.

• Although the fitting philosophy adopted by pyFIT3D has
not change, the code runs significantly faster allowing us
to include a second round on the determination of the
properties of the emission lines pyFIT3D. In addition, this
change in the implementation of the code improves the ac-
curacy and the precision of the estimated parameters and
uncertainties, as by simulations.

• In general the code present a good accuracy and precision
in the recovery of the explored parameters. The best re-
covered stellar parameters are the redshift (∆v ∼10 km/s),
and the worst ones are the velocity dispersion (∆σ? ∼22

km/s) and the metallicity (∆[Z/H]L[]0.6 dex). The remain-
ing stellar parameters are recovered with a precision better
than 0.05 dex, and an even better accuracy.

• Our results confirm that the derivation of the different
stellar parameters is not fully independent one-each-other.
The strongest correlations are found between the uncer-
tainties of the age and those of the dust, M/L and metal-
licity, and between the metallicity and the velocity disper-
sion, but not among themselves. Of them, the only clearly
strong correlations are two first ones (age-dust and age-
M/L, r >0.5), with the remaining ones present a much
lower correlation (r ∼0.3). These correlations are inherent
to the method, emerging from the intrinsic uncertainties
of the stellar population models. These results are qual-
itatively and quantitatively similar to those found in the
literature.

• The uncertainties estimated by pyFIT3D for the properties
of the stellar populations are of the same order of the real
errors, with mild underestimation. However, there is no
one-to-one correspondence between the estimated and real
uncertainties.

• Regarding the emission lines, we found that the new im-
plemented RND+LM method recovers the simulated pa-
rameters with a much better precision (∼1% ) and accuracy
(∼3-9%) than the previously implemented RND, when the
S/N>3. Furthermore, we have not found any significant
interdependence in the determination of the different pa-
rameters. Finally, the estimated errors are of the order of
the real ones, with a slight overestimation of a ∼5% in the
error of the flux, and a 1σ agreement for the errors in the
kinematics parameters.

• The comparison of the results derived from the current ver-
sion of the code and those obtained with its previous im-
plementation on real data shows that there is a qualitative
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and quantitative agreement in the derived parameters for
both the stellar populations and the emission lines. The
main difference is found in the derivation of A?

V, what we
attribute to a bug discovered in the normalization wave-
length in the previous version.

In summary, the new implementation of the pipeline could
reproduce any of the studies already performed along the years
using the previous version of the code and it is prepared for
the analysis of IFS data from any of the present surveys and
for those planned to be released over the next years. Since
the new code is substantially faster, studies that require ex-
plorations using different input libraries, larger libraries or just
over larger datasets are now feasible. Future upgrades already
under-development will include (i) the modifications required
to explore of the [α/Fe], (ii) a differential treatment of the dust
attenuation depending on the properties of the stellar popula-
tions, (iii) a spectro-kinematic decomposition of the different
stellar component, and (iv) the inclusion of more complex mod-
els for the emission lines (e.g., Voigt models or models includ-
ing asymmetries in the profiles).
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Appendix A. FIT3D format for the SSP templates

As indicated before pyFIT3D (and pyPipe3D) can use, in
principle, any stellar or SSP library to fit the stellar compo-
nent of the analyzed spectra. However, it requires that these
library adopts a certain format. The actual format is a row-
stacked spectra (RSS) FITS file, in which each row corresponds
to one of the components to be fitted (i.e., each j component
f ssp
λ, j in Equations 1 and 5). So far the code is prepared to an-

alyze spectra which wavelength solution is linear, i.e., each
spectral pixel (X-axis of the RSS file) corresponds to a cer-
tain wavelength with a fixed wavelength interval in Åbetween
adjacent pixels. It also expects that the SSP templates are
in this format. Therefore, the SSP FITS file should include
in the header the reference pixel at which the starting wave-
length is defined (CRPIX1), the value of this wavelength in
Å(CRVAL1), and the constant step in wavelength in the spec-
tral axis (CDELT1). The SSP templates should be normalized

to one at a certain wavelength withing the interval covered by
the spectra (WAVENORM). The program requires the flux in
solar units at this wavelength to be stored in the header with
an entry for each individual SSP (NORM j), in order to pro-
vide with a reliable ΥVand stellar mass. In addition, to pro-
vide with reliable estimations of the

〈
logA?

〉
L and [Z/H]L

(and
〈
logA?

〉
M and [Z/H]M, too), it is required an entry in

the header for each individual SSP (NAME j) following the
format spec ssp AGEGyr zMET.spec, where AGE corre-
sponds to the age in Gyr of the SSP and MET corresponds
to the decimals of the metallicity (i.e., Z = 0.1MET). For in-
stance spec ssp 06.0000Gyr z0021.spec corresponds to an
SSP with an age of 6 Gyr and a metallicity of 0.00219

Appendix B. Relation between errors and uncertainties

Figure B.18 shows the distribution of the estimated errors for
the stellar populations,ε(par), as a function of the absolute value
of the uncertainty |∆(par)|, for properties discussed in Section
5.1. Despite of the good statistical correspondence between
both parameters once applied the correction factor discussed in
Sec. 5.1.3, there is no significant correlation between both pa-
rameters. Only the errors for the redshift and

〈
logA?

〉
L present

some degree of correlation.
In many cases the distribution is near or on-top of the one-

to-one relation (A?
V,

〈
logA?

〉
L, [Z/H]L and ΥV ), what indicates

that the average errors estimated by pyFIT3D traced the real
ones. However, already discussed in Sec. 5.1.3, and shown
in Figure 11 the errors are clearly underestimated for different
properties. In the case of the kinematics ones both kinematic,
the underestimation of is considerably larger than in the case of
the velocity dispersion. In addition, the redshift presents a tiny
bimodality as a consequence of the cases when it does not find
a better solution than the input guess. In these cases pyFIT3D
assumes the guess as the redshift value and the input interval as
the error. Those cases correspond to less than a 1% of the to-
tal number of simulations. The same happens with the velocity
dispersion but the substantial scatter on ε(σ?) does not allow
us to visualize it in the Figure B.18. On the other hand, for
the dust attenuation, the center of the ε × |∆| distribution shows
a noteworthy relation. However, the estimated errors cover a
wide range of values, and therefore, as indicated before, there
is no significant correlation between both parameters. The er-
rors of

〈
logA?

〉
L present a clear underestimation, covering a

narrower range of values than the real ones. However, as we de-
scribed before, this is the parameter for which the estimated er-
rors present the strongest correlation with the real uncertainties.
This is not the case for the [Z/H]L and ΥV , where the estimated
errors cover a much narrower range of parameters than the real
ones. In both cases there is a clear over-estimation of the errors.
In summary, there is no direct correspondence between the real
uncertainties and the errors estimated by the code for each indi-
vidual simulation, and the agreement between both parameters
is valid on an statistical basis, as discussed in Sec. 5.1.3.

9A few examples of the format have been included in the following web-
page: http://ifs.astroscu.unam.mx/pyPipe3D/templates/
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Figure B.18: Distribution of the estimated error, εpar, versus the absolute value of the difference between the estimated and input value, ∆par, for each of the stellar
parameters shown in Figure 6. Contours and density histograms in each panel follow the same scheme presented on Figure 7. Each panel includes the correlation
coefficient between the represented parameters (up-left legend), together with the average and standard deviation of the difference between them (bottom-right
legend).

Figure B.19 shows the distribution of the relative value of the
estimated errors, ε(par)/parin, as a function of this tracer of the
uncertainties, i.e. |∆par|/parin, for the simulated emission lines
discussed in Sec. 5.2. As already discussed in Sec. 5.2.2 the
three parameters present a mild underestimation of the errors,
what results in ε(par)/parin covering a much narrower range of
values than |∆par|/parin. As expected, there is no clear correla-
tion between the uncertainties and errors (r <0.3 in all cases),
as both parameters should be compared only in an statistical
sense.

Appendix C. Parameters adopted for the showcase fitting
example

For the description of the fitting procedure of pyFIT3D

in Section 4.1 we analyze the central spectrum (5” aperture)
of the galaxy NGC 5947, extracted from the data provided
by the CALIFA V500 IFS datacube as a showcase exam-
ple. The chosen input values for the non-linear parameters are
(guess/step/min/max):

• z?: 0.01/0.001/0.003/0.05;

• σ?: 30/10/75/375 km/s;

• A?
V: 0.15/0.05/0/1.8 mag.

All domains are chosen covering up the real observed intervals
for CALIFA data. The kinematic stellar parameters are esti-
mated using the wavelength interval from 3800 to 4700 Å be-
cause this spectral region is dominated by stronger stellar ab-
sorption features. All subsequent analysis use the wavelength
interval from 3800 to 7000 Å.

For the emission lines analysis, we choose to fit five
different systems with ten different emission lines: Hδ;
Hγ; [O iii]λλ4958,5007 + Hβ; [N ii]λλ6548,6583 + Hα and
[S ii]λλ6731,6716, with the procedure fitting one system at a
time. The kinematic is selected to be the same for all emis-
sion lines, assuming a physical scenery where they are formed
at same conditions. We should note that this is not a limita-
tion of the method, just the choice done for the current anal-
ysis. For the [O iii]λλ4958,5007 + Hβ and emission line sys-
tem we tie the integrated flux of each [O iii]λλ4958,5007 line as
[O iii]λ5007 = (1/3)F[O iii]λ4959. Following the same hypothesis, for
the [N ii]λλ6548,6583 + Hα system we link the integrated flux
of the [N ii]λλ6548,6583 line as F[N ii]λ6584 = (1/3)F[N ii]λ6548.
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Figure B.19: Distribution of the errors estimated by pyFIT3D as a function of the absolute value of the relative difference between the derived and input values
for each of the explored parameters of the simulated emission lines: flux intensity (left), velocity dispersion (middle) and systemic velocity (right). Contours and
density histograms in each panel follow the same scheme presented on Figure 7.

An example of a simple configuration file of an emission lines
system can be found in the pyPipe3D webpage. The RND
method is configured to proceed 20 MC loops for the search
of the kinematic parameters and the integrated flux. This pro-
cedure is repeated five times, with the parameters intervals nar-
rowed around the best fitted parameters, as described in Sec.
4.1.2.

The adopted SSP template library was the gsd156, precisely
described in (Cid Fernandes et al., 2013). It includes templates
extracted from two projects: (a) synthetic stellar spectra from
the GRANADA library (Martins et al., 2005) for the ages <
65 Myr and (b) the SSP library of MILES (Sánchez-Blázquez
et al., 2006; Vazdekis et al., 2010; Falcón-Barroso et al., 2011).
The full spectral library is composed of 39 stellar ages (from 1
Myr to 13 Gyr) and 4 metallicities (Z/Z� = 0.2, 0.4, 1 and 1.5).
Again, this is not a limitation of the procedure, and indeed we
have tested the code using several different SSP libraries. The
results of that comparison will be presented elsewhere. For the
non-linear fit of the showcase example we use a limited version
of the gsd156 library including only 12 SSPs (gsd12: 3 ages,
t? = 0.001, 0.5 and 14.1 Gyr; and the same 4 metallicities) for
the reasons mentioned in Sec. 4.1.1. The actual configuration
file required to run the pyFIT3D script on this spectrum can be
found again in the pyPipe3D webpage.
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A., Fragkoudi, F., Galán-de Anta, P.M., Husemann, B., Méndez-Abreu, J.,
Neumann, J., Pinna, F., Querejeta, M., Sánchez-Blázquez, P., Seidel, M.K.,
2019. The GIST pipeline: A multi-purpose tool for the analysis and visu-
alisation of (integral-field) spectroscopic data. Astronom. Astrophys. 628,
A117. doi:10.1051/0004-6361/201935829, arXiv:1906.04746.

Blanton, M.R., Bershady, M.A., Abolfathi, B., Albareti, F.D., Allende Pri-
eto, C., Almeida, A., Alonso-Garcı́a, J., Anders, F., Anderson, S.F., An-
drews, B., Aquino-Ortı́z, E., Aragón-Salamanca, A., Argudo-Fernández,
M., Armengaud, E., Aubourg, E., Avila-Reese, V., Badenes, C., Bailey, S.,
Barger, K.A., Barrera-Ballesteros, J., Bartosz, C., Bates, D., Baumgarten,
F., Bautista, J., Beaton, R., Beers, T.C., Belfiore, F., Bender, C.F., Berlind,
A.A., Bernardi, M., Beutler, F., Bird, J.C., Bizyaev, D., Blanc, G.A.,
Blomqvist, M., Bolton, A.S., Boquien, M., Borissova, J., van den Bosch, R.,
Bovy, J., Brandt, W.N., Brinkmann, J., Brownstein, J.R., Bundy, K., Bur-
gasser, A.J., Burtin, E., Busca, N.G., Cappellari, M., Delgado Carigi, M.L.,
Carlberg, J.K., Carnero Rosell, A., Carrera, R., Chanover, N.J., Cherinka,
B., Cheung, E., Gómez Maqueo Chew, Y., Chiappini, C., Choi, P.D., Cho-
jnowski, D., Chuang, C.H., Chung, H., Cirolini, R.F., Clerc, N., Cohen,
R.E., Comparat, J., da Costa, L., Cousinou, M.C., Covey, K., Crane, J.D.,
Croft, R.A.C., Cruz-Gonzalez, I., Garrido Cuadra, D., Cunha, K., Damke,
G.J., Darling, J., Davies, R., Dawson, K., de la Macorra, A., Dell’Agli,
F., De Lee, N., Delubac, T., Di Mille, F., Diamond-Stanic, A., Cano-Dı́az,
M., Donor, J., Downes, J.J., Drory, N., du Mas des Bourboux, H., Duck-
worth, C.J., Dwelly, T., Dyer, J., Ebelke, G., Eigenbrot, A.D., Eisenstein,
D.J., Emsellem, E., Eracleous, M., Escoffier, S., Evans, M.L., Fan, X.,
Fernández-Alvar, E., Fernandez-Trincado, J.G., Feuillet, D.K., Finoguenov,
A., Fleming, S.W., Font-Ribera, A., Fredrickson, A., Freischlad, G., Frinch-
aboy, P.M., Fuentes, C.E., Galbany, L., Garcia-Dias, R., Garcı́a-Hernández,
D.A., Gaulme, P., Geisler, D., Gelfand, J.D., Gil-Marı́n, H., Gillespie, B.A.,
Goddard, D., Gonzalez-Perez, V., Grabowski, K., Green, P.J., Grier, C.J.,
Gunn, J.E., Guo, H., Guy, J., Hagen, A., Hahn, C., Hall, M., Harding, P.,
Hasselquist, S., Hawley, S.L., Hearty, F., Gonzalez Hernández, J.I., Ho, S.,
Hogg, D.W., Holley-Bockelmann, K., Holtzman, J.A., Holzer, P.H., Huehn-
erhoff, J., Hutchinson, T.A., Hwang, H.S., Ibarra-Medel, H.J., da Silva Ilha,
G., Ivans, I.I., Ivory, K., Jackson, K., Jensen, T.W., Johnson, J.A., Jones,
A., Jönsson, H., Jullo, E., Kamble, V., Kinemuchi, K., Kirkby, D., Kitaura,
F.S., Klaene, M., Knapp, G.R., Kneib, J.P., Kollmeier, J.A., Lacerna, I.,
Lane, R.R., Lang, D., Law, D.R., Lazarz, D., Lee, Y., Le Goff, J.M., Liang,

25

http://dx.doi.org/10.1093/mnras/stw1984
http://arxiv.org/abs/1609.01740
http://ifs.astroscu.unam.mx/pyPipe3D/pipeline_example_README.html
http://ifs.astroscu.unam.mx/pyPipe3D/pipeline_example_README.html
http://dx.doi.org/10.3847/1538-3881/ab3e4e
http://arxiv.org/abs/1901.00866
http://dx.doi.org/10.1051/0004-6361/201935829
http://arxiv.org/abs/1906.04746


F.H., Li, C., Li, H., Lian, J., Lima, M., Lin, L., Lin, Y.T., Bertran de Lis,
S., Liu, C., de Icaza Lizaola, M.A.C., Long, D., Lucatello, S., Lundgren,
B., MacDonald, N.K., Deconto Machado, A., MacLeod, C.L., Mahadevan,
S., Geimba Maia, M.A., Maiolino, R., Majewski, S.R., Malanushenko, E.,
Malanushenko, V., Manchado, A., Mao, S., Maraston, C., Marques-Chaves,
R., Masseron, T., Masters, K.L., McBride, C.K., McDermid, R.M., Mc-
Grath, B., McGreer, I.D., Medina Peña, N., Melendez, M., Merloni, A.,
Merrifield, M.R., Meszaros, S., Meza, A., Minchev, I., Minniti, D., Miyaji,
T., More, S., Mulchaey, J., Müller-Sánchez, F., Muna, D., Munoz, R.R., My-
ers, A.D., Nair, P., Nandra, K., Correa do Nascimento, J., Negrete, A., Ness,
M., Newman, J.A., Nichol, R.C., Nidever, D.L., Nitschelm, C., Ntelis, P.,
O’Connell, J.E., Oelkers, R.J., Oravetz, A., Oravetz, D., Pace, Z., Padilla,
N., Palanque-Delabrouille, N., Alonso Palicio, P., Pan, K., Parejko, J.K.,
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Cappellari, M., Emsellem, E., Krajnović, D., McDermid, R.M., Scott, N., Ver-
does Kleijn, G.A., Young, L.M., Alatalo, K., Bacon, R., Blitz, L., Bois, M.,
Bournaud, F., Bureau, M., Davies, R.L., Davis, T.A., de Zeeuw, P.T., Duc,
P.A., Khochfar, S., Kuntschner, H., Lablanche, P.Y., Morganti, R., Naab, T.,
Oosterloo, T., Sarzi, M., Serra, P., Weijmans, A.M., 2011. The ATLAS3D

project - I. A volume-limited sample of 260 nearby early-type galaxies: sci-
ence goals and selection criteria. Mon. Not. R. Astron. Soc. 413, 813–836.
doi:10.1111/j.1365-2966.2010.18174.x, arXiv:1012.1551.

Cardelli, J.A., Clayton, G.C., Mathis, J.S., 1989. The relationship between
infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256.

doi:10.1086/167900.
Cardiel, N., Gorgas, J., Sánchez-Blázquez, P., Cenarro, A.J., Pedraz, S.,

Bruzual, G., Klement, J., 2003. Using spectroscopic data to disentan-
gle stellar population properties. Astronom. Astrophys. 409, 511–522.
doi:10.1051/0004-6361:20031096, arXiv:astro-ph/0306560.

Cerviño, M., Luridiana, V., 2004. Physical limits to the validity of synthesis
models. The Lowest Luminosity Limit. Astronom. Astrophys. 413, 145–
157. doi:10.1051/0004-6361:20031454, arXiv:astro-ph/0304061.
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Ivezić, Ž., Richards, G.T., Schneider, D.P., 2003. The host galaxies of active
galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077. doi:10.1111/
j.1365-2966.2003.07154.x, arXiv:astro-ph/0304239.

Kelz, A., Verheijen, M.A.W., Roth, M.M., Bauer, S.M., Becker, T., Paschke,
J., Popow, E., Sánchez, S.F., Laux, U., 2006. PMAS: The Potsdam
Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak.
Publications of the Astronomical Society of the Pacific 118, 129–145.
doi:10.1086/497455, arXiv:astro-ph/0512557.

Kewley, L.J., Dopita, M.A., Sutherland, R.S., Heisler, C.A., Trevena, J., 2001.
Theoretical Modeling of Starburst Galaxies. Astrophys. J. 556, 121–140.
doi:10.1086/321545, arXiv:astro-ph/0106324.

Koleva, M., Prugniel, P., Ocvirk, P., Le Borgne, D., Soubiran, C., 2008. Spec-
troscopic ages and metallicities of stellar populations: validation of full
spectrum fitting. Mon. Not. R. Astron. Soc. 385, 1998–2010. doi:10.1111/
j.1365-2966.2008.12908.x, arXiv:0801.0871.

Lacerda, E.A.D., Sánchez, S.F., Cid Fernandes, R., López-Cobá, C., Espinosa-
Ponce, C., Galbany, L., 2020. Galaxies hosting an active galactic nucleus: a
view from the CALIFA survey. Mon. Not. R. Astron. Soc. 492, 3073–3090.
doi:10.1093/mnras/staa008, arXiv:2001.00099.
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González, I., Garcı́a-Benito, R., Barrera-Ballesteros, J.K., Galbany, L.,
2019. Systematic study of outflows in the Local Universe using CALIFA:
I. Sample selection and main properties. Mon. Not. R. Astron. Soc. 482,
4032–4056. doi:10.1093/mnras/sty2960, arXiv:1811.01253.

Martins, L.P., González Delgado, R.M., Leitherer, C., Cerviño, M., Hauschildt,
P., 2005. A high-resolution stellar library for evolutionary population
synthesis. Mon. Not. R. Astron. Soc. 358, 49–65. doi:10.1111/j.

1365-2966.2005.08703.x, arXiv:astro-ph/0501225.
Matsuoka, Y., Oyabu, S., Tsuzuki, Y., Kawara, K., 2007. Observations of O

I and Ca II Emission Lines in Quasars: Implications for the Site of Fe
II Line Emission. Astrophys. J. 663, 781–798. doi:10.1086/518399,
arXiv:astro-ph/0703659.
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Stasińska, G., Cid Fernandes, R., Mateus, A., Sodré, L., Asari, N.V., 2006.
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Remus, R.S., Bahé, Y., Brough, S., Bryant, J.J., Cortese, L., Croom, S.M.,
Devriendt, J., Dubois, Y., Goodwin, M., Konstantopoulos, I.S., Lawrence,
J.S., Medling, A.M., Pichon, C., Richards, S.N., Sanchez, S.F., Scott, N.,
Sweet, S.M., 2019. The SAMI Galaxy Survey: comparing 3D spectroscopic
observations with galaxies from cosmological hydrodynamical simulations.
Mon. Not. R. Astron. Soc. 484, 869–891. doi:10.1093/mnras/sty3506,
arXiv:1810.10542.

Van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA.

Van Rossum, G., Drake Jr, F.L., 1995. Python tutorial. Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands.

Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., Cenarro, A.J., Beasley,
M.A., Cardiel, N., Gorgas, J., Peletier, R.F., 2010. Evolutionary stellar
population synthesis with MILES - I. The base models and a new line in-
dex system. Mon. Not. R. Astron. Soc. 404, 1639–1671. doi:10.1111/j.
1365-2966.2010.16407.x, arXiv:1004.4439.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cour-
napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der
Walt, S.J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson,
A.R.J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore,
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