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ABSTRACT

PyGGI is a research tool for Genetic Improvement (GI), that is de-

signed to be versatile and easy to use. We present version 2.0 of

PyGGI, the main feature of which is an XML-based intermediate

program representation. It allows users to easily define GI operators

and algorithms that can be reused with multiple target languages.

Using the new version of PyGGI, we present two case studies. First,

we conduct an Automated Program Repair (APR) experiment with

the QuixBugs benchmark, one that contains defective programs

in both Python and Java. Second, we replicate an existing work

on runtime improvement through program specialisation for the

MiniSAT satisfiability solver. PyGGI 2.0 was able to generate a

patch for a bug not previously fixed by any APR tool. It was also

able to achieve 14% runtime improvement in the case of MiniSAT.

The presented results show the applicability and the expressive-

ness of the new version of PyGGI. A video of the tool demo is at:

https://youtu.be/PxRUdlRDS40.
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1 INTRODUCTION

Genetic Improvement (GI) uses an automated search to find im-

proved versions of existing software [18]. It has already led to sig-

nificant breakthroughs with GI-improved code incorporated into

production [12, 14]. For functional property improvement, such as

correctness, Automated Program Repair (APR) techniques based

on the GI paradigm have made significant advances during the

last decade [9, 22, 23, 26]. For non-functional property improve-

ment, topics such as execution speed improvement [13], automated

problem specialisation [19], and energy consumption [7] have been

studied, to name a few.

Many of the existing GI techniques involve makingmodifications

to the program source code and observing their effects on prop-

erties under observation, such as test execution results, execution
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time, or power consumption. This, in turn, requires effective and ef-

ficient ways to define modifications, i.e., GI operators, with respect

to specific program representations. A wide range of approaches

exist in the literature, ranging from line-level modifications [2],

BNF grammar-like modifications [13], C Intermediate Language

(CIL) based Abstract Syntax Tree (AST) modifications [22], and a

custom Java parser based AST modifications [24]. Most of these

are coupled with a single target language, such as C via CIL [22]

or Java via JavaParser [24], as modifications have to be defined

syntactically. The grammar-based approach of Langdon and Har-

man [13] captures syntax information by translating the program

into a specific notation, on which GI operates: modifications made

to the program representation become source code modifications.

While this approach is theoretically language independent, Lang-

don and Harman’s tool only supports C and C++ programs, and the

framework would require internal code changes and a dedicated

translation tool to apply it to other programming languages.

PyGGI has been originally introduced as an easy to use GI frame-

work that is written in, as well as targets, Python [1, 2]. The initial

release supported both line-level and AST-level modifications such

as swap, insertion, and deletion. The choice of Python as the im-

plementation language was a conscious one. The dynamic typing

and interpreted runtime make it well-suited for fast prototyping.

The choice of Python as the target language, however, was partly

forced upon by the limited range of parsers for other languages im-

plemented in Python (Python as the target language was supported

by the use of internal ast module).

This paper introduces version 2.0 of PyGGI, which supports

a wider range of target languages, such as Java, C/C++, and C#,

via the use of an XML-based representation of program source

code. In our case studies, we utilise the srcML parser. The tree rep-

resentation of srcML has been used to perform various program

analysis tasks [3ś5, 10]. By using the srcML as an intermediate rep-

resentation, users of PyGGI can easily implement GI techniques for

multiple languages, without having to deal with multiple parsers.

We show the capabilities of version 2.0 of PyGGI with two case

studies. The first one is an APR experiment using QuixBugs [15,

25] that contains 40 defective programs translated to both Java

and Python. We show that PyGGI can be used to write a single

APR algorithm that works for both languages. The second one is

a replication of MiniSAT program specialisation [20] (the original

work used line-level modification). We show that PyGGI is capable

of finding similar improvements.

We believe that PyGGI 2.0 will contribute towards faster uptake

and popularisation of GI techniques. With the new XML engine,

https://youtu.be/PxRUdlRDS40
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the framework allows for quick experimentation among multi-

ple programming languages. PyGGI 2.0 is publicly available at

https://github.com/coinse/pyggi.

2 DESIGN OF PyGGI 2.0

With this new version, PyGGI focuses on flexibility, versatility and

expressiveness. Its core structure has been upgraded, most of its

components being extracted and generalised, in order to further

support future extensions and variations for particular applications.

In addition, PyGGI 2.0 now provides support for XML files as a

way to handle multiple programming languages. In this section,

we first discuss the architecture of PyGGI 2.0, then introduce its

notion of engines, before finally describing how XML is used as an

intermediary source code representation.

2.1 From PyGGI 1.1 to PyGGI 2.0

The initial version of PyGGI [1] only targeted language-agnostic

source code lexical modifications, i.e., it only considered muta-

tion of full raw lines of code. PyGGI 1.1 [2] introduced support

for the second type of mutations, targeting Python lines of code,

thus enabling an empirical study comparing lexical and syntactic

mutations. However, PyGGI 1.1 was built directly on top of the

first, purposely very simple and straightforward, version of PyGGI.

Granularity level was also strongly tied to the choice of the specific

parser used. Consequently, its codebase was monolithic, with inter-

twined components sharing multiple responsibilities, and overall

not adapted to further extensions.

If PyGGI 1.1 was an easy gateway for practitioners to try and

use GI, PyGGI 2.0 aims to also provide researchers with a cleaner

and more robust environment to try out new ideas, implement

new functionalities, and perform experiments. In particular, GI

components are generalised and abstracted so that concepts can be

more easily compared over multiple types of granularity levels or

types of source code targeted.

While PyGGI 1.1 implementation was contained within a single

Python module ÐpyggiÐ PyGGI 2.0 makes use of Python submod-

ules to further structure its codebase, described hereafter:

pyggi/base is the main submodule of PyGGI 2.0; it defines

the base classes of programs, engines (introduced in the

following section), patches, edits, and algorithms.

pyggi/algorithms contains the local search of PyGGI 1.1.More

algorithms are planned to be integrated in the near future.

pyggi/utils includes general helpers.

In addition, code pertaining to the two granularity levels of

PyGGI 1.1 have been relocated into the two following submodules:

pyggi/line defines array-based program representations and

mutations. It includes PyGGI 1.1’s line-based representation.

pyggi/tree defines tree-based program representations and

mutations. It includes PyGGI 1.1’s representation of Python

statements, together with the new XML representation.

2.2 File-Specific Engines

Together with the structural refactoring, the other main feature of

PyGGI 2.0 architecture is the introduction of engines. While multiple

files could be considered at the same time, in PyGGI 1.1 granularity
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Figure 1: Workflow of PyGGI 2.0 for tree-based programs

was a global property, i.e., all files of the targeted source code had

to share the same granularity level. In PyGGI 2.0 this constraint is

lifted as different parts of the same source code can now bemanaged

by different engines. Engines define both the representation of a

single source code file Ðhow to parse the initial contents of the file

together with their modification points and how to convert back

to text formatÐ and the available atomic operations that can be

performed on it, e.g., deletion, replacement, or insertion.

PyGGI 2.0 provides two types of engines naturally associated

to the two granularity levels of PyGGI and the two submodules

pyggi/line and pyggi/tree. Each of the two submodules defines

an abstract interface enabling edits to be shared between engines of

the same type. In total PyGGI 2.0 provides three concrete engines,

one under pyggi/line for general line-based operations, and two

under pyggi/tree for Python statements and XML trees. Figure 1

details PyGGI 2.0’s usual workflow for a tree-based program.

Engines enable granularity level to be dissociated from the con-

crete source code parser. This means, for example, that any experi-

ment on a specific language (e.g., Python) can easily be replicated

on another (e.g., C++) as long as both parsers implement the same

granularity level abstract interface. In practice, the XML engine

provides a shared representation at very high granularity for source

code, greatly improving PyGGI’s scope for potential experiments.

2.3 XML Integration

The two modes of PyGGI 1.1 enabled it to either consider language-

agnostic files at the line granularity level, or Python files at the

statement level. The third engine of PyGGI 2.0 introduces handling

of XML files, and enables it to easily tackle C, C++, C# and Java files

at various granularity levels through the use of the srcML1 parser.

Listing 1 shows how source code can be translated to XML. Note

that srcML outputs a highly detailed XML tree, which is here simpli-

fied to a much simpler format for the sake of keeping a reasonable

search space. For example, the statement łx = j;ž would actu-

ally be converted into the very detailed following XML fragment:

1https://www.srcml.org/

https://github.com/coinse/pyggi
https://www.srcml.org/
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Listing 1: C++ code, srcML translation, modification points

if ( j > i ) {

x = j;

}

--------------------------------------------------

<stmt >if <condition >( j &gt; i )</condition > {

<stmt >x = j;</stmt >

}</stmt >

--------------------------------------------------

% /stmt [1]

<stmt >if <condition >( j &gt; i )</condition > {

<stmt >x = j;</stmt >

}</stmt >

% /stmt [1]/ condition [1]

<condition >( j &gt; i )</condition >

% /stmt [1]/ stmt [1]

<stmt >x = j;</stmt >

ł<expr_stmt><expr><name>x</name> <operator>=</operator>

<name>j</name></expr>;</expr_stmt>ž, allowing the consider-

ation of much more precise and specific edits. XML also provides

XPath as a very convenient way of traversing the tree of nodes, with,

for example, the path ł/stmt[1]/condition[1]ž corresponding

to the first łconditionž child of the first łstmtž child of the root

node. This is similar to the strategy already used in the Python

engine to access specific statements.

3 EXPERIMENTAL DESIGN

In order to show how PyGGI 2.0 can be used for program improve-

ment, we present two case studies. The first one is concerned with

the improvement of a functional property (repair), while the other

is focused on non-functional property improvement (runtime ef-

ficiency). We also target 3 programming languages: Python, Java,

and C. In this section we outline our experimental design.

3.1 Automated Program Repair

3.1.1 Dataset. We evaluate PyGGI 2.0 on the QuixBugs bench-

mark [15, 25], which consists of 40 defective programs translated

into both Python and Java. As only 31 of the programs have a test

suite, we target those programs as our repair subjects. Furthermore,

for 11 of 31 defective programs failing on all test cases, we tried

additionally to generate passing test cases since this may make it

difficult to distinguish the original faulty program from even worse

programs. To do so, we repeatedly mutated the initial failing test

inputs until finding passing test inputs that satisfy the described

input precondition and yield the same output on both correct and

defective programs. As a result, we succeeded to generate such

passing test cases for 8 out of 11 programs, and the new test cases

are merged into the benchmark’s master branch. All defective Java

programs are translated to XML files using srcML Beta v0.9.5.

3.1.2 Experimental Setting. The experiment is conducted at both

line and statement granularity level, with three modification op-

erators deletion, replacement, and insertion. For the Java programs

translated to XML files by srcML, we targeted only srcML elements

classified as statements2 along with łdecl_stmtž and łexpr_stmtž.

Table 1: Number of unique QuixBugs patches

Python Java

Line Statement Line Statement

lis 2 3 3 4

wrap 0 4 0 0

quicksort 0 0 0 3

sieve 0 0 0 3

To evaluate each candidate patch, we use a simple fitness function

defined by the number of failing test cases (including test cases

that timed out), and a basic descent first hill climbing algorithm

is employed as a search algorithm. In each step, either a random

edit is added to the current best patch or one of the existing edits

is removed from the best patch to generate neighbouring solutions.

The time limit for test suite execution is set to 10 seconds, and

each run of the hill climbing search is given the fitness evaluation

budget of 500 steps: the stopping criterion is either when the budget

expires, or when a plausible patch is found. We execute the repair

experiment 20 times for each fault.

3.1.3 Results. The hill climbing algorithm is able to generate 22

plausible (test-suite adequate) patches for four programs among

the 31 defective programs, and the number of unique patches is

reported in Table 1. Both Python and Java versions of lis are repaired

in both granularity levels, whereas the other three programs are

repaired in only one combination of language and granularity.

Interestingly, the program sieve have not been repaired by any

repair system in previous work [25]. The three plausible patches

of seive, which are semantically, but not syntactically, equivalent,

consist of more than one atomic operation, while the patches for

the other programs are composed of only one operation. This patch

shows that the simple hill climbing algorithm can gradually find

multi-edit patches when an appropriate partial repair is generated.

Overall, the results show that PyGGI 2.0 can be used to implement

program repair systems in different programs languages, Python

and Java, and also at different granularity levels.

3.2 Running time Improvement

3.2.1 Dataset. As for our second case study, we consider a run-

ning time optimisation scenario specialising the MiniSAT [8] SAT

solver, building on previous GI work [20, 21]. In particular, we

use an existing instrumentalised MiniSAT source code Ðbased on

MiniSAT2-070721Ð from which we translate the main solving al-

gorithm (łSolver.Cž) using srcML, and a benchmark of 130 combi-

natorial interaction testing (CIT) SAT instances.

3.2.2 Experimental Setting. We operate on both statements and

Boolean conditions. Most of the tags of the MiniSAT XML tree

are ignored, as we only consider statement ones (e.g., łbreakž,

łcontinuež, łdecl_stmtž, łdož), togetherwith the łconditionž tags

of łdož, łforž, łifž, and łwhilež statements. As in the previous

case study, we consider deletion, replacement, insertion of either

statements or conditions. Mixed mutations (e.g., replacement of a

2See the Statements row at https://slides.com/collard/srcmloverview#/10

https://slides.com/collard/srcmloverview#/10
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Table 2: MiniSAT evolved mutants

Mutant Lines of code Time (sec)

baseline 28398038591 (100.0%) 67.49 (100.0%)

seed 0 24247029088 ( 85.4%) 67.36 ( 99.8%)

seed 3 28094544573 ( 98.9%) 67.23 ( 99.6%)

seed 4 23327239091 ( 82.1%) 72.01 (106.7%)

seed 5 22496801475 ( 79.2%) 62.36 ( 92.4%)

seed 6 25050800206 ( 88.2%) 63.51 ( 94.1%)

seed 7 20066013444 ( 70.7%) 58.66 ( 86.9%)

seed 9 18197820457 ( 64.1%) 58.04 ( 86.0%)

seed 22 26562843149 ( 93.5%) 76.15 (112.8%)

seed 26 23229870424 ( 81.8%) 65.65 ( 97.3%)

statement by a Boolean condition) are forbidden. Finally, Boolean

conditions such as ł<condition>foo</condition>ž are automati-

cally rewritten as ł<condition>(foo)||</condition>0ž so that

deletion and insertion of conditions work as expected.

Following the previous work [20, 21], in order to have a deter-

ministic fitness function, during training we count the number of

statements of łSolver.Cž executed as a proxy for runtime. This

metric is easily obtained by prefixing a global counter increment

before all single-line statements and at the beginning of every łdož,

łforž, and łwhilež statements.

Finally, as GI search process we use PyGGI 2.0’s local search

with a budget of 2000 steps. Previous work used a genetic program-

ming approach with 5 instances selected in each generation from

5 bins (based on instance difficulty and satisfiability), containing

overall 74 instances. Since we do not change instances during the

search, we increase the size of the training set to 15, in order to

avoid overfitting. Each mutant is first compiled, then executed on

15 instances selected at random at the beginning of the search from

the training set. Mutants failing to solve all 15 instances are imme-

diately discarded. Training is performed 30 times, with different

independent random seeds. Performance of the 30 final mutants is

then reassessed using the second test set of 56 SAT instances (used

in previous work).

3.2.3 Results. Table 2 shows the assessment of 9 of the 13 final

mutants that were able to correctly solve every of the 56 previously

unseen test instances, averaged over 30 executions. As for the 21

other mutants, 4 correctly solved every instance but required no-

ticeably more time than the baseline (between 100 and 200 seconds),

10 incorrectly classified at least one instance, 5 were discarded after

spending more than 120 seconds on a single instance, and finally 2

experienced errors during execution.

The best mutant Ðseed 9Ð reduced to only 64.1% the cumulative

amount of statements executed by the baseline (the empty patch,

i.e., the original source code) on all 56 test instances. Improvements

in fitness mostly translate to improvement in running time, with the

best mutant clearing the test benchmark in 58.04 seconds, compared

to the 67.49 seconds of the baseline, improving it by 14%.

Furthermore, analysis of mutant 9 highlighted a mutation which

applied on its own yielded a 19.4% speed-up in running time. This

mutation inserts a line manipulating variable activity levels, thus re-

balancing the priority queue for variable assignment during search.

This mutation is different from the one-line łgood changež mod-

ification found in previous work [20, 21]. Interestingly these two

mutations are compatible, leading to a mutant clearing the test

benchmark without error in only 49.44 seconds (26.8% speed-up).

4 RELATED WORK

The area of Genetic Improvement (GI) arose as a separate field of

research only in the last few years [18]. GI tools can be divided into

two categories: those that deal with the improvement of functional

and non-functional program properties.

In the first category program repair tools3, such as GenProg [11],

have gathered a lot of attention and led to the development of the

field of Automated Program Repair (APR).Within the field, however,

currently only the ASTOR [17] framework allows for comparison

of different repair approaches. Another functional property for

improvement tackled by GI is the addition of a new feature [16].

With regards to improvement of running time, memory or energy

consumption, there is a plethora of GI frameworks available that

target a specific programming language [21]. However, a lot of

these tools are not available, and, aside from one exception, have

not been designed to be general GI frameworks. The closest in the

objectives of PyGGI is the Gin toolbox [6, 24]., which targets Java.

There also exist a few code manipulation frameworks that came

from the field of GI. Among these, the Software Evolution Library

(SEL)4 is worth mentioning, as it aims to manipulate multiple pro-

gramming languages. However, it’s been written in Lisp and re-

quires a substantial learning overhead. PyGGI, on the other hand,

aims to be a light-weight framework for work in GI.

5 CONCLUSIONS

We present PyGGI 2.0, a Python General Genetic Improvement

framework, that allows for quick experimentation in GI for multi-

ple programming languages. This is achieved by the use of XML

representation incorporated in version 2.0 of the tool. We conducted

two experiments, showing two usage scenarios of PyGGI 2.0: for the

purpose of improvement of functional (repair) and non-functional

(runtime efficiency) properties of software. We show that PyGGI

2.0 can find 22 patches for four programs from the QuixBugs bench-

mark, including a fix not previously produced by an APR tool. We

were able to find these both in the Python and Java implementa-

tions of the subject programs. Moreover, we show that PyGGI 2.0

can also find efficiency improvements of up to 14% in the MiniSAT

solver when specialising for a particular application domain, finding

additional improvements to previous work. We thus demonstrate

that PyGGI 2.0 is a useful tool for GI research, facilitating quick

comparisons between different programming languages.
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