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Abstract

Background: With the growth of available sequenced datasets, analysis of heterogeneous processed data can

answer increasingly relevant biological and clinical questions. Scientists are challenged in performing efficient and

reproducible data extraction and analysis pipelines over heterogeneously processed datasets. Available software

packages are suitable for analyzing experimental files from such datasets one by one, but do not scale to thousands of

experiments. Moreover, they lack proper support for metadata manipulation.

Results: We present PyGMQL, a novel software for the manipulation of region-based genomic files and their relative

metadata, built on top of the GMQL genomic big data management system. PyGMQL provides a set of expressive

functions for the manipulation of region data and their metadata that can scale to arbitrary clusters and implicitly

apply to thousands of files, producing millions of regions. PyGMQL provides data interoperability, distribution

transparency and query outsourcing. The PyGMQL package integrates scalable data extraction over the Apache Spark

engine underlying the GMQL implementation with native Python support for interactive data analysis and

visualization. It supports data interoperability, solving the impedance mismatch between executing set-oriented

queries and programming in Python. PyGMQL provides distribution transparency (the ability to address a remote

dataset) and query outsourcing (the ability to assign processing to a remote service) in an orthogonal way.

Outsourced processing can address cloud-based installations of the GMQL engine.

Conclusions: PyGMQL is an effective and innovative tool for supporting tertiary data extraction and analysis

pipelines. We demonstrate the expressiveness and performance of PyGMQL through a sequence of biological data

analysis scenarios of increasing complexity, which highlight reproducibility, expressive power and scalability.
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Background
By means of fast sequencing technologies, modern

genomics promises to assist biological and clinical

research by answering complex questions, e.g., how gene

expression is deregulated in diseases, how mutations can

lead to specific traits, how transcription factors interact

to create complexes, how the genome organizes within

three-dimensional configurations. To this aim, an impres-

sive amount of sequencing data has been being collected

by world-wide consortia as well as private laboratories

and hospitals. Personalized medicine is slowly but steadily

turning from vision into reality and biological research

benefits more and more from bioinformatics approaches.
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In this scenario, computation approaches and tools are

paramount tomanage, process and analyze these large and

heterogeneous collections of data.

Primary analysis can be defined as the machine spe-

cific steps needed to call base pairs and compute quality

scores for those calls. As these steps generate what are

referred to as “reads” of small nucleotide sequences, it’s

left up to secondary analysis to reassemble these reads

to get a representation of the underlying biology, as well

as the detection of signals (primarily variants, but also

expression levels and peaks of expression). Tertiary anal-

ysis focuses on the integration of these signals to answer

research questions and diverges into a spectrum of various

study specific downstream investigations [1].

Most of the effort of the bioinformatics and computa-

tional biology community was focused on primary and
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secondary analysis. Nowadays, the most important chal-

lenge is tertiary analysis, concerned with the development

of complex models and tools for integrating and analyzing

the heterogeneous pieces of information provided by sec-

ondary analysis, to the aim of producing novel biological

knowledge. For addressing tertiary analysis, we proposed

the Genomic Data Model (GDM) [2] and the GenoMet-

ric Query Language (GMQL) [3, 4], composed by a query

language and an engine built on top of Apache Spark

[5]. GMQL enables heterogeneous dataset manipulation

and provides a public repository of curated datasets to

be used with private data but it is not suited for interac-

tive data exploration or data analysis, as it assumes batch

interaction from command lines or from aWeb interface.

Tertiary data management practice requires the inter-

twining and seamless integration of data extraction and

data analysis, so that the data scientist can easily build

interactive applications which include use of statistical

testing, machine learning and visualization. Python is

earning more and more attention as vector language for

data scientists. For this reason, we designed and imple-

mented PyGMQL, a Python library which embeds the

GMQL engine. PyGMQL combines the highly scalable

approach of GMQL with the flexibility of Python, and

solves the impedancemismatch between set-oriented exe-

cution of data management systems and the procedural

nature of scripting languages. PyGMQL provides dis-

tribution transparency (the ability to address a remote

dataset) and query outsourcing (the ability to assign pro-

cessing to a remote service) in an orthogonal way. By

relying on its Spark implementation, it can scale up

from local execution to arbitrary cluster architectures.

The ability to scale on parallel and cloud computing

environments is the most innovative and distinguish-

ing feature of PyGMQL and allows performing com-

plex queries on large datasets. This, together with the

high-level genomic operation definition and the possi-

bility to embed complex data analysis workflows inside

Jupyter Notebooks, makes PyGMQL a comprehensive

tool for big genomic data exploration, management and

integration.

Related work

Several efforts have been done in the design of libraries

or command line suites for genomic region manipula-

tion. BEDTools [6] and BEDOPS [7] both offer Unix-based

command line tools providing common BED file manipu-

lation primitives. BEDTools also offers a Python interface

[8]. In the R community, the GenomicRanges Biocon-

ductor package [9] is a well-established tool with simi-

lar features. A more general purpose Python library for

genomic data analysis is BioPython [10], which focuses

more on secondary data analysis. These tools focus on

supporting powerful operators for region manipulation

upon a single experimental file. They emphasize usability

but do not support scalable computing on remote clusters.

Moreover, they do not include metadata and files must

be individually loaded before being accessible to Python

computations, which are performed by ad-hoc Python

programs.

In [2] and [11] we provide respectively a functional and

performance comparison of GMQL with BEDTools and

BEDOPS, from which PyGMQL inherits the result.

PyGMQL has comparable expressive power in region

manipulation with respect to these tools, but it adds

an implicit iteration over all experiments of the same

dataset. Its design is driven by scalability over thou-

sands of experiments. Moreover, it supports metadata

management explicitly, through high level operations for

metadata extraction and for expressing predicates, that

are seamlessly integrated with region manipulations. We

designed the API of the library and its documentation so

that biologists and bioinformaticians already competent

in these tools can rapidly adapt to PyGMQL. For these

reasons, PyGMQL can be considered as an upstream soft-

ware for data manipulation both at the genomic data and

metadata level, as demonstrated by several applications

reported in the “Results” section. The results of PyGMQL

computations can be easily then used by the previously

cited tools.

The development of next-generation sequencing tech-

nologies has been followed by an increasing request of

highly scalable software to define bioinformatics work-

flows [12]. This has brought to the development of very

successful workflow management software like Galaxy

[13], Snakemake [14], Nextflow [15] and FireCloud [16]

(evolving to a new system named Terra, in May 2019).

Most of the work done so far is tailored for secondary

analysis pipelines like read alignment and mapping:

important players in this field are the Genome Anal-

ysis Toolkit (GATK) [17] and the still in-development

Hail framework1, both focusing on variant discovery.

The ADAM software framework [18] is another impor-

tant effort towards the deployment of common bioin-

formatics tools on big data management frameworks

like Spark.

PyGMQL effectively complements these tools, by sup-

porting data integration among heterogeneous data

sources. We envision using PyGMQL at the end of sec-

ondary analysis pipelines, for supporting integrative anal-

ysis which also include access to large open repositories

(as discussed in our application section). We already inte-

grated both GMQL and PyGMQL with FireCloud and its

evolution Terra2.

1https://github.com/hail-is/hail/
2Two workspaces describing how to use and develop pipelines built with
GMQL and PyGMQL are publicly available to Terra users at https://terra.bio/

https://github.com/hail-is/hail/
https://terra.bio/
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Implementation
PyGMQL is part of a larger ecosystem of tools for biolog-

ical data-driven research, that comprises a data manager

(equipped with domain-specific data model and query

language) and an open repository providing access to sev-

eral public datasets as well giving users the possibility to

import their private data; briefly reviewed next.

Data model and query language

PyGMQL adopts the Genomic Data Model [3] to store

and load genomic datasets. In GDM, a dataset consists of

a set of samples, each observed on an individual or cell line

in a given condition and typically represented as a track

on the genome browser. Each sample includes two com-

ponents: genomic regions (assignments from genomic

coordinates, possibly stranded, to arbitrary genomic sig-

nals such as mutations, gene expressions, chip-seq peaks,

topological domains, and so on) and arbitrary meta-

data (attribute-value pairs which describe the experimen-

tal/clinical/contextual conditions).

The GenoMetric Query Language [4] was developed

to manipulate GDM datasets. It is inspired to rela-

tional algebra operators, which in turn have compa-

rable expressive power as the SQL language. GMQL

operators are either unary (UNOP - they apply to a

single dataset) or binary (BINOP - they apply to two

datasets) and produce one GDM dataset as result. The

MATERIALIZE operator instructs the program where

to store the result of a query. The request for mate-

rialization of a GMQL variable causes the recursive

computation of all the intermediate datasets, up to

the source datasets. Some of the operators are direct

extensions of classic relational operations (i.e. SELECT,

PROJECT, UNION, DIFFERENCE), while others tar-

get domain-specific region manipulations (i.e. COVER,

MAP, JOIN). All operators in GMQL are applied both to

genomic regions and their metadata; thus, it is possible to

trace which samples of the input contribute to the samples

of the result, as well as to compute global properties of the

samples (e.g. statistics about their regions), using specific

metadata attributes added during the computation while

the query processes the datasets from the sources to the

result.

GMQL repository

Currently, the principal deployment of the GMQL system

is through a Web application. For every user logged in

the system, the GMQL repository reserves a private space

to store his/her private data. In addition to this, the sys-

tem collects a wide set of curated datasets from several

sources which can be accessed by the users for integrative

analysis. We integrated genomic metadata from five con-

solidated sources: The Cancer Genome Atlas [19] from

Genomic Data Commons [20], ENCODE [21], Roadmap

Epigenomics [22], and annotation data from GENCODE

[23] and RefSeq [24].We are in the process of adding other

data sources, including Cistrome [25] for epigenomic and

International Cancer Genome Consortium (ICGC, [26])

for mutation data, and we plan to integrate several other

sources. GMQL offers several deployment settings for the

repository, which can be installed on a local or Hadoop

file system (HDFS).

PyGMQL architecture

PyGMQL is designed to address the specific needs of biol-

ogists and bioinformaticians during both the processes

of pipeline design and data exploration [27]. PyGMQL

offers a Python integrated environment where the users

can interleave the definition of complex genomic queries

and the analysis, manipulation and visualization of their

results, which can then be stored and reused for fur-

ther analysis or queries. The library adopts a client-server

architecture, where the Python front-end exposes to the

user all the dataset manipulation functions and utilities,

while a Scala back-end implements all the query oper-

ators. As depicted in Fig. 1, the back-end relies on the

implementation of GMQL on Spark.

PyGMQL offers a set of methods which wrap and

extend the GMQL language operators Additional file 2.

In Table 1 we show the mapping between the GMQL

operators and their Python wrapper. Methods manipulate

PyGMQL variables, each associated to structures called

GMQLDataset. These keep a reference to an abstract

GMQL representation, the GMQL directed acyclic graph

(DAG) (see [4]), which represents the operations used

for computing the variable. This design enables the back-

end to apply query optimizations to the DAG structure

[28]. PyGMQL adopts a lazy execution model, inspired

by the Spark implementation. Therefore, no actual opera-

tion is executed until the materialize is applied to the

variable.

Once the query is terminated, its results are loaded in

memory and stored in a GDataframe data structure,

which holds both regions and metadata in the form of

two Pandas DataFrames3. This makes it possible to work

with the result of a query in the Python environment. It

is also possible to convert the result of a query back to a

GMQLDataset and use it as a new variable for a query.

Obviously, the Python program can change its content

before reloading.

To facilitate the integration with the Python ecosystem,

PyGMQL enables to import datasets directly from Pandas

DataFrames that use a BED or GTF format.

The interleaving between Python computation and

GMQL execution constitutes a powerful tool for the

bioinformatician, which is able to build complex pipelines

3https://pandas.pydata.org/

https://pandas.pydata.org/
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Fig. 1 Schematic representation of the software components of PyGMQL. In the front-end, the GMQLDataset is a data structure associated with a

query, referring directly to the DAG expressing the query operations. The GDataframe stores the query result and enables in-memory

manipulation of the data. The front-end provides also a module for loading and storing data, and a RemoteManagermodule, used for message

interchange between the package and an external GMQL service. The back-end interacts with the front-end through a Managermodule, which

maps the operations specified in Python with the GMQL operators implemented in Spark

without leaving the Python environment. By embedding

PyGMQL within Jupyter Notebooks4, users can easily

perform data exploration and are facilitated in repro-

ducibility of their pipelines, a very important aspect of

modern genomic computing. Figure 2 schematically rep-

resents the relationship between a GMQLDataset and a

GDataframe, together with the main functions to load,

materialize and import datasets from/to PyGMQL.

Distribution transparency

The GMQL system is directly linked to one reposi-

tory deployment, although many deployment technolo-

gies are supported. Instead, PyGMQL enables the users

also to locally access their data, like most of the Python

libraries. In addition, PyGMQL can also interface with

an external GMQL system and login with the user cre-

dentials (using the login function) to interact with

his/her private datasets or the public repository. During

the query composition in PyGMQL, the user can specify

if a source dataset comes from his local file system (using

the load_from_path function) or from the remote

GMQL repository (using the load_from_remote func-

tion). Therefore, queries in PyGMQL can be composed

of genomic operations acting both on local and remote

datasets.

Another important functionality of the library is given

by its ability to "outsource" the query computation to an

external GMQL service. If the users is logged on a remote

GMQL server in PyGMQL, using the set_mode function

she can decide if the query computation will be performed

on the local (local mode) or on the remote (remote mode)

system (Fig. 3). In the case of remote computation, the

library takes care of downloading the result and loading it

in a GDataframe.

4https://jupyter.org/

The location of the datasets used during the query is

orthogonal with respect to the mode of execution. There-

fore, during the execution of a genomic query using both

local and remote datasets, the library will manage their

download or upload based on the mode. The library

keeps tracks of the used datasets and their dependen-

cies during the whole Python program execution, mini-

mizing the data transmission between local and remote

systems.

Deployment over cloud infrastructures

When the mode of execution of PyGMQL is set to local,

the user can specify the deployment strategy of the queries

using the set_master function. Since the implementa-

tion of the GMQL operators is based on Spark, the library

can be deployed in the following modes:

• Local master : the program is executed on the local

user machine. In this execution mode, the PyGMQL

software can access datasets in the local file system or

in HDFS.
• Spark master : the back-end of the library is

submitted to the master node of a Spark cluster and

interacts with the front-end through a TCP

connection. Also, in this case, the PyGMQL software

can access datasets in the local file system (if the

master node of the cluster is in the same machine as

the python program) or in HDFS.
• YARN master : the back-end of the library is

submitted to the Application Master of a YARN

cluster and interacts with the front-end through a

TCP connection. In this case, the local datasets reside

on the Hadoop file-system. This deployment strategy

must be adopted to run the library on cloud providers

like Google Cloud and Amazon Web Services.

Figure 3 shows the available deployment modes and

the possible master settings for the library together with

https://jupyter.org/
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Table 1 Mapping between PyGMQL methods and GMQL

operators or utilities

PyGMQL function Description GMQL operator

load_from_path UTIL, loads a dataset from
local repository

SELECT

load_from_remote UTIL, loads a dataset from
remote repository

SELECT

load_from_file UTIL, loads a bed file from
local repository

select reg_select
meta_select

UNOP, filters samples
using region and/or
metadata predicates

SELECT

project
reg_project
meta_project

UNOP, projects (in/out)
attributes of regions or
metadata. Creates new
attributes by means of
expressions

PROJECT

extend UNOP, creates a new
metadata attribute by
aggregation of region data

EXTEND

cover normal_cover
flat_cover
summit_cover
histogram_cover

UNOP, collapses regions
from several samples into
regions of a single sample,
based on min/max
accumulation indexes

COVER

order UNOP, orders the
samples of a dataset based
on regions and/or
metadata attributes

ORDER

merge UNOP, merges all the
samples of a dataset into a
single one

MERGE

group meta_group
reg_group

UNOP, groups regions
and/or metadata with the
same values

GROUP

join BINOP, joins the regions
of two datasets based on
distance-based predicates

JOIN

map BINOP, computes
aggregate values from
overlapping regions of
two datasets

MAP

union BINOP, builds the union of
regions and metadata of
two datasets

UNION

difference BINOP, keeps the regions
of a dataset not
intersecting with regions
of another one

DIFFERENCE

materialize UTIL, triggers the query
execution for the
specified dataset and
stores the result after
query completion

MATERIALIZE

head UTIL, Shows the first lines
of a dataset

For every method we provide a concise explanation (UNOP stands for unary

operator, BINOP stands for binary operator and UTIL identifies an utility function)

the distributed file systems which the library can interact

with.

Results
We demonstrate the flexibility of the PyGMQL library

through three data analysis workflows, available in the

form of Jupyter Notebooks and scripts both in the Sup-

plementary Materials of this paper and in the PyGMQL

GitHub repository. For a progressive introduction to PyG-

MQL usage, the applications are increasingly complex

both for what concerns the biological analysis and the data

size Additional file 1.

Examples show: (a) the interplay of local and remote

GMQL resources, (b) the scalability with datasets of

increasing size. A schematic description of the three

deployment strategies is shown in Fig. 4 together with

the location of the datasets used during the analysis. We

will focus on the system’s scalability in the third and most

complex example.

Examples show the interplay between pure Python code

and scalable genomic operations, implemented in PyG-

MQL through the GMQL engine. For this reason, a

complete implementation of the examples in GMQL is

not possible. While it is possible to implement them by

stacking together some of the previously cited tools or

even standalone Python code, their parallelization and

metadata management would induce a great develop-

ment overhead for the researcher. The examples high-

light the expressiveness, cleanness and ease to use of

the library, demonstrating that complex parallel genomic

data analysis workflows can be achieved using just

PyGMQL.

Interfacing with an external GMQL service: aggregating the

chip-Seq signal of histone Marks on promotorial regions

In this first application, genes’ promoters are extracted

from a local dataset and a large set of Chip-Seq exper-

iments is selected from a remote repository. Then,

for every promoter and for every Chip-seq exper-

iment, the average signal of those Chip-Seq peaks

intersecting the promoter is computed. The result

is finally visualized as a heatmap, with rows repre-

senting promoters and columns representing Chip-Seq

experiments.

This example shows: (i) the integration of local PyG-

MQL programs with remote repositories, (ii) the possibil-

ity to outsource the execution to an external deployment

of (Py)GMQL, (iii) the interplay between PyGMQL data

and Python libraries written by third parties. These fea-

tures allow users to write arbitrary complex queries

- whose execution and size of the inputs exceed the

capabilities of the local environment - and, at the same

time, analyze/visualize the output by means of well-

known Python libraries.

The code begins by loading a local dataset of gene anno-

tations and extracting their promotorial regions (here

defined as regions at
[

genestart − 2000; genestart + 2000
]

).
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Fig. 2 Relationships between GMQLDataset and GDataframe. Data can be imported into a GMQLDataset from a local GDM dataset with the

load_from_path function. Using the load_from_file, it is possible to load generic BED files, while load_from_remote enables the

loading of GDM datasets from an external GMQL repository, accessible through TCP connection. The user applies operation on the GMQLDataset

and triggers the computation of the result with the materialize function. At the end of computation, the result is stored in-memory in a

GDataframe, which can be then manipulated in Python. It is possible to import data directly from Pandas with from_pandas. Finally, it is

possible to transform a GDataframe structure back into GMQLDataset using the to_GMQLDataset function

Note that the “.start” and “.stop” attributes automat-

ically consider the strand of the region.

The genes and promoters variables are

GMQLDataset, the former is loaded directly, the

latter results from a projection operation. Region fea-

ture names can be accessed directly from variables to

build expressions and predicates (e.g., gene.start +

2000).

Fig. 3 Deployment modes and executor options of the library. When the library is in remotemode, it interfaces with an external GMQL service,

hosting a GMQL repository (accessible by the Python program, which has been deployed on several file systems). When the mode is set to local,

the library can operate on various file systems, based on the selected master
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Fig. 4 Schematic representation of the deployment strategies adopted in the three applications. a Local/Remote system interaction for the analysis

of ENCODE histone marks signal on promotorial regions. The gene dataset is stored in the local file system, the ENCODE BroadPeak database is

hosted in the GMQL remote repository, deployed on the Hadoop file system with three slaves. b Configuration for the interactive analysis of the

GWAS dataset against the whole set of enhancers from ENCODE. The library interacts directly with the YARN cluster and the data is stored in the

Google Cloud File System with a fixed configuration of three slaves, accessed through the Hadoop engine. The gwas.tsv file is downloaded from

the web and stored in the file system before executing the query. c Distributed setup for running the TICA query. Three datasets (from ENCODE and

GENCODE) are in GDM format and stored in HDFS and the query runs on Amazon Web Services with a variable number of slave nodes, for

evaluating the scalability of the system

Next, we load the external dataset of Chip-Seq from a

remote GMQL Web service. In order to do so, the user

has to specify the remote address and login. If the user has

already signed to the remote GMQL installation, he/she

can use his/her own credentials (this will also grant the

access to private datasets), otherwise a guest account is

automatically created, without requiring the user to do it

manually.

Next, we show how to load the Chip-Seq data of the

ENCODE dataset from the remote GMQL repository and

select only the experiments of interest. First, the user sets

the remote executionmode and imports remote datasets

with the load_from_remote function. Such loading

is lazy, therefore no actual data is moved or red at this

point. Then the user specifies the select condition: the

hms["experiment_target"] notation enables the

user to build predicates on the given metadata attribute.

The GMQL engine loads from the dataset only the sam-

ples whose metadata satisfy such condition, specifically,

only experiments targeting the human H3K9ac marker

will be selected.

Next, the PyGMQL map operation is used to compute

the average of the signal of hms_ac intersecting each

promoter: iteration over all samples is implicit. Finally,

the materialize method triggers the execution of the

query. Since the mode is set to "remote", the dataset

stored at "./genes/" is sent to the remote service

GMQL system that performs the specified operations.

The result is loaded into the mapping GDataframe

variable which resides on the local machine.

At this point, Python libraries for data manipulation,

visualization or analysis can be applied to the

GDataframe. The following portion of code provides

an example of data manipulation of a query result. The

to_matrix method transforms the GDataframe

into a Pandas matrix, where each row corresponds to

a gene and each column to a cell line. Values are the

average signal on the promoter of the given gene in

the given cell line. Finally, the matrix is visualized as

a heatmap.
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Exploring data interactively: analyzing GWASmutations on

cell-specific enhancers

In the following example, we explore the interaction

between a Genome-wide Association Study (GWAS)

dataset (downloaded from an external source5) and tracks

from the ENCODE dataset, stored in the distributed

file system. PyGMQL is deployed on a small Hadoop

Cluster. GWAS (genome-wide association studies) are

associations between mutations and the traits of indi-

viduals carrying the mutations. The following example

is inspired by a published research connecting muta-

tions occurring on enhancers (regulatory regions of the

genome) with autoimmune diseases [29]. The scientist

loads a set of GWAS and investigates if they overlap

with enhancer regions which are cell-specific, i.e., are

active only in a limited number of cell lines or tis-

sues (typically one or two). The interesting aspect of

this query is that some of the discovered traits are

associated with that cell line, e.g., because they are

concerned with a disease affecting the tissue of the

cell line.

For a given GWAS dataset, considering all cell lines

available in ENCODE, we first extract cell-specific

enhancers, then we intersect GWAS with them, and then

we count the number of variants which are associated with

each trait, and rank traits by such counter. For the first

ranked traits, we then represent a heat map having cell

lines as rows and traits as columns.

In the Supplementary Materials and on the project

web page we present the full data exploration. We

next show the main steps and results, assuming that

the user has already downloaded the GWAS dataset

and stored it in HDFS, where the GMQL repository

is also accessible. By default, the library sets the mas-

ter node of computation to the local Scala back-end.

In this case, we deploy the library to a Spark cluster

managed by the YARN resource manager [30]. There-

fore, we need to use the set_master function, which

will request PyGMQL to open a connection to the

YARN master node and submit its back-end code for

computation.

We then load the GWAS dataset, which is encoded as

a Tab-separated values file (TSV). Note that, in addition

to GDM-like datasets, PyGMQL can load data with

generic format using the load_from_file function.

In order to do so, the user must configure a custom

parser for the TSV format, by specifying the position

of the chromosome and the start/end positions (in this

particular case the 11-th and 12-th columns respectively)

5https://www.ebi.ac.uk/gwas/docs/file-downloads

and the position of any of the fields he/she wishes to

import (in this example, the 7-th column, which stores

the indication of the disease/trait associated with the

mutation). The file is then imported as a valid GDM

instance. To explore instances, we use the head function,

that displays the first rows of both regions and metadata.

Its effect is shown in the Supplementary Material.

We next load the ENCODE Broad Peak and select from

it the Chip-Seq experiments of H3K27ac, as predictor of

enhancer activity. This is done with a selection on the

experiment_target metadata attribute. We perform

a normalization by extracting the position in the middle

of each Chip-Seq region with a reg_project operation

and then by extending the mid position of a given base

pair interval on both sides, again with a projection. We

set interval to ±1500 bp, resulting in enlarge regions of

3000 base pair length.

To select only cell-specific enhancers, we need to per-

form several region manipulation operations.

• First, we group the enlarge regions by the cell line

on which they were probed. We also merge

overlapping regions of the same cell line which could

be due to replicas. This is done with a

normal_cover operation adding the groupBy

clause on the biosample_term_namemetadata

attribute, which specifies the cell line of origin for

every sample.

• Next, we use again the normal_cover operation to

filter cell-specific enhancer regions, i.e. regions that

are present in more than a specified maximum

number of cell lines (max_overlapping variable).

This parameter can be set to small numbers, such as

1 or 2, to increase specificity.

• Finally, we intersect the set of cell-specific enhancers

produced by the second cover operation with the set

of enhancers grouped by cell line (join with

distance less than zero basis, DLE(0)). This results in

a dataset with a sample for each cell line containing

its set of specific enhancers.

https://www.ebi.ac.uk/gwas/docs/file-downloads
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As final operation, we aggregate the GWAS mutations

on each cell-specific enhancer region. This is easily done

using the map operation projecting the gwas onto cell-

specific enhancers. We also want to keep track of the list

of diseases/traits associated to each enhancer region, thus

we create a new region attribute ’traits’ with the BAG

operator on the ’trait’ attribute of gwas.

Query computation on the cluster is triggered by the

materialization of the result in the result GDataframe

variable.

The rest of the analysis can be now done directly

in Python, since the result size is typically manageable.

We refer the reader to the Supplementary Material for

what concerns the operations required to obtain the

final heatmap. This analysis can be repeated for arbitrary

GWAS databases, changing the setting of interval

and max_overlapping, thereby repeating explorations

seeking for results of desired cardinality and specificity.

Performing large queries in the cloud: transcription factors

interaction analyzer

An interesting aspect of epigenomic research is con-

cerned with the interaction of transcription factors, i.e.

proteins that, once bound onto specific positions of the

DNA, enhance or repress the transcription of genes into

RNA. Transcription factors (TFs) are known to act in

cooperation, as a functional complex. In previous work,

we developed TICA (Transcriptional Interaction and

Co-regulation Analyser) and an associated Web service

[31, 32] using GMQL. TICA is able to predict whether two

TFs cooperate to the regulation of the expression of genes

by forming a protein complex.

The data-intensive computation has been ported to

PyGMQL. The purpose of this Section is not to show

the PyGMQL code - as it is rather complex, see Sup-

plementary Material - but rather to show that it scales

to very large datasets. In essence, for every cell line the

code considers all possible pairs of TFs for which ChIP-

seq experiments are available (ranging between 116 in

GM12878 and 268 in K562) as candidate complexes. For

each such pair, it computes the bindings which are at min-

imal distance within promotorial regions. Once minimal

distance pairs are extracted by PyGMQL, a significance

test (written in Python) predicts if the two TFs form a

complex.

The code reported in the Supplementary Material illus-

trates the data extraction part. It uses a normal_cover

so as to merge replicates of the same experiment and then

two join operations, the former for detecting the overlap

between each TF region and active promotorial regions,

the latter for extracting the pairs of regions of two TFs

at minimal distance within such regions. Joins are com-

plex operations, and here they are performed in the three-

dimensional full genome space formed by the bindings of

the two TFs and of the promotorial regions.

Performance evaluation
The ability to scale on parallel and cloud computing

environments is the most innovative and distinguish-

ing feature of PyGMQL and allows performing com-

plex queries on large datasets. In this Section, we

show the computational performance of PyGMQL on

the last application, for three cell lines (GM12878,

HepG2, K562) with increasing amount of available

samples. For our experiments, we used AWS Elastic

MapReduce clusters of m5.2xlarge instances, each of

which has 8 virtual cores, 32 GiB of memory and

300 GiB of hard disk capacity. We used 4 different

setups, all with 1 single master nodes and 1, 3, 5 and

10 slaves.

Table 2 reports the data size of input and output of the

three variant of the query as well as the execution times

on the 4 cluster configurations. Figure 5 demonstrates

the scalability of PyGMQL. Indeed, the execution times

decrease as the size of the cluster increases. This effect is

especially observable in the K562 and HepG2 cases (the

biggest ones), for which the execution is approximately 7.5

times faster in the cluster with 10 slaves with respect to

the cluster with one slave. By using the cluster with 10

slaves, we build output data of 381M regions in about half

Table 2 Sizes of inputs ad outputs for three different cell lines,

and execution times (in minutes) for the TICA query over four

cluster configurations

GM12878 HepG2 K562

Input samples 164 224 347

Distinct TFs 116 192 268

Input regions 3,003,121 4,384,181 6,101,933

Output samples 13,454 36,330 71.612

Output regions 109,858,355 213,499,617 381,255,507

Output size (MB) 3,122 6,064. 10,921

1 node e. t.∗ 26.73 73.05 246.85

3 nodes e. t.∗ 10.40 26.28 91.27

5 nodes e. t.∗ 7.21 16.67 59.12

10 nodes e. t.∗ 4.75 9.67 32.92
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Fig. 5 Execution time for the TICA query on three different cell lines, with four different cluster configurations

hour, enabling us to compute prediction estimates for the

cooperation of about 72K pairs of TFs.

Conclusions
Python is becoming the leading programming language

for data science, thanks to its flexibility and ease of use, the

embedding within Jupyter notebooks, and the huge num-

ber of supporting libraries and packages.Within the scope

of genomic computing, PyGMQL is a new Python library

for linking domain-specific data extraction to domain-

independent tools and environments for data analysis and

visualization.

PyGMQL fills the gap between the scalable Spark-

based data management engine of GMQL and the

huge body of Python-based resources. PyGMQL sup-

ports data interoperability, solves the impedance mis-

match between set-oriented data extraction and imper-

ative programming, provides distribution transparency

and query outsourcing to powerful server-based and

cloud-based systems. The possibility of supporting both

local and remote queries enables the efficient pro-

totyping of data extraction pipelines, which can be

locally developed and then deployed to big remote

services.

Availability of source code and requirements
• Project name: PyGMQL
• Project home page: https://github.com/DEIB-GECO/

PyGMQL
• Operating system(s): Platform independent
• Programming language: Python (version 3.4 or

higher)
• Other requirements: Java 1.8 or higher
• License: Apache 2.0
• Any restrictions to use by non-academics: None
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Supplementary information accompanies this paper at

https://doi.org/10.1186/s12859-019-3159-9.

Additional file 1: Supplementary materials guide. Document describing

how to reproduce the pipelines presented in the manuscript (PDF).

Additional file 2: Library documentation. Detailed documentation of the

software package (PDF).
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Chilton J, Clements D, Coraor N, Eberhard C, et al. The galaxy platform

for accessible, reproducible and collaborative biomedical analyses: 2016

update. Nucleic Acids Res. 2016;44(W1):3–10.

14. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow

engine. Bioinformatics. 2012;28(19):2520–2. https://doi.org/10.1093/

bioinformatics/bts480. http://oup.prod.sis.lan/bioinformatics/article-pdf/

28/19/2520/819790/bts480.pdf.

15. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E,

Notredame C. Nextflow enables reproducible computational workflows.

Nat Biotechnol. 2017;35(4):316.

16. Birger C, Hanna M, Salinas E, Neff J, Saksena G, Livitz D, Rosebrock D,

Stewart C, Leshchiner I, Baumann A, Voet D, Cibulskis K, Banks E,

Philippakis A, Getz G. Firecloud, a scalable cloud-based platform for

collaborative genome analysis: Strategies for reducing and controlling

costs. bioRxiv. 2017. https://doi.org/10.1101/209494.

https://www.biorxiv.org/content/early/2017/11/03/209494.full.pdf.

17. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,

Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome

analysis toolkit: A mapreduce framework for analyzing next-generation

dna sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/

10.1101/gr.107524.110.

http://genome.cshlp.org/content/20/9/1297.full.pdf+html.

18. Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksigian C,

Kottalam J, Ahuja A, Hammerbacher J, Linderman M, Franklin M,

Joseph AD, Patterson DA. Rethinking data-intensive science using

scalable analytics systems. In: Proceedings of the 2015 International

Conference on Management of Data (SIGMOD ’15). ACM; 2015. https://

doi.org/10.1145/2723372.2742787.
19. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott

K, Shmulevich I, Sander C, Stuart JM, Network CGAR, et al. The cancer

genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113.
20. Jensen MA, Ferretti V, Grossman RL, Staudt LM. The nci genomic data

commons as an engine for precision medicine. Blood. 2017;130(4):453–9.
21. Consortium EP, et al. An integrated encyclopedia of dna elements in the

human genome. Nature. 2012;489(7414):57.
22. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A,

Kheradpour P, Zhang Z, Wang J, Ziller MJ, et al. Integrative analysis of

111 reference human epigenomes. Nature. 2015;518(7539):317.
23. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J,

Mudge JM, Sisu C, Wright J, Armstrong J, et al. Gencode reference

annotation for the human and mouse genomes. Nucleic Acids Res.

2018;47(D1):766–73.
24. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R,

Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. Reference

sequence (refseq) database at ncbi: current status, taxonomic expansion,

and functional annotation. Nucleic Acids Res. 2015;44(D1):733–45.
25. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X,

Taing L, et al. Cistrome data browser: a data portal for chip-seq and

chromatin accessibility data in human and mouse. Nucleic Acids Res.

2016;983:. https://doi.org/10.1093/nar/gkw983.
26. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, Liang Y, Rivkin

E, Wang J, Whitty B, et al. International cancer genome consortium data

portal—a one-stop shop for cancer genomics data. Database. 2011;2011:.

https://doi.org/10.1093/database/bar026.
27. Nanni L, Pinoli P, Canakoglu A, Ceri S. Exploring genomic datasets: From

batch to interactive and back. In: Proceedings of the 5th International

Workshop on Exploratory Search in Databases and the Web. ExploreDB

2018. New York: ACM; 2018. p. 3–136. https://doi.org/10.1145/3214708.

3214710. http://doi.acm.org/10.1145/3214708.3214710.
28. Pinoli P, Ceri S, Martinenghi D, Nanni L. Metadata management for

scientific databases. Inf Syst. 2019;81:1–20.
29. Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S,

Shoresh N, Whitton H, Ryan RJH, Shishkin AA, Hatan M,

Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, De Jager PL,

Kuchroo VK, Epstein CB, Daly MJ, Hafler DA, Bernstein BE. Genetic and

epigenetic fine mapping of causal autoimmune disease variants. Nature.

2015. https://doi.org/10.1038/nature13835.
30. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R,

Graves T, Lowe J, Shah H, Seth S, Saha B, Curino C, O’Malley O, Radia S,

Reed B, Baldeschwieler E. Apache hadoop yarn: Yet another resource

negotiator. In: Proceedings of the 4th Annual Symposium on Cloud

Computing. SOCC ’13. New York: ACM; 2013. p. 5–1516. https://doi.org/

10.1145/2523616.2523633. http://doi.acm.org/10.1145/2523616.2523633.
31. Perna S, Pinoli P, Ceri S, Wong L. Tica: Transcriptional interaction and

coregulation analyzer. Genom Proteomics Bioinforma. 2018;16(5):342–53.
32. Perna S, Canakoglu A, Pinoli P, Ceri S, Wong L. Implementing a

transcription factor interaction prediction system using the genometric

query language. In: Data Mining for Systems Biology. New York: Springer;

2018. p. 63–81.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

https://doi.org/10.1016/j.ymeth.2016.09.002
https://doi.org/10.1093/bioinformatics/btv048
https://oup/backfile/content_public/journal/bioinformatics/31/12/10.1093_bioinformatics_btv048/2/btv048.pdf
https://oup/backfile/content_public/journal/bioinformatics/31/12/10.1093_bioinformatics_btv048/2/btv048.pdf
https://oup/backfile/content_public/journal/bioinformatics/31/12/10.1093_bioinformatics_btv048/2/btv048.pdf
https://doi.org/10.1093/bioinformatics/bty688
https://oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty688/3/bty688.pdf
https://oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty688/3/bty688.pdf
https://oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty688/3/bty688.pdf
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://oup/backfile/content_public/journal/bioinformatics/26/6/10.1093_bioinformatics_btq033/3/btq033.pdf
https://oup/backfile/content_public/journal/bioinformatics/26/6/10.1093_bioinformatics_btq033/3/btq033.pdf
https://oup/backfile/content_public/journal/bioinformatics/26/6/10.1093_bioinformatics_btq033/3/btq033.pdf
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
http://oup.prod.sis.lan/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf
https://doi.org/10.1109/TCBB.2016.2576447
https://doi.org/10.1109/TCBB.2016.2576447
https://doi.org/10.1093/gigascience/giy098
https://doi.org/10.1093/gigascience/giy098
http://oup.prod.sis.lan/gigascience/article-pdf/7/8/giy098/25597457/giy098.pdf
http://oup.prod.sis.lan/gigascience/article-pdf/7/8/giy098/25597457/giy098.pdf
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
http://oup.prod.sis.lan/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
https://doi.org/10.1101/209494
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2017/11/03/209494.full.pdf
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
http://arxiv.org/abs/http://genome.cshlp.org/content/20/9/1297.full.pdf+html
https://doi.org/10.1145/2723372.2742787
https://doi.org/10.1145/2723372.2742787
https://doi.org/10.1093/nar/gkw983
https://doi.org/10.1093/database/bar026
https://doi.org/10.1145/3214708.3214710
https://doi.org/10.1145/3214708.3214710
http://doi.acm.org/10.1145/3214708.3214710
https://doi.org/10.1038/nature13835
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work

	Implementation
	Data model and query language
	GMQL repository
	PyGMQL architecture
	Distribution transparency
	Deployment over cloud infrastructures

	Results
	Interfacing with an external GMQL service: aggregating the chip-Seq signal of histone Marks on promotorial regions
	Exploring data interactively: analyzing GWAS mutations on cell-specific enhancers
	Performing large queries in the cloud: transcription factors interaction analyzer

	Performance evaluation
	Conclusions
	Availability of source code and requirements
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-019-3159-9.
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

