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ABSTRACT

Motivation: Restriction-site–associated genomic markers are a

powerful tool for investigating evolutionary questions at the population

level, but are limited in their utility at deeper phylogenetic scales where

fewer orthologous loci are typically recovered across disparate taxa.

While this limitation stems in part from mutations to restriction recog-

nition sites that disrupt data generation, an additional source of data

loss comes from the failure to identify homology during bioinformatic

analyses. Clustering methods that allow for lower similarity thresholds

and the inclusion of indel variation will perform better at assembling

RADseq loci at the phylogenetic scale.

Results: PyRAD is a pipeline to assemble de novo RADseq loci with

the aim of optimizing coverage across phylogenetic datasets. It uses a

wrapper around an alignment-clustering algorithm, which allows for

indel variation within and between samples, as well as for incomplete

overlap among reads (e.g. paired-end). Here I compare PyRAD with

the program Stacks in their performance analyzing a simulated

RADseq dataset that includes indel variation. Indels disrupt clustering

of homologous loci in Stacks but not in PyRAD, such that the latter

recovers more shared loci across disparate taxa. I show through re-

analysis of an empirical RADseq dataset that indels are a common

feature of such data, even at shallow phylogenetic scales. PyRAD

uses parallel processing as well as an optional hierarchical clustering

method, which allows it to rapidly assemble phylogenetic datasets

with hundreds of sampled individuals.

Availability: Software is written in Python and freely available at

http://www.dereneaton.com/software/

Contact: daeaton.chicago@gmail.com

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Restriction-site–associated DNA libraries (RADseq; Baird et al.,

2008) and related genotyping-by-sequencing approaches (e.g.

GBS, Etter et al., 2011; ddRADseq, Peterson et al., 2012) take

advantage of next-generation sequencing platforms to generate

short reads from thousands of potentially homologous loci,

across multiple individuals, by targeting genomic regions adja-

cent to restriction enzyme cut sites. In contrast to whole-genome

shotgun data, this provides a more efficient and economical

source for performing comparisons across many sampled indi-

viduals, making it a popular tool for population genetic analyses

(reviewed in Narum et al., 2013). The problem of efficiently ob-

taining sequence data across many individuals is also relevant to

studies at deeper evolutionary time scales, such as genus- or
family-level phylogenetics, and it is at this scale that RADseq

is now receiving increased attention.
RAD sequences generated in silico from multi-species genome

alignments have been shown to retain accurate phylogenetic in-
formation over evolutionary divergences as deep as 60 million

years (Cariou et al., 2013; Rubin et al., 2012); however, to date,
all empirical RADseq studies conducted above the species level

were done at much shallower scales (Bergey et al., 2013; Eaton

and Ree, 2013; Jones et al., 2013; Keller et al., 2013; Lexer et al.,
2013; Nadeau et al., 2013; Stölting et al., 2013; The Heliconius

Genome Consortium, 2012; Wagner et al., 2013; Wang et al.,

2013). Still, these studies confirm theoretical expectations by
demonstrating that concatenated, genome aligned or even indi-

vidual RADseq loci are capable of recovering well-supported
gene trees and species trees. Yet, these studies also demonstrate

that large amounts of missing data are a common feature of

RADseq, which may limit its applications.
Theoretically, the ultimate scale over which RADseq data will

be recovered, and thus phylogenetically useful, is inherently lim-
ited by mutations that disrupt restriction recognition sites, caus-

ing ‘locus dropout’—manifest as more missing data between
more distantly related samples. However, empirically such

limits are approached much sooner owing to the loss of data

to other technical factors related to data generation and analysis.
For example, the choice of restriction enzyme, the size of selected

fragments and variation in sequencing coverage across samples
all affect the number of loci recovered. Moreover, bioinformatic

analyses used to assemble RADseq datasets recover different

amounts of data depending on the parameters used to identify
and cluster orthologs as well as filter for paralogs (or repetitive

DNA regions.) In this article, I focus mainly on the latter aspect
of locus dropout: factors limiting the identification (recovery) of

orthologous loci when they are present in a dataset.
Few programs are currently available to assemble RADseq

data, which currently includes Stacks (Catchen et al., 2011,

2013), Rainbow (Chong et al., 2012) and rtd (Peterson et al.,
2012). Here I describe a new software pipeline called PyRAD,

which assembles de novo aligned RADseq loci for population-
level or phylogenetic analyses, with a particular focus on the

analysis of highly divergent samples. PyRAD differs from

both Stacks and Rainbow through its use of a global alignment
clustering algorithm—performed with a wrapper around the pro-

gramUSEARCH (Edgar, 2010)—which allows for incorporation
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of indel variation while identifying homology. In this way,

PyRAD is more similar to rtd, which uses a graph clustering

algorithm that also allows for indels. PyRAD stands apart

from these programs in its speed, flexibility for analyzing mul-

tiple RADseq data types, its scalability to extremely large and

divergent datasets and its ease of use. Below I describe the

PyRAD pipeline in detail. I then demonstrate its performance

on simulated and empirical datasets and compare the results with

those of Stacks, which is currently the most commonly used al-

ternative software.

2 METHODS

2.1 Summary of a de novo assembly

PyRAD requires as dependencies only the executable programs

USEARCH (Edgar, 2010) and MUSCLE (Edgar, 2004), in addition to

the common Python packages Scipy and Numpy. It runs on Mac and

Linux, is accessed through a command-line interface and uses a modular

framework with a full analysis composed of seven sequential steps:

(1) De-multiplexing (separate by barcodes)

(2) Quality filtering and removal of barcodes, cut sites and adapters

(3) Clustering within samples and alignment

(4) Joint estimation of error rate and heterozygosity

(5) Consensus base calling and paralog detection

(6) Clustering across samples

(7) Alignment across samples, filtering and formatting

The de-multiplexing step (1) separates raw FASTQ formatted sequence

data into separate files for each sample, allowing a user set maximum

number of mismatches (errors) in a barcode. If samples are already de-

multiplexed, this step can be skipped. Filtering (2) then removes barcodes

and Illumina adapters, if present, and filters reads by their quality scores,

replacing base calls below a user-set limit with an ambiguous base (N).

Reads with more than a user-defined number of Ns are discarded. The

clustering step (3) first collapses replicate sequences into individual re-

cords while retaining their total number of occurrences. Sequence order is

randomized and clustering is performed using USEARCH with all heur-

istic options turned off. This creates clusters (stacks) by matching each

sequential sequence to a’seed’ sequence that came before it, or else creat-

ing a new seed. The resulting stacks are aligned with MUSCLE.

The next step (4) uses the maximum likelihood equation of Lynch

(2008) to jointly estimate the mean heterozygosity and sequencing error

rate from the base frequencies at each site across all stacks in an individ-

ual (with greater than a set minimum depth of coverage), and uses these

values (5) to calculate the binomial probability a site is homozygous (aa

or bb) versus heterozygous (ab) (Li et al., 2008). A base call is only made

if the depth of coverage is above a user-set minimum, and high enough to

make a statistical base call, else it is called undetermined (N). Consensus

sequences containing more than a maximum number of undetermined

sites are discarded. To filter for paralogs (or repetitive or high copy

number DNA regions, hereafter referred to collectively as ‘paralogs’ for

simplicity), consensus sequences are also discarded if they contain more

than a maximum number of heterozygous sites or more than the allowed

number of haplotypes (two for diploids).

Putative orthologs are then identified by clustering consensus loci

across samples in USEARCH, using only one allele from each consensus

sequence to measure sequence similarity, but retaining data for both (or

multiple) alleles (6). The resulting stacks are aligned and filtered once

again for paralogs before being output in a variety of familiar formats

as individual or concatenated loci (e.g. Fasta, Phylip, Nexus), or in

several custom formats [e.g. Haplotypes, single nucleotide polymorph-

isms (SNPs) and unlinked SNPs] (7). The filter applied in this step

makes use of a user-set maximum for the number of shared heterozygous

sites across all samples in the dataset (maxSharedH). For a phylogenetic

scale dataset the expectation for this number is unknown, but should be

fairly low under the assumption that polymorphisms are less likely to be

retained over deep divergences than are fixed differences between para-

logs. Loci containing one or more heterozygous sites shared across more

than ‘maxSharedH’ samples are thus discarded as potential paralogs.

Step 7 can be repeated while substituting different subsets of taxa, and

requiring different amounts of coverage across them, to construct

datasets of varying size and completeness.

2.2 Hierarchical clustering for large datasets

As the size and scope of RADseq studies continue to grow, the compu-

tational time required to assemble datasets can become burdensome. In

PyRAD the limiting step for large data is often among-sample clustering

(step 5), which is not parallelized. Clustering time scales with the total

number of unique stacks and studies with many samples (4100) can

quickly accumulate many low coverage or singleton loci that greatly

slow run times. To speed this step, an optional hierarchical clustering

approach that splits the job into smaller parallelized units can be imple-

mented. Here, loci are first clustered across samples within user-defined

clades, with each clade using a separate processor. The seeds of these

stacks are then used to cluster with seeds of stacks from other clades

(Fig. 1) before a final stack is reconstructed from the matches to each

seed from each hierarchical clustering step. A further gain in speed can be

attained by excluding at each step loci that do not cluster with at least

some minimum number of other samples, under the assumption that such

loci are less likely to match with more distant relatives in the next step.

Although this gain in speed comes at the cost of excluding loci with low

taxon coverage, such loci are typically of little use in downstream

analyses.

Fig. 1. Optional hierarchical clustering approach for fast across-sample

clustering of large datasets in PyRAD. In the first iteration, clustering is

performed among samples within each user-defined clade (a, b and c).

Dotted lines show clustering of sequences to the randomly assigned seed

sequence in each stack. In subsequent steps, the seeds of stacks from

previous steps are clustered with the seeds of stacks from other clades.

Finally, matches to the seeds at each hierarchical step are reconstructed to

build the full stack. A minimum cluster size can be set for each iteration

to further increase speed at the cost of accuracy; in the example (min2)

singleton loci are removed, causing data from clade b to be lost
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2.3 Simulations

Sequence data were simulated on a species tree with 12 ingroup samples

and one outgroup sample (Fig. 2) under a coalescent model within the

Python package Egglib (Mita and Siol, 2012). Effective population size

(50 000) and per base mutation rate (7� 10�9) were constant across taxa,

with the deepest divergence at 16 coalescent units. I simulated 10K loci

for each of the 12 ingroup taxa at 20� coverage, with two alleles sampled

from one diploid sample at 10� depth each. Reads were trimmed to

100bp and a 6bp barcode and 5bp restriction recognition site were at-

tached. Indels were introduced by sampling SNPs in the 12 ingroup taxa

relative to the outgroup taxon at a probability of 0.0, 0.02 or 0.05, con-

verting the derived allele into a deletion. This yielded three datasets that I

refer to as the noIndel, lowIndel and highIndel datasets.

A larger dataset was also simulated on the same species tree to dem-

onstrate the efficiency of the hierarchical clustering approach. In this case,

500K loci were generated with no indels but allowing locus dropout

through mutations that arise in a restriction recognition site relative to

the outgroup. For this, I used a large region as the recognition site to

create significant amounts of missing data between samples as expected in

a deeply divergent phylogenetic dataset. This led to a dataset where each

individual sample contained only �150K loci, but for which the total

dataset comprised 500K loci potentially shared across samples. Thus, the

within-sample clustering step is relatively fast, whereas the across-sample

clustering is much more computationally intensive, and benefits from the

use of the hierarchical clustering. I refer to this as the noIndel-m dataset.

All simulated datasets were compared using PyRAD v.1.621 and

Stacks v.1.08. To the extent possible I used analagous parameters settings

for both programs. For example, the clustering threshold of 85% in

PyRAD is equivalent to 15 base differences in Stacks (parameters -m6,

-M13, -N15, -n15) given read lengths of 100bp. A minimum stack depth

of six was used in all analyses. Paralog filtering was not implemented on

simulated data. The large noIndel-m dataset was run with the same par-

ameter settings, but was additionally run in PyRAD using a two-step

hierarchical clustering approach. This first clustered loci within each of

the three large four-taxon clades then exluded any loci not shared across

all four taxa within the clade, before subsequently clustering loci across

clades.

2.4 Empirical data

A published RADseq dataset from Eaton and Ree (2013) was down-

loaded from the NCBI sequence read archive (SRA072507). It includes

data from 13 closely related taxa in the flowering plant genus Pedicularis

sequenced with Illumina GAIIx, yielding 69bp single end reads with

barcodes and restriction sites removed. In contrast to the small simulated

datasets that exhibit locus dropout due to bioinformatic errors alone, the

empirical data have missing sequences owing to additional factors such as

disruption to restriction sites and variation in sequencing coverage. It also

contains low quality base calls and paralogs that must be filtered, making

a comparison of PyRAD versus Stacks more difficult for this analysis.

To control for differences in how the two programs apply such filters,

initial quality filtering was implemented only in PyRAD, with the

resulting sequences analyzed by both programs. Stacks has fewer explicit

filters to detect paralogs, but the closest approximations were used, and I

report the results with and without paralog filters applied. The default

parameters in PyRAD (maxHaplos¼ 2, maxH¼ 3, maxSharedH¼ 3)

were closely matched by using the following parameters, or

manual edits, in Stacks, respectively: allowing only two haplotypes in a

locus (–max_locus_stacks¼ 2), removing loci from the final catalog if

they contain more than four heterozygous sites and removing stacks

from the catalog if more than three samples are heterozygous for the

same site. A clustering threshold of 85% was implemented in PyRAD,

equivalent to 10 base differences in Stacks (parameters -m2, -M8, -N10,

-n10) given the read lengths.

Detailed parameter settings and scripts to reproduce all simulated and

empirical analyses are available as an IPython Notebook in the

Supplementary Materials. Statistics measuring the distribution of taxon

coverage across each assembled dataset were measured from the results of

each analysis found in either the ‘.haplotypes.tsv’ output of Stacks or in

the ‘.stats’ output of PyRAD. Run times were also compared, where each

analysis was run separately on a Linux machine with 24 3.47GHz Intel

Xeon processors, using 12 parallel processes in PyRAD or 12 threads in

Stacks.

3 RESULTS

3.1 Simulation results

For the three small simulated datasets both Stacks and PyRAD

retained all reads through the de-multiplexing and initial filtering

steps. Similarly, within-sample clustering accurately recovered all

10K stacks for each taxon when either program analyzed the

noIndels dataset. In the lowIndels and highIndels datasets,

PyRAD performed nearly identically, recovering an average of

10 000.0 and 10000.2 consensus sequences per sample, respect-

ively, whereas Stacks recovered an average of 10 027.4 and

10 087.4 consensus sequences per sample, a result of splitting

loci that are polymorphic for one or more indels within a sample.
The effect of indels is more pronounced when clustering across

samples, where RAD sequences are more likely to exhibit indel

variation. PyRAD recovered 10 001, 10 003 and 10 086 loci in the

three datasets with increasing proportions of indels, while Stacks

recovered 10000, 12 226 and 16285, respectively. Because only

10 000 loci were simulated, those recovered beyond this number

represent the splitting of loci caused by a failure to identify hom-

ology. Levels of sequence divergence are equal across the three

datasets because indels were introduced by replacing muta-

tions—meaning their phylogenetic distribution is identical to

that of other mutations—thus, the different results represent

the effect of indel variation alone.

PyRAD identifies homology almost equally across the three

datasets (Fig. 3), whereas Stacks performs worse when the data

contain more indels, to the point of splitting nearly half the loci

in the highIndels dataset into multiple loci shared by fewer taxa.

This led to lower average taxon coverage per locus in the

assembled Stacks datasets, as well as fewer loci with full coverage

across all taxa (Table 1). In all three small simulated datasets the

Fig. 2. Species tree on which RADseq data were simulated under a co-

alescent model. Divergence times are in coalescent units. Mutations rela-

tive to the outgroup X were sampled at different frequencies to simulate

deletions in three different datasets and also to simulate disruption of the

restriction recognition site in one dataset

1846

D.A.R.Eaton

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/13/1844/2422183 by guest on 21 August 2022

,
&times;
x
-
-- 
&times;
X
&times;
X
six 
five 
,
,
approximately 
,
which 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu121/-/DC1
``
''
``
''
;
10 
10 
,
10 
10 
12 
,
16 
10 
 -- 
 -- 


PyRAD analysis finished in approximately half the time of

Stacks.

3.1.1 Large hierarchical clustering results Both programs re-

covered similar results for the large noIndel-m dataset in terms

of average taxon coverage and number of loci shared across all

taxa (Table 1). Stacks took425h to run, while PyRAD finished

in about half that time. Hierarchical clustering in PyRAD

improved speed significantly, reducing the run time to less than

3h, but at the cost of reducing the average taxon coverage across

the dataset by one-third. However, it had no effect on the per-

centage of loci recovered across all taxa, as the data that were

excluded during hierarchical clustering represent loci shared by

few samples. For large datasets that include many sampled indi-

viduals and large numbers of loci, the dramatic reduction in run

times achieved through this approach will be useful.

3.2 Empirical results

When assembled by PyRAD the empirical dataset recovered

181289 loci of which 56.4% were singletons, but for which

443K had taxon coverage of four or more, and 2465 were re-

covered across all taxa. In comparison, Stacks recovered 213 742

loci with a greater proportion of singletons (59.4%) and only

1940 loci shared across all taxa (Table 1). This difference is

more striking after applying paralog filters to both analyses,

wherein PyRAD recovers 1989 loci across all taxa but stacks

recovers only 1123. Overall, PyRAD recovered more loci at

high taxon coverage and fewer loci at low coverage than

Stacks (Fig. 4). In contrast to the simulated datasets, these results

show clearly that locus dropout is a true feature of empirical data

regardless of the bioinformatic method used. We should not

expect to recover 100% of data across samples, especially

when they are highly divergent, but to the extent homology is

present among sequences in the dataset, I show here that PyRAD

has greater ability to detect it.

In the minimally phylogenetic informative dataset (taxon

covarage greater than three) from the paralog filtered empirical

PyRAD output, 32% of loci contained at least one indel, and of

the loci with full taxon coverage, 15% contained indels.

Comparing these values to the frequency of indels in the small

simulated datasets, where 21 and 48% of loci contained indels

(for the lowIndels and highIndels datasets, respectively) shows

that the simulated values represent realistic proportions of indel

Fig. 3. Comparison of PyRAD (black circles) versus Stacks (gray circles) in assembling simulated RADseq datasets that differ in their amount of indel

variation. The two programs perform identically in the absence of indels (no indels), but in the presence of indels (low indels and high indels), Stacks

splits loci with indel variation into multiple loci with lower taxon coverage. Meaning a greater number of loci are shared across fewer taxa. PyRAD, in

contrast, is little affected by indels and recovers higher taxon coverage across all indel-containing datasets

Table 1. Comparison of PyRAD and Stacks in assembling simulated and

empirical RADseq datasets of different sizes (Ntaxa & Nloci) and with

different proportions of indels

Data Ntaxa Nloci Software Avg.cov %Full.cov Time

noIndel 12 10K PyRAD 12.0 100.0 0.31

noIndel 12 10K Stacks 12.0 100.0 0.62

lowIndel 12 10K PyRAD 12.0 100.0 0.34

lowIndel 12 10K Stacks 9.8 81.5 0.65

highIndel 12 10K PyRAD 11.9 99.1 0.32

highIndel 12 10K Stacks 7.4 56.3 0.70

noIndel-m 12 500K PyRAD 4.5 0.1 10.47

noIndel-m 12 500K PyRAD* 2.9 0.1 2.95

noIndel-m 12 500K Stacks 4.5 0.1 25.70

empirical 13 178K PyRAD 3.0 1.4 36.42

empirical 13 207K Stacks 2.7 0.9 79.25

empirical-p 13 181K PyRAD 2.9 1.1 36.42

empirical-p 13 214K Stacks 2.4 0.5 79.25

Note: Performance is measured as the average number of samples recovered per

locus (Avg.cov) and percentage of Nloci with data recovered from all samples in

Ntaxa (%Full.cov). The noIndel-m and empirical datasets experience locus dropout

from mutations to restriction sites, and the latter also from variable quality and

sequencing coverage. Run times (hours) are compared for assemblies using 12 pro-

cessors. When hierarchical clustering was implemented in PyRAD (*) with a min-

imum coverage of four, it greatly reduced run times while still retaining all full

coverage loci. Empirical results are shown with paralog filters applied (-p) and

without. The number of recovered loci (Nloci) was used to calculate %Full.cov.
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variation as expected across a similar sized dataset at a shallow

phylogenetic scale.

4 DISCUSSION

4.1 RADseq at the phylogenetic scale

One of the greatest barriers to RADseq phylogenetics stems from

the significant amounts of missing data that are expected to
result from mutations to restriction recognition sites. However,

no empirical studies have yet shown whether this form of locus
dropout is in fact the primary source of missing data. Instead,
insufficient sequencing coverage and a failure to identify hom-

ology during bioinformatic analyses may account for a signifi-
cant proportion of locus dropout, particularly in studies at

shallow phylogenetic scales. Here I show that PyRAD performs
better than the current de facto alternative software for assem-

bling RADseq datasets from divergent samples that include real-
istic proportions of indel variation.
Indel variation is common even within a single species

(Mullaney et al., 2010), and thus, it should be no surprise that
restriction-site–associated libraries often sample regions contain-

ing such variation. Within repetitive DNA elements (i.e. simple
sequence repeats, microsatellites), indels can arise rapidly

through slipped-strand mispairing during DNA replication
(Levinson and Gutman, 1987), giving rise to single or often

tandem repeat nucleotide differences between taxa. While it is
typically desirable to exclude large repetitive genomic regions
from phylogenetic analyses (attempted by pyRAD within the

framework of ‘paralog filtering’), the probability any locus con-
tains at least a single or few short repeat bases is high. Rather

than excluding or splitting loci that differ by short repeats,

accurately clustering and aligning them across disparate species

will help to create more complete and phylogenetically inform-

ative datasets.

4.2 Options and extensions

4.2.1 Paired-end reads and sequence overlap PyRAD uses two
methods that greatly improve the speed and quality of paired-

end library assemblies. The first is specific to paired ddRAD

libraries for which first and second reads are subtended by dif-

ferent restriction enzyme cut sites. Here, first and second reads

can either be analyzed separately and treated as unlinked loci

(ddRAD method), concatenated and treated as long contigs

(concatenated ddRAD method) or clustered by only their first

reads but with second read data kept associated with first read

clusters (split ddRAD method). The first approach loses infor-

mation about linkage of the paired reads. The second method

retains this information, but requires greater computation be-

cause of longer read lengths, while the third, ‘split ddRAD clus-

tering’, offers a dramatic speed improvement over clustering

longer concatenated reads while also retaining linkage informa-

tion. It also allows assembling more highly divergent second

reads, which often contain low-quality base calls.

The second feature PyRAD offers for paired-end data is the

ability to identify partial overlap among sequences. This proves

particularly useful for paired-end ddRAD or GBS libraries that

suffer from variable size selection, which can result in overlap

among paired-end reads or between single-end reads sequenced

from either end of short GBS fragments. Using reverse comple-

ment clustering, contigs are constructed from overlapping re-

gions with sufficient coverage to make consensus base calls.

This allows building contigs longer than individual read lengths

and increases quality by combining sequences with high-quality

base reads at either end. Most importantly, it reduces duplication

that would result from treating partially overlapping reads as

separate loci.

4.2.2 Introgression analyses PyRAD is being developed to in-

clude a number of analysis tools in addition to data assembly.

This currently includes measurement of D-statistics (Durand

et al., 2011) and related tests for genomic introgression (Eaton

and Ree, 2013). For this, PyRAD uses the distribution of

RADseq markers as putatively unlinked loci and performs

non-parametric bootstrapping. A number of options are avail-

able to optimize the amount of shared data across samples when

performing these tests, including SNP-based tests and averaging

allele counts across multiple sampled individuals.

5 CONCLUSION

PyRAD performs de novo assembly of RADseq datasets, includ-

ing RAD, GBS, ddRADseq and paired-end options. It is de-

signed to perform equally well from population to phylogenetic

scales and is currently being implemented across this range, from

linkage analyses among siblings to clade-level phylogenies with

hundreds of tips. A major goal of this software was ease of use,

and for this reason, it uses common file formats familiar to those

working in phylogenetics and offers a variety of output formats

for downstream analyses, from SNP and allelic data to individual

Fig. 4. The log difference in number of loci recovered at each level of

taxon coverage from the empirical RADseq dataset of Eaton and Ree

(2013) when analyzed by PyRAD and Stacks. Below the center line,

Stacks recovered more loci (gray), while above the line, PyRAD recovered

more (black). Circles indicate the comparison on data not filtered for

paralogs and the bars after filtering for paralogs. PyRAD recovered

more loci shared across a greater number of taxa, making its assembled

dataset more phylogenetically informative
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or concatenated loci. Because the software does not need to be

compiled, PyRAD is easy to install on any desktop or computing

cluster. It does not require large memory usage, and an analysis

can be easily split into multiple shorter-length jobs through its

step-wise execution.
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